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Abstract of “ Existence and Stability of Spatially Localized Planar Patterns ” by
Elizabeth Makrides, Ph.D., Brown University, May 2016

Spatially localized structures, in which a spatially oscillatory pattern on a finite spa-

tial range connects to a trivial homogeneous solution outside this range, have been

observed in numerous physical contexts, including cellular buckling, plane Couette

flow, vegetation patterns, optical cavity solitons, crime hotspots, and many others.

Despite the widely disparate contexts in which they arise, the bifurcation diagrams

of such patterns often exhibit similar snaking behavior, in which branches of sym-

metric solutions, connected by bifurcating branches of asymmetric solutions, wind

back and forth between two limits of an appropriate parameter. In this thesis we

address the existence and stability of stationary localized solutions of parabolic par-

tial differential equations (PDEs) on the line and the plane. One particular model

system supporting localized structures is the Swift–Hohenberg system, and we use

this system for numerical illustration of our existence and stability results.

Our main results are as follows: we give a new proof of the existence asymmetric

localized structures, utilizing information about the underlying front structure and

providing a unified approach to the existence of all localized structures. This enables

a rigorous proof of the stability properties of symmetric and asymmetric structures.

We show that the temporal eigenvalues of localized structures in the right half plane

are exponentially close to those of the front and back added with multiplicity, and

furthermore that the eigenvalue at the origin remains simple. We then address

numerical results showing unexpected behavior of eigenvalues within the essential

(or absolute) spectrum, and propose an analytical explanation of these results. We

conclude by predicting the results of perturbative terms in PDE systems supporting

localized snaking solutions, and make qualitative and quantitative predictions for

topological changes to the associated bifurcation diagrams, as well as drift speeds of

particular solutions.
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2

July 25, 2008 11:25 WSPC/103-M3AS 00302

A Statistical Model of Criminal Behavior 1251

Fig. 1. Dynamic changes in residential burglary hotspots for two consecutive three-month periods
beginning June 2001 in Long Beach, CA. These density maps were created using ArcGIS.

observations. We shall focus on residential burglary, which in many ways is the

simplest crime type, since mobile offenders are coupled to stationary target sites,

and further complexity arising from the relative movement between the agents at

play may be ignored.

Our starting point is a discrete lattice system where every site corresponds to

a target house. The lattice is further characterized by a series of offender agents

moving from site to site according to specific rules. As we shall better illustrate

in Sec. 2, burglar dynamics are strongly coupled to the level of attractiveness of

target sites, with offender movement and rate of burglary biased towards more

desirable locations. This bias could arise due to the fact that certain homes may

indeed be easier to break into, or that these houses might simply be perceived to be

better targets. The criminological and sociological effects described earlier will be

incorporated into our model by letting the degree of attractiveness of each site be a

dynamic, non-uniform quantity dependent upon both previous burglary events at

the same location and memory effects from burglaries at neighboring sites. We will

be interested in the role of this feedback loop on the dynamics and morphology of

the criminal hotspots.

A continuum derivation based upon the discrete model will also be presented.

Here, we coarse-grain our discrete grid so that burglars are locally described by

a number density function, and interactions with the environment are embodied

via coupling of this function with the coarse-grained attractiveness. Our continuum

crime model will consist of two coupled reaction-diffusion-like equations describing

the spatio-temporal evolution of number density and attractiveness, giving rise to

hotspot formation. In the limit of large criminal populations and lattice sizes, the

discrete and continuum models exhibit similar features.

Figure 1.1: The evolution of residential burglaries over two three-month periods beginning in
June 2001 in Long Beach, CA. These localized structures are referred to as crime hotspots [61].

1.1 Spatially localized structures in the natural

world

Spatially localized structures—roughly, those in which one type of pattern with a

finite spatial range is embedded within a second background state—appear in a wide

variety of physical contexts, including crime hotspots [40, 61], plane Couette flow

[60], optical cavity solitons [44], cellular buckling [27], and vegetation patterns [45].

We will be particularly interested in localized structures consisting of an oscillatory

pattern with finite spatial range, appearing within a homogeneous background state,

as may be seen in all of these systems.

In Figure 1.1 we show the evolution of a crime ”hotspot,” using actual data on

residential burglaries in Long Beach, CA [61]. Figure 1.2 shows examples of stable

multipeaked cavity solitons, as found in [44]. A localized solution found numerically

for plane Couette flow, as described by the incompressible Navier–Stokes equations,
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!N should obey a similar scaling principle to that presented
in Ref. "29# for localized structures in the Swift-Hohenberg
equation. For large N this scaling is predicted to be geomet-
ric, i.e. given by

!N!1"!N#r$!N"!N"1%, $3%

where r is a constant. We can try to test this prediction, over
a two-dimensional parameter space, against the data from
our model presented in Fig. 8. We can report that the se-
quence of bifurcations is precisely as predicted in Ref. "29#,
and moreover, that this sequence is maintained along any
section of the CS domain in Fig. 8. We cannot confirm the
geometric scaling law, however, but cannot yet say whether
this is due to imprecision in our numerical data, to not hav-
ing reached the asymptotic region of N, or indeed to the
scaling law being invalid.
Fig. 8 shows the existence of a particularly interesting

region in 1D parameter subspace, where !E0!2&1.49. At
these parameters we obtain two separate ranges of ' in
which cavity solitons exist.

V. TWO-DIMENSIONAL STATIONARY STATES

Multipeaked cavity soliton structures in two dimensions
involve 2D interaction forces between neighboring solitons.
This feature has been studied recently in Ref. "2#, where the
stability of two-dimensional clusters of cavity solitons was
analyzed as a function of soliton separation. Stable separa-
tions are determined by an effective potential created by the
interaction of the diffraction ripples of the N cavity solitons,
which was found to be expressible as a sum of pair-wise
potentials within the structure. In Ref. "2# the emphasis was
primarily on open clusters, because the interaction potential
is only asymptotically exact. Here, in a numerical analysis,
we only consider close-packed clusters, at the first stable
separation distance of d&6.8 for CSN

( configurations, as
shown in Fig. 9. It should be noted that for CS4

( , square

configurations of side d are unstable due to diagonal interac-
tions "see, Ref. "2##, and so for N#4 we consider the rhom-
boid of side d, which is stable.
Figure 10 shows the integral measure of the 2D CS solu-

tions with N#1,2,3,4 close-packed peaks. There is a strong
qualitative similarity to the corresponding 1D plot $Fig. 2%,
but it should be noted that there is no known scaling law for
2D structures to match that for 1D "29#. In this two-
dimensional model, the existence and stability domains of
multipeaked cavity solitons in the (!E0!2,') parameter space
are also quite similar to those found in our one-dimensional
analysis, and so we present only those for CS1

( , CS2
( , CS3

(

and CS7
( structures. These are shown in Fig. 11, again with

their existence domains extended. These stability domains
are important because of cavity mistuning and pumping in-
homogeneities present in experimental nonlinear media, that
make it desirable to have large domains of stability. While
the structure of the overlaid domains in Fig. 11, are qualita-
tively similar to the 1D case, we again note that there is no
analytic law with which to compare the bifurcation se-
quences.
Panels $a% and $b% of Fig. 11, respectively, show 3D space-

time plots of unlocking behavior, with the transverse coordi-
nates (x ,y) on the vertical axis and time t on the horizontal
axis. In panel $a% a CS7

( becomes unstable to the invasion of
the homogeneous solution into the structure, while in panel
$b% the opposite is true and the structure invades the homog-
enous solution forming an extended optical pattern.
Mechanisms responsible for these unlocking characteris-

tics are of obvious importance. Starting from a solitary CS1
L

structure we find that decreasing the pump has the effect of
weakening the diffraction ripples surrounding the soliton. At
the lower existence threshold (!E0!2&1.10) the structure be-
comes unstable to an undamped eigenmode which causes the
CS1

( structure to eventually relax into the homogenous state.

FIG. 9. Stable CS1,2,3,4
( clusters found using our Newton algo-

rithm in a physical domain of 48$48 diffraction lengths on a com-
putational mesh of 128$128 grid points. Parameters: !E0!2#1.33,
'#"1.2, and C#5.4. FIG. 10. Integral of two-dimensional CS structures against the

external pump !E0!2. Respectively denoted for ascending integral
values are solid CSN

( and broken CSN
L lines, where N#1,2,3,4. Pa-

rameters: '#"1.2 and C#5.4.

