

LINEAR ALGEBRA — MA 242 —

1 Consider the matrices

 $A = \left[\begin{array}{cc} 1 & 2 \\ 2 & 5 \end{array} \right], \qquad B = \left[\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array} \right].$

(a) Verify that det(AB) = det(A) det(B). (b) Verify that $det(A + B) \neq det(A) + det(B)$.

2 Compute the determinant of $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 2\\0\\0\\0 \end{bmatrix}$	$-9 \\ \frac{1}{2} \\ 0 \\ 0$	${3 \\ 2 \\ 3 \\ 0 }$	$ 5 - 7 \\ 7 \\ 1 \\ \frac{1}{3} - 3 $].
2 Compute the determinant of $A =$	0 0 0	$\begin{array}{c} \frac{1}{2} \\ 0 \\ 0 \end{array}$	$2 \\ 3 \\ 0$	$ \begin{array}{c} 7 \\ 1 \\ \frac{1}{3} \end{array} $	

- **3** Compute the determinant of $A = \begin{bmatrix} 3 & 0 & 0 \\ 2 & -1 & 1 \\ 1 & 1 & -4 \end{bmatrix}$
 - (a) by the rule of Sarrus.
 - (b) by cofactor expansion.
- **4** Compute the determinant of $A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
 - (a) by cofactor expansion.
 - $\left(b
 ight)$ by executing one row operation.