Notes:

1) The function `matchLandmarks` takes as arguments the coordinates of source and target points `x` and `y`, and the following parameters:

- `k` = order of Sobolev space. Don't take it too high, otherwise it will be very slow.

- `a` = scale factor. This should be set according to the size of the data. If data is in a box of length `L`, a good choice is `a=L/4`.

- `lambda` = weight of landmark matching error. You can just set it to `inf` to get perfect matching, but then the solutions are not guaranteed to be geodesics. Otherwise just take a big value for `lambda`.

The output will be a structure, say `s`, whose most important variables are:
- `s.X` : optimal trajectories between `x` and `y`
- `s.mom` : momentum vectors for the optimal trajectories (the `alpha_i(t)` in Mario's notes)

Also, if you want to perform rigid registration first, go into `matchLandmark.m` and change line `rigidmatching=0` to `rigidmatching=1`. The rigid transformation will be given by variables `transmatrix` and `transvector` in the output structure.

2) The function `flow` will compute the deformation of any points. It takes as input the coordinates `p` of points to flow, then `X`, `mom`, `k` and `a`. If you have used rigid registration, you should add also the matrix and translation vectors from the output structure.