McSLOY, FIRTH, HARKNESS, AND OPPO PHYSICAL REVIEW E 66, 046606 $2002%

046606-6

Figure 1.2: Stable multipeaked cavity soliton clusters in a driven optical cavity containing a
saturable absorber [44].

is shown in Figure 1.3 [60]. Localized buckling structures are shown in Figure 1.4,

reproduced from [27]. Finally, in Figure 1.5 we show various patterns of vegetation

growth, as depicted in [45].

In fact, these systems comprise only a small subset of those in which localized

structures have been observed. We refer to [2, 5, 6, 13, 52] for additional physical

settings supporting localized structures, including liquid crystals, magnetoconvec-

tion, current filaments in a driven semiconductor-gas discharge system, and so on.

The review articles [15, 35, 36] contain an even larger selection of examples and

references.

In the following, we will be particularly interested in spatially localized structures

that are stationary in time, though in Chapter 6 we also consider spatially localized

structures that move with constant speed.
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been observed but its existence has been speculated [18].
This speculation is supported by the recent discovery of
two localized exact solutions in PCF by Schneider, Marinc,
and Eckhardt [19] which qualitatively resemble localized
states in the SHE.

The aim of this Letter is to elucidate the origin of these
localized solutions in PCF.We show that the Navier-Stokes
equations in this geometry indeed exhibit homoclinic snak-
ing, giving rise to localized counterparts of well-known
spatially periodic equilibria.

In PCF the velocity field uðx; tÞ ¼ ½u; v; w%ðx; y; z; tÞ
evolves under the incompressible Navier-Stokes equations,

@u

@t
þ u 'ru ¼ (rpþ 1

Re
r2u; r ' u ¼ 0; (1)

in the domain ! ¼ Lx ) Ly ) Lz where x, y, z are the
streamwise, wall-normal, and spanwise directions, respec-
tively. The boundary conditions are periodic in x and z and
no-slip at the walls, uðy ¼ *1Þ ¼ *x̂. The Reynolds
number is Re ¼ Uh=!, where U is half the relative veloc-
ity of the walls, h half the wall separation, and ! the
kinematic viscosity. We treat Re as the control parameter
and use as a solution measure the dissipation rate D ¼
ðLxLyLzÞ(1

R
!ðjr) uj2Þd!. The laminar profile has

D ¼ 1 while solutions such as those shown in Fig. 1
have D> 1.

Figure 1 shows two exact solutions of (1) at Re ¼ 400
and ! ¼ 4") 2) 16", originally identified in [19] for
! ¼ 4") 2) 8". The solutions are localized in the

spanwise z direction and consist of two to three promi-
nent pairs of alternating wavy roll-streak structures em-
bedded in a laminar background flow. Figures 1(a) and 1(b)
are a traveling-wave solution uTW of (1) satisfying
½u; v; w%ðx; y; z; tÞ ¼ ½u; v; w%ðx( cxt; y; z; 0Þ, where cx ¼
0:028 is the streamwise wave speed. Figures 1(c) and 1(d)
are a stationary, time-independent solution uEQ. The
equilibrium uEQ is symmetric under inversion
½u; v; w%ðx; y; z; tÞ ¼ ½(u;(v;(w%ð(x;(y;(z; tÞ, and
the traveling-wave uTW has a shift-reflect symmetry,
½u; v; w%ðx; y; z; tÞ ¼ ½u; v;(w%ðxþ Lx=2; y;(z; tÞ. These
symmetries ensure that neither uEQ nor uTW drifts in the
localization direction z.
To continue these solutions in Re, we combine a

Newton-Krylov hookstep algorithm [20] with quadratic
extrapolation in pseudoarclength along the solution
branch. The Navier-Stokes equations are discretized with
a Fourier-Chebyshev-tau scheme in primitive variables and
3rd-order semi-implicit backwards differentiation time
stepping. Bifurcations along the solution branches are
characterized by linearized eigenvalues computed with
Arnoldi iteration. The computations were performed with
32) 33) 256 collocation points and 2=3-style dealiasing,
resulting in approximately 2) 105 free variables, and
validated by recomputing with ð3=2Þ3 more grid points at
a number of locations along each solution curve [21].
The bifurcation diagram in Fig. 2 shows the uTW and

uEQ solutions from Fig. 1 under continuation in Reynolds
number. As Re decreases below 180, the solution branches
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FIG. 1 (color online). Localized traveling-wave uTW (a),(b)
and equilibrium uEQ (c),(d) solutions of plane Couette flow at
Re ¼ 400, from [19]. The velocity fields are shown in the y ¼ 0
midplane in (a),(c), with arrows indicating in-plane velocity and
the color scale indicating streamwise velocity u: dark, light, dark
(blue, green, red) correspond to u ¼ (1, 0, þ1. The x-averaged
streamwise velocity is shown in (b),(d), with y expanded by a
factor of 3.
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FIG. 2 (color online). Snaking of the localized uTW, uEQ

solutions of plane Couette flow in (Re, D) plane. The spatially
periodic Nagata solution uP is shown as well; the uTW solution
connects with it near (131, 1.75). Velocity fields of the localized
solutions at the saddle-node bifurcations labeled a; b; c; d are
shown in Fig. 3. The rung branches are shown with solid lines
connecting the uEQ and uTW in the snaking region; velocity
fields for the points marked #, $, % are shown in Fig. 4. Open
dots on the uTW traveling-wave branch mark points at which the
wave speed passes through zero.
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Figure 1.3: A localized solution for plane Couette flow at Reynolds number 400. The top figure
shows the velocity field in the y = 0 midplane, with arrows indicating in-plane velocity and the
color scale streetwise velocity. The bottom figure shows the x-averaged streamwise velocity [60].

C
ellular

Buckling
in
Long

Structures
27

Figure 23. Deflection w(x, y) and stress function φ(x, y) reconstructed from the numerical solutions on the localized buckling path at λ = 4.5× 10−4.
After each pass though a maximum the solution picks up an additional cell.Figure 1.4: Deflection (left) and stress functions (right) for localized solutions of the buckling

problem described by the Kármán–Donell equations [27].

Author's personal copy

74 E. Meron / Ecological Modelling 234 (2012) 70– 82

Fig. 5. Mixed patterns predicted by the Gilad et al. model. Shown are numerical solutions of the model equations in bistability ranges of bare soil and spots (a), spots and
stripes (b), stripes and gaps (c) and gaps and uniform vegetation (d). Darker gray shades denote higher biomass.
From Kletter et al. (2011).

Fig. 6. Mixed patterns in nature: an isolated shrub patch in the northern Negev, Israel (A), mixture of spots and stripes of woody vegetation in Niger (B), mixture of stripes
and  gaps of woody vegetation in Niger (C), and isolated gaps in the pro-Namib zone of the west coast of southern Africa (D).
From Rietkerk et al. (2002) (B and C) and Tlidi et al. (2008) (D).
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Fig. 7. Homoclinic snaking in the Swift–Hohenberg model. A bifurcation diagram showing intermediate solutions in a bistability range of uniform, u = 0, and pattern states
u  = up (a). The intermediate solutions describe localized structures with even (b) and odd (c) numbers of humps. Thick (thin) lines denote stable (unstable) solutions. The
parameter range rp1 < r < rp2 is called the homoclinic snaking range.
Courtesy of John Burke.

can form a variety of irregular stable patterns (Meron et al., 2004)
as Fig. 5 illustrates. Fig. 6 shows similar types of mixed patterns in
nature.

The mathematical theory of spatially mixed patterns in bistable
systems is far from being complete. However, significant progress
has been made recently in the case of bistability of uniform and spa-
tially periodic states. Fig. 7 shows a bifurcation diagram for a simple
pattern-formation model, the Swift–Hohenberg equation,2 that has
a bistability range of a uniform zero state and a periodic pattern.

2 The Swift–Hohenberg equation reads ut = ru + bu2 − u3 − (∂2
x + k2

0)2
u, where r,

b  and k0 are parameters. It can be regarded as the simplest model that captures a

Apart of the zero solution and the periodic solution there are many
intermediate solutions representing spatial mixtures thereof, some
of them are shown in the figure (the blue lines). (For interpretation
of the references to color in the text, the reader is referred to the web
version of the article.) They correspond to localized structures con-
sisting of confined domains of the periodic pattern in a background
of the zero state. There are two  families of such localized solutions,
one with an even number of humps and one with an odd number
of humps. The solution families “snake” upward, giving rise to a

stationary non-uniform instability. In this model the instability destabilizes the zero
state, u = 0 to a stationary periodic pattern with wave number k0.

Figure 1.5: Examples of localized and domain filling patterns of vegetative growth in Israel (A),
Niger (B,C) and Namibia (D) [45].



