Linear Algebra

MA 242 (Spring 2013) Instructor: M. Chirilus-Bruckner

Definition

Let A be an $n \times n$ matrix. Then a *nonzero* vector $v \in \mathbb{R}^n$ is called an **eigenvector** of A if

 $Av = \lambda v$

for some scalar λ . This scalar λ is then called **eigenvalue** of A and v is said to be the corresponding eigenvector. The set of all solutions to

$$(A - \lambda I)v = 0$$

is called the **eigenspace** corresponding to λ .

Computing eigenvalues

A scalar λ is an eigenvalue of an $n \times n$ matrix A if and only if the equation

$$(A - \lambda I)v = 0$$

has nontrivial solutions, which is only true if $(A - \lambda I)$ is not invertible (otherwise it has the unique solution v = 0), which is only true if

$$\det(A - \lambda I) = 0.$$

Example in \mathbb{R}^2 : Compute eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & 8 \\ 0 & 2 \end{bmatrix}$

- 1. $A \lambda I =$
- 2. $\det(A \lambda I) =$
- 3. det $(A \lambda I) = 0$ has solutions $\lambda_1 = \dots, \lambda_2 = .$
- 4. eigenvector for λ_1 :

5. eigenvector for λ_2 :

EIGENVALUES AND EIGENVECTORS

Example in \mathbb{R}^3 : Compute eigenvalues and eigenvectors of $A = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix}$.

1.
$$A - \lambda I = \begin{bmatrix} 4 - \lambda & -1 & 6 \\ 2 & 1 - \lambda & 6 \\ 2 & -1 & 8 - \lambda \end{bmatrix}$$

2. $\det(A - \lambda I) = -(\lambda - 9)(\lambda - 2)^2$. (characteristic equation)
3. $\lambda_1 = 9$ (with multiplicity one), $\lambda_2 = 2$ (with multiplicity two)
4. $\underline{\text{eigenvector for } \lambda_1 = 9$:
 $\begin{bmatrix} 4 - 9 & -1 & 6 \\ 2 & 1 - 9 & 6 \\ 2 & -1 & 8 - 9 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \circ \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, so $v = s \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $s \in \mathbb{R}$
Choose, for instance, $v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. Note: Eigenvectors are only unique up to scaling.
Check: $Av_1 = \begin{bmatrix} 4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} =$

 \rightsquigarrow Eigenspace for $\lambda_1 = 9$ is one dimensional.

5. <u>eigenvector for $\lambda_2 = 2$:</u>

$$\begin{bmatrix} 4-2 & -1 & 6 & 0 \\ 2 & 1-2 & 6 & 0 \\ 2 & -1 & 8-2 & 0 \end{bmatrix} \sim \begin{bmatrix} 2 & -1 & 6 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \text{ so } v = s \begin{bmatrix} \frac{1}{2} \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}, s, t \in \mathbb{R}$$

Any choice of s, t will give an eigenvector (for instance, s = 1, t = 0). \rightsquigarrow Eigenspace for $\lambda_2 = 2$ is two dimensional.