5

2

4

5

1

3

2

3

2

1

4

5

Figure 1.6: A schematic snaking bifurcation diagram for a reversible system, including illustrative
solution profiles. The blue branch corresponds symmetric solutions with a maximum in the center,
while the red branch corresponds to symmetric solutions with a minimum in the center, and each
green branch corresponds to a pair of asymmetric solutions related by the reverser R.

1.2 Snaking bifurcation diagrams

The bifurcation diagrams for localized structures in disparate systems have proven

to be remarkably similar, often exhibiting “snaking” behavior, in which a branch

of symmetric solutions winds back and forth between two limits of an appropriate

parameter, allowing for patterns of arbitrary spatial extent. Figure 1.6 provides a

schematic illustration of a snaking bifurcation diagram for a reversible system with

reverser R. Here we review some of the main features of such diagrams.

In general, snaking diagrams consist of two intertwined branches of symmetric

solutions, along with branches of asymmetric solutions which run between the two.

At the limits of the snaking region, homoclinic solutions appear and disappear in fold
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bifurcations, while asymmetric solutions bifurcate at pitchforks exponentially close

to the saddle nodes. Asymmetric solution branches connecting symmetric snaking

branches were discovered numerically in [8], using the Swift–Hohenberg model system

in one dimension. Moving up along a symmetric snaking branch, localized structures

grow by increasing the extent of the spatially periodic region between the trivial

homogeneous state. Similarly, along each successive ladder branch moving up the

bifurcation diagram, we find patterned regions of larger extent. We note that there

are two asymmetric solutions at each point along ladder branch, which are related

by the reverser R.

In Figure 1.7 we show a schematic bifurcation diagram for a system possessing

an additional Z2 symmetry κ : u 7→ −u. In this case, the snaking branch in blue

consists of two R-symmetric solution branches lying on top of each other in the

(µ, ‖u‖2) plane, one consisting of symmetric solutions with a central maximum and

the other one of symmetric solutions with a central minimum. In other words these

two solution profiles are transformed into each other by the symmetry κ. We note

that without an additional Z2 symmetry, these two solution types had formed the

two intertwined snaking branches. Similarly, the red snaking branch is actually

two branches of κR-symmetric solutions. Finally, each asymmetric ladder branch

corresponds to four separate solutions, which we may write as u,Ru, κu, κRu.

To illustrate the widespread nature of the snaking phenomenon, in Figure 1.8 we

reproduce bifurcation diagrams from previously published work on systems describ-

ing some of the physical phenomena mentioned in Section 1.1. References are given

in the caption.

We note that the bifurcation diagrams of fully localized planar patterns (as in

Figure 1.9, right) can be far more complicated than those of structures which are
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Figure 1.7: A snaking bifurcation diagram for a reversible system with additional Z2 symmetry,
including illustrative solution profiles. The blue branch corresponds to two sets of even parity
solutions, with particular solutions shown at points 1 and 6. The red branch corresponds to two
sets of odd parity solutions, with solutions shown at points 3 and 4. Finally, each green branch
corresponds to four sets of asymmetric solutions, as shown at points 2 and 5.
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been observed but its existence has been speculated [18].
This speculation is supported by the recent discovery of
two localized exact solutions in PCF by Schneider, Marinc,
and Eckhardt [19] which qualitatively resemble localized
states in the SHE.

The aim of this Letter is to elucidate the origin of these
localized solutions in PCF.We show that the Navier-Stokes
equations in this geometry indeed exhibit homoclinic snak-
ing, giving rise to localized counterparts of well-known
spatially periodic equilibria.

In PCF the velocity field uðx; tÞ ¼ ½u; v; w%ðx; y; z; tÞ
evolves under the incompressible Navier-Stokes equations,

@u

@t
þ u 'ru ¼ (rpþ 1

Re
r2u; r ' u ¼ 0; (1)

in the domain ! ¼ Lx ) Ly ) Lz where x, y, z are the
streamwise, wall-normal, and spanwise directions, respec-
tively. The boundary conditions are periodic in x and z and
no-slip at the walls, uðy ¼ *1Þ ¼ *x̂. The Reynolds
number is Re ¼ Uh=!, where U is half the relative veloc-
ity of the walls, h half the wall separation, and ! the
kinematic viscosity. We treat Re as the control parameter
and use as a solution measure the dissipation rate D ¼
ðLxLyLzÞ(1

R
!ðjr) uj2Þd!. The laminar profile has

D ¼ 1 while solutions such as those shown in Fig. 1
have D> 1.

Figure 1 shows two exact solutions of (1) at Re ¼ 400
and ! ¼ 4") 2) 16", originally identified in [19] for
! ¼ 4") 2) 8". The solutions are localized in the

spanwise z direction and consist of two to three promi-
nent pairs of alternating wavy roll-streak structures em-
bedded in a laminar background flow. Figures 1(a) and 1(b)
are a traveling-wave solution uTW of (1) satisfying
½u; v; w%ðx; y; z; tÞ ¼ ½u; v; w%ðx( cxt; y; z; 0Þ, where cx ¼
0:028 is the streamwise wave speed. Figures 1(c) and 1(d)
are a stationary, time-independent solution uEQ. The
equilibrium uEQ is symmetric under inversion
½u; v; w%ðx; y; z; tÞ ¼ ½(u;(v;(w%ð(x;(y;(z; tÞ, and
the traveling-wave uTW has a shift-reflect symmetry,
½u; v; w%ðx; y; z; tÞ ¼ ½u; v;(w%ðxþ Lx=2; y;(z; tÞ. These
symmetries ensure that neither uEQ nor uTW drifts in the
localization direction z.
To continue these solutions in Re, we combine a

Newton-Krylov hookstep algorithm [20] with quadratic
extrapolation in pseudoarclength along the solution
branch. The Navier-Stokes equations are discretized with
a Fourier-Chebyshev-tau scheme in primitive variables and
3rd-order semi-implicit backwards differentiation time
stepping. Bifurcations along the solution branches are
characterized by linearized eigenvalues computed with
Arnoldi iteration. The computations were performed with
32) 33) 256 collocation points and 2=3-style dealiasing,
resulting in approximately 2) 105 free variables, and
validated by recomputing with ð3=2Þ3 more grid points at
a number of locations along each solution curve [21].
The bifurcation diagram in Fig. 2 shows the uTW and

uEQ solutions from Fig. 1 under continuation in Reynolds
number. As Re decreases below 180, the solution branches
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FIG. 1 (color online). Localized traveling-wave uTW (a),(b)
and equilibrium uEQ (c),(d) solutions of plane Couette flow at
Re ¼ 400, from [19]. The velocity fields are shown in the y ¼ 0
midplane in (a),(c), with arrows indicating in-plane velocity and
the color scale indicating streamwise velocity u: dark, light, dark
(blue, green, red) correspond to u ¼ (1, 0, þ1. The x-averaged
streamwise velocity is shown in (b),(d), with y expanded by a
factor of 3.
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FIG. 2 (color online). Snaking of the localized uTW, uEQ

solutions of plane Couette flow in (Re, D) plane. The spatially
periodic Nagata solution uP is shown as well; the uTW solution
connects with it near (131, 1.75). Velocity fields of the localized
solutions at the saddle-node bifurcations labeled a; b; c; d are
shown in Fig. 3. The rung branches are shown with solid lines
connecting the uEQ and uTW in the snaking region; velocity
fields for the points marked #, $, % are shown in Fig. 4. Open
dots on the uTW traveling-wave branch mark points at which the
wave speed passes through zero.
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Figure 14. The bifurcation diagram of the homoclinic starting at P = 2, for nonlinearity f (u) = u−u3+3/10 u5.

There is a strong resemblance between this evolution and the form of the solutions that
are found along the bifurcation diagram uncovered in Section 2, for example Figure 5. In
Figure 14 we draw a bifurcation diagram for the nonlinearity f2. Although the two figures
are similar in appearance, there is a significant difference. In Figure 5 both solution curves
consist of even solutions; for the nonlinearity f2, with the additional symmetry u "→ −u,
these two sets of solutions are identical (up to a reflection u "→ −u) and we draw them as one
curve in Figure 14 (continuous line). Because of the additional symmetry, there is also a new
reversibility in the problem:

R : (u, u′′) → (−u,−u′′) and x → −x,

(compare with Equation (3)). This leads to a second curve of solutions, bifurcating from
P = 2, which are odd (broken line). Further numerical results have found that the bifurc-
ation sequence for f2 is the qualitatively similar to that for f1 with the equivalent of the kink
transition at b = 2/9 corresponding to α = 3/16. The degenerate Hamiltonian Hopf which
occurs for f1 at b = 38/27 has no analogue for f2 other than formally as α → ∞.
We believe (but have as yet no proof) that the minimizers of Equation (16) all lie on the

bifurcation diagram in Figure 14. Every horizontal line in this figure intersects the diagram
at least twice, and for large values of λ, by the sloping nature of the curves, more than twice.
The oscillations in the graph appear to be centred about a mean value P which is close to the
Maxwell load which will be described and computed in the next section. At every value of
λ there are therefore several candidates for the global minimizer. In the following section we
first explore global minimization issues via a simplified caricature, before investigating more
closely the global minimizer for the strut model and its relation to the above diagram.

4. Maxwell Criterion and Global Stability

Let us now turn to the question of which solutions under conditions of controlled end-
shortening may be stable. For an environment rich with underlying disturbance, interest
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Figure 9: Bifurcation diagram for both the ⇥10⇤- and ⇥11⇤-hexagon fronts with Ā = 1, ⇥2 = 0.1.

To describe di�erent directions and interfaces on the hexagon lattice we use the Bravais-Miller index notation;

see [29]. On a hexagonal lattice there are two principal directions �10⇥- and �11⇥-directions, that are at ⇥/3

radians apart.

Setting Ā = 1, �2 = 0.1, we show the bifurcation diagram for both the principal �10⇥- and �11⇥-hexagon fronts

in Figure 9. Here we observe the same type of snaking behaviour seen in the Swift-Hohenberg equation [29]

where the �10⇥-front (label (1) in Figure 9) snakes over a larger region of parameter space than the �10⇥-front

(label (2) in Figure 9). As one proceeds up the snake, entire rows of hexagon cells are added to both ends of

the interface. We also expect there to be almost hexagon fronts where single cells are grown along the edge

of the interface; see Lloyd et al. [29, Figure 21].
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Figure 10: Hexagon ⇥10⇤ front isolas with Ā = 1, ⇥2 = 0.04. The labelled solutions are for the solid isola branch.The

domain covering hexagon fold occurs at � = �0.092 while the radial spot fold occurs at � = �0.103 and lines up with

the folds of the ⇥10⇤ fronts.

As we decrease �, we find that the bifurcation diagram is made up of isolas of hexagon fronts that go beyond

the saddle-node point for the domain covering hexagons; see Figure 10. These parameter values are the same

as those used by Short et al. [38, Figure 7]. As one transverses the isolas, we see that the localised hexagon

pattern passes to a multi-pulse state involving the hexagon cells; see panel (2) Figure 10. In particular, we

see that the left most folds of the �10⇥-fronts occur at the fold of the radial spot strongly suggesting that the

localised structure is made-up of radial spots. This explains why the fronts in Figure 10 can exist beyond

the fold of domain covering hexagons. However, it is clear that near the bottom right folds, the interior of

the front does look like domain covering hexagons. We also note that decay to the background state changes

from oscillatory to monotonic as one transverses the bifurcation diagram. This change in the type of decay
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E0 at fixed !!"1.2, it can be seen in Fig. 2 that cavity
soliton branches bifurcate subcritically at the modulational
instability threshold.
The existence of multipeaked CS structures is shown in

Fig. 2, in which their integral (" !A! dx) is plotted as a func-
tion of !E0!2. CS exist on two distinct yet similar branches
which correspond to structures with, respectively, odd and
even numbers of peaks. Both bifurcate from the homoge-
neous state at the point of modulational instability. Each
branch, although continuous, is composed of numerous posi-
tive slope #upper$ and negative slope #lower$ sections, which
we will denote by % and L superscripts, respectively. We also
specify the ‘‘number of peaks’’ #N$ as the number which

have amplitude at least equivalent to that of the lower-branch
solitary cavity soliton CS1

L at given input parameters. A se-
quence of these solutions is presented in Fig. 3. Note that the
N peaks are ‘‘close packed.’’ As might be guessed, there are
numerous other branches corresponding to structures with at
least one ‘‘gap’’ between adjacent large-amplitude peaks. If
we denote such a peak by ‘‘1,’’ and a minimal ‘‘gap’’ by ‘‘0,’’
our close-packed CS structures are all of type
‘‘ . . . .00011 . . . .111000 . . . . ,’’ which excludes e.g.
‘‘ . . . .0001101000 . . . . .’’ We will not examine such ‘‘open
structures’’ in detail, although we note that their existence
and stability is important in connection with the use of CS
arrays as pixel or memory arrays &7,22,36'.
As N increases, the solutions get broader, and so are even-

tually limited by the computational domain. In the absence
of such constraints, they become very similar to the roll pat-
terns described in Ref. &1'. Since a continuum of patterns of
different wave vector are stable in this parameter region, the
issue of the limiting peak separation of the multipeaked CS
is an interesting question. Another issue arises when we con-
sider that additional peaks do not have to be added sym-
metrically. By adding peaks on only one side one limits to
‘‘ . . . .00000111111 . . . . ,’’ which is not a roll pattern, but
coexistent roll and homogeneous patterns, with a front at the
border between them. These issues will be explored below.
Turning now to the dynamical properties of these CS so-

lutions, we have tested their stability by diagonalizing their
Jacobian, using the numerical methods mentioned above.
Discounting the neutral mode #see below$ possessed by all
CS solutions, the stability results are rather simple, in that all
positive-slope branches in Fig. 2 are stable, and all negative-
slope branches unstable. More precisely, all nonzero eigen-
values of the Jacobian of a positive-slope N-peak CS solution
are negative, so that it is an attractor, self-organizing from
any sufficiently-similar structure into the unique #at given
parameters$ CS solution on its branch.
All negative-slope CS are unstable, they in fact have only

FIG. 2. Integral of one-dimensional CS structures against the
intracavity field !E0!2. Solid, dotted, and dashed lines, respectively,
denote: stable CSN

% , unstable CSodd
L , and unstable CSeven

L solutions.
Parameters are !!"1.2 and C!5.4.

FIG. 3. Sequences of profiles for odd #left$ and even #right$ CS branches shown in Fig. 2. Dash-dotted, solid, and dashed lines correspond
to solutions at !E0!2!1.22, !E0!2!1.33, and !E0!2!1.44. Other parameters are !!"1.2 and C!5.4.

COMPUTATIONALLY DETERMINED . . . . II. . . . PHYSICAL REVIEW E 66, 046606 #2002$

046606-3

(a) Plane Couette flow (b) Cellular buckling

(c) Crime hotspots (d) Optical cavity solitons

Figure 1.8: Examples of bifurcation diagrams corresponding to widely disparate physical systems
with similar underlying mathematical structure. Figures are reproduced from published works as
follows: (a) plane Couette flow [60]; (b) cellular buckling [27]; (c) crime hotspots [40]; (d) optical
cavity solitons [44].
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Figure 1.9: Examples of localized patterns on the plane. The “stripes and spots” pattern (left)
is localized in one spatial dimension and periodic in the other, while the hexagon patch (right) is
fully localized.

localized in one spatial direction (compare Figure 1.9, left). Extensive numerical

studies of fully localized structures have been carried out in [3, 41]. In general,

progress on fully localized structures in two or more dimensions is challenging, and

at present there are few analytical tools available to study such structures (excluding

radially symmetric solutions; in this case see, for example, [43]). We do not solve this

problem here, though we comment on some work in this direction in the conclusion.

In the following, we employ a spatial dynamics approach to study the existence,

uniqueness and stability of localized structures that arise as solutions to partial dif-

ferential equations (PDEs). We address patterns on the line and those on the plane

that are localized in one direction and periodic in the other. Rather than studying

particular PDEs, we examine classes of systems which support snaking behavior,

and in this context, we study existence and stability as well as the effects of vari-

ous hypotheses about the underlying system in perturbative and non-perturbative

regimes. Before describing our main results, we review some of the mathematical

approaches previously employed in studying localized structures.



10

1.3 A brief history of mathematical approaches

Having remarked briefly on the wide range of physical systems in which localized

solutions have been studied, and in a general way on the particular parameter-

dependent behavior of localized solutions in which we will be interested, we now give

a short (and necessarily selective!) overview of mathematical approaches to localized

structures. Such structures and particular features of snaking bifurcation diagrams

have attracted interest from a variety of communities for nearly 30 years.

In [53, Section 3], Pomeau first gave a heuristic argument for the existence of a

finite region in which stationary fronts between two phases should exist; whereas a

front between two spatially homogeneous states might be expected to move except

at a particular parameter value, Pomeau argued that a stationary front between

a spatially homogeneous state and a patterned region should exist for a nontrivial

range of parameters, which he termed the “pinning” region. Arguing by analogy

with crystal growth, Pomeau wrote “Accordingly a finite amount of desequilibrium

[sic] between the two phases is needed to make the interface moving. . . . Thus

there is a finite range of values of the control parameter around which the velocity

of the interface should stay equal to zero.”

A detailed numerical study of the generalized Swift–Hohenberg equation (see

Section 2.1) in one and two dimensions was undertaken in [25]. Here the authors

showed the coexistence of a wide variety of patterned states in appropriate param-

eter regions and, using numerical integration, identified pinning regions support-

ing localized structures biasymptotic to a homogenous steady state. Again using a

Swift–Hohenberg-type equation, [54] numerically established the existence of stable

localized patterns on the plane, noting that these patterns exhibited strong hystere-
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Figure 1.10: The degenerate Hamiltonian–Hopf bifurcation, also called a reversible 1-1 resonance.
Note that the signs of the parameter µ correspond to our parameterization of the Swift–Hohenberg
equation, see (1.1) in Section 2.1, but some authors use the opposite sign convention for µ.

sis. Moreover, the authors found many such localized patterns of varying spatial

extent existing in the same parameter region, and remarked: “[w]e underscore that

such a stable coexistence of stationary states with a number of different sizes is novel

and has not been obtained for the other cases for which stable, spatially localized

states have been reported.”

In [63], where the term “snaking” was first introduced, the unfolding of a degen-

erate Hamiltonian–Hopf bifurcation (also referred to as a reversible 1-1 resonance,

see Figure 1.10) was studied for a fourth-order reversible ODE. This system had

previously been studied [17, 28] in the context of capillary-gravity interfacial waves,

in which case the sign of one of the normal form coefficients was fixed. The authors

in [63] completed the analysis, and observed that resolving the one-parameter family

of heteroclinic connections at a particular µ = µD suggested by the normal form

analysis would require the inclusion of remainder terms breaking the phase invari-

ance (as had, in fact, been noted by Pomeau in his original heuristic argument: “As

often noted the sort of adiabatic expansion leading to (4) makes appears a spurious
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phase invariance. . . . [T]his leads to the fact that those nonadiabatic phenomena

are of a transcendentally small order in the small parameter. That should be true

for the width of the locking region in the parameter space for instance” [53]). Woods

and Champneys suggested a possible unfolding in which the degenerate family of

heteroclinic orbits breaks up into two heteroclinic tangencies for nearby values of µ,

which they illustrated using formal Poincaré sections, and further supported with

numerical experiments. The “sister” paper [27] to this one further noted the subtly

different bifurcation diagram obtained upon inclusion of an additional Z2 symmetry,

as described in the previous section.

At about the same time, [12] gave an early explanation of the appearance of

stationary localized structures in variational and non-variational reversible PDEs.

The authors employed a geometric spatial dynamics approach, noting the existence

of a one-parameter family of periodic orbits, Pλ, as a consequence of reversibility,

and employing Poincaré maps to explain the appearance of homoclinic orbits to

a fixed point, A, assuming the existence of transverse intersections of the unstable

manifold W u(A) and the stable manifold W s(P ). A global PDE bifurcation diagram

was deduced, plotting the wave speed c of the localized solutions as a function of

the parameter λ, and indicating the nontrivial region in which the wave speed c is

identically 0.

The issue of the S1 symmetry in the normal form studied in [63] and later

in [8] was finally resolved by an asymptotics beyond all orders analysis [9, 38],

which identified the the ϕ = 0 and ϕ = π phases near the codimension-two point

(µ, ν) = (0,
√

27/38) of the Swift–Hohenberg equation (see Section 2.1; note that the

Hamiltonian–Hopf bifurcation occurs at µ = 0 for all ν, and switches from supercrit-

ical to subcritical at ν =
√

27/38). The second of these papers [9] further identified

the asymmetric solutions appearing at pitchfork bifurcations exponentially close to
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the saddle node bifurcations.

A rigorous spatial dynamics approach was developed in [4] to explain the origin

of the symmetric and asymmetric solution branches in snaking bifurcation diagrams,

assuming the existence of fronts satisfying certain nondegeneracy conditions, as cap-

tured by assumptions on the intersections of appropriate manifolds. This analysis

did not require closeness to a Hamiltonian–Hopf bifurcation, and in fact allowed for

more complicated front structures. It is this approach that we will extend in the

following.

1.4 Outline and overview of results

We begin in Chapter 2 by introducing the Swift–Hohenberg equation, which provides

motivation for our analytical results, and which we will use throughout for numerical

computations illustrating our results. We also provide intuitive arguments as to how

the existence and stability of localized snaking patterns can be understood from the

perspective of combining fronts and backs. This is intended to motivate our later

results rather than rigorously describe a particular system, but we believe it indicates

the broad applicability of our rigorous formulation. It also provides an easy point

of entry for results on localized patterns in non-conservative, non-reversible, and

non-symmetric perturbative settings, which are covered in Chapter 6.

Following the background and framework developed in Chapter 2, in Chapter 3

we prove an analytic gluing result that encompasses both asymmetric and symmetric

solutions. This unified approach to the existence and uniqueness of symmetric and

asymmetric localized solutions extends the results in [4]. Importantly, we prove the
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exponential closeness of localized solutions to fronts and backs, which we can then

use to rigorously address the stability of localized solutions.

In Chapter 4, we study the stability of localized solutions. Using the exponential

closeness of the localized solutions to the fronts and backs as shown in the existence

results, our results here show that temporal eigenvalues of localized solutions lying in

the right half plane (outside the essential spectrum of the homogeneous solution and

of the rolls) are exponentially close to eigenvalues of the associated front and back

solutions, added with multiplicity. This result makes use of the roughness theorem

for exponential dichotomies, and covers both symmetric and asymmetric localized

solutions. We support our results with numerical computations on planar systems.

In Chapter 5, we continue our exploration of the stability of localized structures,

extending our analysis into the essential spectrum of the periodic solutions via an

extended Evans function [1, 31]. This involves first proving periodic versions of

the gap lemma [21, 30] and conjugation lemma [46]. Here we show that for both

symmetric and asymmetric localized solutions, the eigenvalue at λ = 0 remains

simple, so that taken together with our results in Chapter 4, we have a complete

result on the eigenvalues of localized solutions in the close right half plane. We

then make further use of the extended Evans function to analyze the behavior of

the saddle node eigenvalue as it moves inside the essential spectrum of the periodic

orbits.

Finally, results on perturbations are covered in Chapter 6. We show that pertur-

bative terms breaking symmetry or variational structure affect solution profiles and

overall bifurcation structure in ways which are fully predictable analytically; gen-

erally speaking, breaking reversibility or Z2 symmetry leads to a rearrangement of

bifurcation branches, while breaking variational structure leads to patterns that drift
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with nonzero speed. We introduce expressions involving only solutions of the unper-

turbed system and perturbative terms evaluated at unperturbed solutions which can

be used to predict a priori which of many topologically distinct bifurcation diagrams

will emerge upon introduction of perturbative terms, as well as the drift speeds of

asymmetric solutions where appropriate. We also show isolas may arise, and provide

an easy way to locate them numerically. Our results are illustrated and confirmed

with numerous numerical examples.



Chapter Two

Background
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2.1 A motivating example

One particular, and in some sense canonical, example of a PDE exhibiting localized

snaking patterns is the Swift–Hohenberg equation:

Ut = −(1 + ∆)2U − µU + νU2 − U3, (1.1)

with U = U(x, t) or U(x, y, t) and x ∈ R or (x, y) ∈ R2. The above equation is

referred to as the quadratic-cubic form, due to the powers in the nonlinearity, while

Ut = −(1 + ∆)2U − µU + νU3 − U5, (1.2)

is referred to as the cubic-quintic form.

Solutions of the Swift–Hohenberg equation have been studied extensively in the

pattern formation literature, in the context of both domain-filling and localized pat-

terns. We note that both (1.1) and (1.2) are reversible under x 7→ −x, while only

(1.2) is equivariant under the Z2 symmetry U 7→ −U . Moreover, both systems admit

a variational structure.

A schematic bifurcation diagram corresponding to (1.1) was given in Figure 1.6,

along with sample solution profiles, while Figure 1.7 shows the bifurcation diagram

and solution profiles for a system of the form (1.2).

As was first suggested by Kirchgässner [34] and is now routine, we follow a

spatial dynamics approach, analyzing evolution in the spatial variable x. Since we
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are looking for stationary localized solutions, we consider

0 = −(1 + ∆)2U − µU + νU2 − U3. (1.3)

When considering patterns on the line, this may then be recast as the 4-dimensional

ODE 

u1

u2

u3

u4


x

=



0 1 0 0

0 0 1 0

0 0 0 1

−1− µ 0 −2 0





u1

u2

u3

u4


+



0

0

0

νu2
1 − u3

1


(1.4)

with u = (u1, u2, u3, u4)T = (U,Ux, Uxx, Uxxx)
T ∈ R4. When considering patterns on

the plane which are localized in one direction (x) and periodic in the second (y), we

take x ∈ R and y ∈ S1, and arrive at the infinite dimensional ODE



u1

u2

u3

u4


x

=



0 1 0 0

0 0 1 0

0 0 0 1

−(1 + ∂2
y)

2 − µ 0 −2(1 + ∂2
y) 0





u1

u2

u3

u4


+



0

0

0

νu2
1 − u3

1


(1.5)

with u = (u1, u2, u3, u4)T = (U,Ux, Uxx, Uxxx)
T ∈ H3(S1)×H2(S1)×H1(S1)×L2(S1).

In Chapter 3 we show how locally, i.e., away from bifurcation points, all the

results formulated in [4] may be understood via a single matching procedure, so that

we get existence of both symmetric and asymmetric solutions from the same result.

Having found a particular localized solution U`(x) or U`(x, y) of (1.1), we are

then interested in its stability. This may be addressed by considering the eigenvalue

problem

λU = −(1 + ∆)2U − µU + (2νU` − 3U2
` )U. (1.6)
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Again this may be reformulated as the ordinary differential equation



u1

u2

u3

u4


x

=



0 1 0 0

0 0 1 0

0 0 0 1

−1− µ+ 2νU`(x)− 3U`(x)2 0 −2 0





u1

u2

u3

u4



+ λ



0 0 0 0

0 0 0 0

0 0 0 0

−1 0 0 0





u1

u2

u3

u4


(1.7)

Writing (1.4) as ux = f(u, µ, ν), we note that (1.7) can be written as

ux = fu(u`, µ, ν)u+ λBu. (1.8)

Similarly the planar case may be formulated as



u1

u2

u3

u4


x

=



0 1 0 0

0 0 1 0

0 0 0 1

−(1 + ∂2
y)

2 − µ+ 2νU`(x, y)− 3U`(x, y)2 0 −2(1 + ∂2
y) 0





u1

u2

u3

u4



+ λ



0 0 0 0

0 0 0 0

0 0 0 0

−1 0 0 0





u1

u2

u3

u4


, (1.9)

which again is of the form (1.8). This is our starting point for Chapter 4.
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2.2 A formal framework

We note that this material, along with the results in Chapter 6, has been published

in [42]. We further note that when we use u(x) in the following, we have in mind a

solution of a PDE system. Elsewhere we will typically use lower case variables for

ODE systems.

Our aim in this section is to link the rigorous spatial dynamics analysis, as

developed in [4] and extended in this thesis, to a formal approach that views the

emergence of localized roll patterns via gluing together appropriate building blocks

consisting of fronts and backs. This section is intended to provide intuition and

motivate the particular hypotheses employed in the following, rather than to present

precise results for a particular system.

2.2.1 System structure

We will begin by assuming three properties of our system: first, that it is reversible,

i.e., possesses x 7→ −x symmetry, with x ∈ R, so that if u(x) ∈ Rn is a solution, so

is u(−x). Second, we assume it possesses a Z2 symmetry κ, which for simplicity we

take to be κ : u 7→ −u, so that if u(x) is a solution, so is −u(x). Third, we assume

that the system is variational and can be written as

ut = −∇E(u) (2.1)

with

E(u) =

∫
R
L(u(x), ux(x), uxx(x))dx
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(or, more generally, L = L(u, ux, . . . , ∂
n
xu) for some n). The existence of a variational

structure implies that if u(x − ct) is a localized solution to (2.1), then necessarily

c = 0 (see Section 6.3.1 below). The variational structure also implies the existence

of a spatial Hamiltonian H that is conserved pointwise along any solution u(x) of

the steady state equation −∇E(u) = 0; see, for example, [41].

2.2.2 Wave trains, fronts and backs

We next assume that our system possesses wave trains, that is, spatially oscillatory

solutions with nonzero minimal period. Spatial reversibility implies that wave trains

should come in a one-parameter family, which we take to be parameterized by the

variable e, with spatial periods p(e). We refer to this family as v(x, e), and assume

that each member of the family is invariant under x 7→ −x. Whenever the symmetry

κ : u 7→ −u is present in our system, we will assume that v(x, e) is compatible with

this symmetry for each e so that v(−x, e) = −v(x, e). Finally, for variational systems,

the wave trains will generically be parameterized by e = H, the value of the spatial

Hamiltonian evaluated along the wave train.

We make the further assumption that the system admits fronts, i.e., solutions

evolving from a constant state to a spatially oscillatory one. More precisely, we

assume that there exist steady states uf (x) such that uf (x) → u0 as x → −∞ and

uf (x)→ v(x) as x→ +∞, where v(x) is a member of the family v(x, e). Assuming

that H(u0) = 0, the selected periodic solution v(x) will satisfy e = H = 0. We note

that we can rescale x so that p(0) = 2π.

In fact, we can more generally consider systems admitting solutions uf (x, y),

where y ∈ Ω b Rd−1, which satisfy uf (x, y)→ w(y) as x→ −∞, where w(y) is any
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function independent of x, as well as uf (x, y)→ v(x, y) as x→ +∞, where v(x, y) is

periodic in x. In essence we require only that the evolution in space occur along one

dimension, perhaps after an appropriate coordinate transformation. For simplicity

in this section we write solutions as u(x), but in subsequent sections we will use the

more general formulation both analytically and numerically.

uf (x), a front ub(x) = uf (−x), a back

Figure 2.1: Illustration of a front and a back, related by x 7→ −x.

In the case that uf (x) is a front, ub(x) := uf (−x) exists by reversibility, and is

termed a back; see Figure 2.1. Since we have assumed that the limiting oscillatory

solution v(x) is compatible with the κ symmetry, given a front solution uf (x) we

will also have the front solution uf2(x) := −uf (x), as well as the back solutions

ub1(x) := uf (−x) and ub2(x) := −uf (−x).

2.2.3 Symmetric localized solutions: construction via “glu-

ing”

We now wish to “glue” together front and back solutions to form a localized sta-

tionary solution uloc(x) which is invariant under u(x) 7→ u(−x). Clearly this is only

possible if we have a maximum or minimum at the center of the localized oscillatory

structure. Defining the phase ϕ at the center of the localized solution to be the

distance traveled past a maximum, and rescaling x if necessary so that the spatially

oscillatory limiting solution v(x) mentioned above has period 2π, this is equivalent
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to requiring that the phase at the center of the structure satisfies ϕ = 0 or ϕ = π;

see Figure 2.2.

ϕ = 0 ϕ = π

π/2 3π/2

Figure 2.2: Possible phases ϕ = 0, π for a localized solution invariant under x 7→ −x. The closed
circles indicate the midpoint of the pattern, while the labels π

2 and 3π
2 indicate the value of ϕ at

the open circles.

In the case that we have the additional symmetry κ : u 7→ −u, compatibility

of the 2π-periodic solution vx with κ implies that −v(x) = v(x + π), and we recall

that the existence of a front solution uf (x) implies the existence of the front solution

uf2(x) := −uf (x) and the back solutions ub1(x) := uf (−x) and ub2(x) := −uf (−x).

Thus we can form solutions invariant under u(x) 7→ −u(−x) by gluing a front uf (x)

to a back ub2 = −uf (−x) with phase ϕ = π
2

or ϕ = 3π
2

; see Figure 2.3.

ϕ = 3π/2ϕ = π/2

Figure 2.3: Solutions invariant under u(x) 7→ −u(−x), with phases ϕ = π
2 ,

3π
2 .

Moving forward, we will refer to solutions invariant under u(x) 7→ u(−x) as

symmetric, or R-symmetric. In the case that the system possesses the additional

κ : u 7→ −u symmetry, we will also refer to solutions invariant under u(x) 7→ −u(−x)

as symmetric, or κR-symmetric. Any localized solution which is not invariant under

either of these operations will be called asymmetric.
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2.2.4 Solution lengths and parameter dependence

To this point, we have not considered the role of parameters in our system. If we only

had one “type” of front present, which is to say all front solutions could be mapped

to each other via a translation in x, then we would only be able to get symmetric

localized states in lengths of multiples of 2π (or, if u 7→ −u symmetry is present, in

multiples of π); see Figure 2.4. If, however, we can define a characteristic length of

fronts such that the length of the fronts present in our system varies continuously

with a parameter, then our system will typically admit localized symmetric solutions

of arbitrary length via parameter variation.

ϕ = 0 ϕ = π

ππ
L̄

2L̄ 2L̄ + 2π

x1 x2

δ

u0

L̄ L̄ L̄

Figure 2.4: The length of a localized structure, measured as the distance between the largest
x, labeled x1, such that |u(x) − u0| < δ for all x < x1, and the smallest x, labeled x2 such that
|u(x)− u0| < δ for all x > x2, for some fixed tolerance δ.

We pause here to consider the notion of length. Although there is a natural

and rigorous way to measure these lengths in a dynamical systems setting, using

Poincaré sections near the oscillatory solution, we will not aim at fully rigorous

definitions and instead suggest an approximate measurement using only the solution

profiles. Specifically, we will make use of two distinct lengths: first, the length of

a localized structure is the extent of the region where our localized solution lies

near the oscillatory solution. We will generally denote this by 2L̄, since we are

usually interested in half this length. To measure the length of a localized oscillatory

solution, we can look at the difference between the largest x, called x1 in Figure 2.4,
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such that uloc(x) is within some tolerance of the constant solution, and the smallest

x, called x2 in Figure 2.4, such that it is again within this tolerance. Alternatively,

assuming u0 = 0, we can use the L2 norm of the whole localized solution. The former

measurement is more natural for theoretical development, while the latter is more

convenient for numerically computed bifurcation diagrams, but fundamentally both

capture the same information.

Second, the characteristic length of a front, which we denote by l and define

modulo 2π, corresponds to the length of the interface region between the constant

and oscillatory solution measured to a peak, modulo 2π1. That is, we look at the

difference between the largest x such that uloc(x) is within some tolerance of the

constant solution to the smallest x corresponding to a peak (i.e., u′(x) = 0, u′′(x) <

0) within some tolerance of the amplitude of the limiting oscillatory solution v(x);

see Figure 2.5. Again, assuming u0 = 0, we can also measure this via the L2 norm of

the portion of a front lying to the left of an oscillatory peak within some tolerance

of the maximum amplitude.

uf (x)

l

u0

x1 x2

δ1

δ2

Figure 2.5: The characteristic length of a front for some fixed tolerances δ1 and δ2, measured as
the distance between the largest x, labeled x1, such that |u(x) − u0| < δ1 for all x < x1, and the
smallest x, labeled x2, such that u′(x2) = 0, u′′(x2) < 0, and |u(x2)− v(x∗)| < δ2, where v(·) is the
limiting oscillatory solution, and v(x∗) has phase ϕ = 0.

Having established these two types of length, and approximately how to measure

1Note that we are assuming all fronts connect to oscillatory solutions with the same period,
which we normalize without loss of generality to 2π. In the case that the underlying periods of the
oscillatory are distinct, we can rescale x in a µ-dependent fashion to ensure that each has period
2π.
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them, we finally wish to include dependence on a system parameter µ. In general,

fronts will come locally in branches (smooth solution curves) as the only steady-

state bifurcations they typically undergo in 1-parameter systems are saddle node

bifurcations (possibly after ignoring bifurcations caused by symmetry breaking in

the transverse y-direction.) If we assume that fronts exist only for µ ∈ (µ1, µ2), then

plotting (µ, l) along the branch of fronts, we obtain typical bifurcation or existence

diagrams as shown in Figure 2.6. On the cylinder (µ1, µ2) × S1 (recall the char-

acteristic length l of fronts is taken modulo 2π), the connected branch containing

our front solution can have any one of these forms, as well as others not shown in

Figure 2.6.

(i) (ii) (iii) (iv)

µµµµµ1 µ2

2π 2π 2π 2π

llll

0000

Figure 2.6: Typical bifurcation and existence diagrams for fronts on (µ1, µ2)× S1, where l is the
characteristic length of fronts and µ is a system parameter.

Though the approach outlined below applies to all of these, we will assume for

the sake of clarity that each l corresponds to a unique µ, so that the branch on

(µ1, µ2) × S1 can be written as µ = z(l) with l ∈ [0, 2π]/∼ for some function z, as

illustrated in Figure 2.6(i). We can extend the function z to all of R by considering

the argument modulo 2π. We will generally write z(L) to indicate the extended

version.
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2.2.5 Bifurcation structure of localized solutions

Now suppose we have a symmetric localized structure of length 2L̄ with maximum

in the center, i.e., with phase ϕ = 0. Such a structure may be formed from a front of

characteristic length l = L̄ mod 2π and a back of the same characteristic length, so

that such a solution exists for µ = z(L̄). On the other hand, a symmetric localized

structure of length 2L̄ with minimum in the center (phase ϕ = π) is formed from

a front of characteristic length (L̄ − π) mod 2π and a back of characteristic length

(L̄ + π) mod 2π, so that such a solution exists for µ = z(L̄ + π); recall here that z

is 2π-periodic so that z(L̄ + π) = z(L̄− π). Consequently, in a bifurcation diagram

displaying the length (L2 norm) of a localized solution versus parameter µ, the curve

µ = z(L̄) will be the branch of symmetric localized solutions with maxima in the

center, while the branch of solutions with minima in the center will be given by

µ = z(L̄ + π). The resulting bifurcation diagram of symmetric branches for z as

given in Figure 2.6(i) therefore consists of snaking branches which are intertwined in

the sense of Figure 1.6.

Turning to asymmetric solutions, suppose we have a localized structure of length

2L̄, and again define the phase ϕ at the midpoint to be the distance past the nearest

maximum on the left. Such a structure is formed from a front of characteristic length

(L̄− ϕ) mod 2π and a back of characteristic length (L̄+ ϕ) mod 2π; see Figure 2.7.

Thus we can have a localized structure of length 2L̄ and phase ϕ if and only if

µ = z(L̄+ϕ) and µ = z(L̄−ϕ), requiring in particular that z(L̄+ϕ) = z(L̄−ϕ). In

other words, a localized structure of length 2L̄ can exist at a particular µ if and only

if there exists a ϕ such that µ = z(L̄+ϕ) = z(L̄−ϕ). Of course, if we have a localized

structure u(x) of length 2L̄ for some µ, we will also have a localized structure u(−x)

with length 2L̄ at this µ, so that in a bifurcation diagram plotting solution length or
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ϕ

L̄ L̄

L̄ − ϕ L̄ + ϕ

Figure 2.7: An asymmetric localized structure of length 2L̄, which can be viewed as the result of
combining a front of characteristic length L̄− ϕ with a back of characteristic length L̄+ ϕ, where
ϕ is the phase at the midpoint of the localized structure.

norm vs. µ, every point along a branch of asymmetric solutions will correspond to

two separate asymmetric solutions related by x 7→ −x. This can also be understood

by noting that if u(x) has phase ϕ, u(−x) will have phase ϕ̃ = 2π − ϕ, so that by

virtue of the 2π-periodicity of z, µ = z(L̄+ ϕ̃) = z(L̄− ϕ̃) will be satisfied.

In summary, all solution branches can be found by determining the values of L

and ϕ such that

Z(L, ϕ) := z(L+ ϕ)− z(L− ϕ) = 0. (2.2)

The corresponding values of µ for which these solutions exist are determined by the

relation µ = z(L + ϕ), which is of course equivalent to µ = z(L − ϕ) for all (L, ϕ)

such that Z(L, ϕ) = 0. In particular, since z is 2π-periodic, we will have symmetric

localized solutions for any L with ϕ = 0 or ϕ = π, whereas asymmetric solutions

will exist for particular values of L and ϕ /∈ {0, π} satisfying Z(L, ϕ) = 0. The

resulting bifurcation diagram of symmetric and asymmetric branches, for z as given

in Figure 2.6(i), is therefore as shown in Figure 6.1: to understand the shape of the

bifurcation branches, we needed only the existence of fronts, x 7→ −x symmetry,

and a relationship between the length of the interface region of fronts and a system

parameter.

We now connect the function z and the bifurcation equation (2.2), obtained
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here via formal gluing arguments, to the rigorous approach developed in [4] and

extended here. In that paper, it was shown that symmetric and asymmetric branches

correspond to solutions of a system of the form

Z(L, ϕ) + O(e−ηL) = 0 (2.3)

for some constant η > 0: for L large enough, regular zeros of (2.2) correspond to

regular zeros of (2.3), and vice versa. In particular, R-symmetric solutions that

spend time 2L near the periodic orbit exist for points (µ, L) with µ = µ∗(L, ϕ0) =

z(L+ϕ0) + O(e−ηL) for some η > 0 with ϕ0 ∈ {0, π}. Furthermore, all other single-

pulse solutions that spend time 2L near the periodic orbit are exponentially close in

L to the set of points (µ, L) such that µ = z(L+ϕ) = z(L−ϕ). Finally, it was shown

in [4] that the function z appearing in (2.3) has a natural interpretation in terms

of the intersection of invariant manifolds, and we will use this again in Chapter 3,

where we will show that the gluing procedure outlined above is not merely a formal

construction, but can be rigorously realized.

2.2.6 Bifurcation structure of localized solutions with Z2

symmetry

In the presence of a Z2 symmetry κ, the main distinction from Section 2.2.5 above

is that the function z is now automatically π-periodic: supposing our symmetry to

be u 7→ −u, if a front u(x) of length l exists at some parameter value µ, then a

front −u(x) with characteristic length (l + π) mod 2π must also exist at this µ; see

Figure 2.8.

Thus z(l) = z(l+π) for all l, i.e., z is π-periodic. As a consequence, the bifurcation
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branch of symmetric solutions with maxima in the center will lie on top of those with

minima in the center [z(L) = z(L + π).] Moreover, the branches of κR-symmetric

solutions with ϕ = π
2

or ϕ = 3π
2

described previously will lie on top of each other

for the same reason. Of course, the branches of the R- and κR-symmetric solutions

will be offset from each other by half a period, so that they have the appearance of

being intertwined.

(l + π) mod 2π
l

uf2(x) = −uf (x)uf (x)

l π

Figure 2.8: Illustration that the function z will be π-periodic whenever the periodic orbit v(x)
respects both x 7→ −x and u 7→ −u symmetries. Left: A front uf (x) with characteristic length l,
which we assume exists at some µ0. Right: The front uf2(x) := −uf (x) will also exist for this µ0,
and will have characteristic length l + π.

Asymmetric solutions of length 2L̄ will again exist whenever we can satisfy µ =

z(L̄ + ϕ) = z(L̄ − ϕ), keeping in mind that z is now π-periodic. Note that each

point on a bifurcation branch of asymmetric solutions will now correspond to four

such solutions: the “original” u(x) plus u(−x), −u(x) and −u(−x). We note in

passing that all of these will satisfy µ = z(L̄ + ϕ) = z(L̄ − ϕ) for their particular

ϕ, and that we will have exactly one solution with phase ϕ in each of the regions

(0, π
2
), (π

2
, π), (π, 3π

2
), (3π

2
, 2π).

Thus, as in the case where we had only x 7→ −x symmetry, we again see that the

zero-level set of the function Z(L, ϕ) := z(L+ϕ)− z(L−ϕ) describes all bifurcation

branches of localized oscillatory structures. The R-symmetric solution branches are

those with ϕ = 0 and ϕ = π, while the κR branches correspond to ϕ = π
2

and ϕ = 3π
2

.

Both these solution types exist for all values of L. Finally, asymmetric solutions exist
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only for those values of L and ϕ /∈ {0, π
2
, π, 3π

2
} such that Z(L, ϕ) = 0. See Figure 1.7

for the bifurcation diagram when z has the shape outlined in Figure 2.6(i).

Similar to the case without symmetry, these results have been derived rigorously

in [4]: if a Z2 symmetry κ is present, the function z will be π rather than 2π-

periodic, and two additional snaking branches with κR symmetry will exist for µ =

µ∗(L, ϕ0) = z(L+ ϕ0) + O(e−ηL) for some η > 0 with ϕ0 ∈ {π2 , 3π
2
}.

2.2.7 Breaking Z2 symmetry or variational structure

We now preview the effects of adding a general reversible perturbation, which we

will expand upon in Chapter 6. Figure 2.9 provides an overview of these effects at

the highest level.

Reversible,
variational system
with Z2 symmetry

Preserve Z2 symmetry

Break Z2 symmetry

Break variational structure

Preserv
e variat

ional structure

Break variational structure

Break Z2 symmetry

• Bifurcation diagram undergoes topological changes

• R-symmetric solutions are stationary

• Asymmetric solutions are stationary

• Bifurcation diagram undergoes topological changes

• R-symmetric solutions are stationary

• Asymmetric solutions drift

• Bifurcation diagram topologically preserved

• R- and κR-symmetric solutions are stationary

• Asymmetric solutions drift

Figure 2.9: A high-level summary of the effects of breaking Z2 symmetry, variational structure, or
both. Perturbations breaking reversibility can also be overlaid on each of these, and are discussed
in Section 6.3.3.

First, those parts of the perturbation that break the Z2 symmetry will generically

cause qualitative (topological) changes to the bifurcation diagram and underlying

solution profiles, as they will induce changes in the function z and, in particular,
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break its π-periodicity. The new form of the bifurcation diagram can be determined

by solving

Z(L, ϕ, ε) = z(L+ ϕ, ε)− z(L− ϕ, ε) = 0, (2.4)

where z(ϕ, ε) is the ε-dependent z function. We discuss this further in Section 6.2.

Second, the nonvariational parts of the perturbation may cause localized patterns

to drift: the existence of perturbed profiles and shape of the bifurcation branches is

determined by (2.4); however, unless the perturbation also breaks the reversibility

or Z2 symmetry, we do not expect qualitative differences in the solution profiles

or branch shapes. On the other hand, these perturbed solutions may travel with

nonzero speed, and Lemma 6.3.1 below predicts their speed to be

c = − 1

||ux||2L2

〈ux, G(u)〉L2

along a perturbed profile u.



Chapter Three

Existence of Localized Patterns
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3.1 Introduction

In the following we provide a unified approach to the existence of both symmetric

and asymmetric localized snaking solutions. Previously, in [4], an analytic gluing ar-

gument was used to show the existence of symmetric solutions; asymmetric solutions

were then shown to appear at pitchfork bifurcations, and a condition was given for

the continuation of these branches. A formal argument based on collective coordi-

nates was then used to predict the stability of asymmetric solutions. Here we show

how these arguments may be unified with a single, analytically rigorous approach.

We begin by formulating our results for the simplest case—a dynamical system in

R4. This may be motivated by considering, for example, localized solutions of the

Swift–Hohenberg equation on the real line, as discussed in Chapter 2. We then ex-

tend these results to the more general case of a system in R2n, from which point the

generalization to an infinite dimensional dynamical system, necessary for addressing

patterns in the plane, is clear. We will use the existence results contained in this

chapter to obtain rigorous stability results in Chapter 4.

Essentially, we show that heteroclinic connections (fronts and backs) from a fixed

point at the origin to a family of periodic orbits give rise to localized solutions

(homoclinic to the origin), which are symmetric if the front and back have the same

phase, and asymmetric if they do not. The phase refers to the particular strong

stable and unstable fibers of the periodic orbit that intersect the unstable and stable

manifolds to the origin at fixed incoming and outgoing sections. Figure 3.1 gives a

schematic view of our construction, in which a localized solution is constructed from

a front with phase ϕ1 and a back with phase ϕ2. The precise results are given in

Theorem 3.1 on page 40 and Theorem 3.2 on page 55.
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Figure 3.1: A schematic view of the analytic gluing construction, with the localized solution
u1(x) shown in red for x ≤ 0 and in blue for x ≥ 0, indicating the time periods over which
it remains exponentially close to the front and back, respectively. At x = −L, the localized
solution u1(x) passes through the section Σin exponentially close (in L) to the point where the
unstable manifold of the origin, Wu(0, µ), intersects the (center) stable manifold W s(γ(x, µ), µ))
of the periodic orbit in the section Σin; this point is in the strong stable fiber W ss(γ(−ϕ1, µ), µ).
Meanwhile, at x = L, the localized solution u1(x) passes through the section Σout exponentially
close (in L) to the point where the stable manifold of the origin, W s(0, µ), intersects the (center)
unstable manifold Wu(γ(x, µ), µ)) of the periodic orbit in the section Σout; this point is in the
strong unstable fiber Wuu(γ(ϕ2, µ), µ). At x = 0, the localized solution has center coordinate
ϕ ≈ ϕ2−ϕ1

2 . The sections Σin,out are depicted in the same plane for schematic clarity. The dotted
lines indicate the strong stable and unstable fibers W ss(γ(−ϕ2, µ), µ) and Wuu(γ(ϕ1, µ), µ), which,
by reversibility, intersect Wu(0, µ) and W s(0, µ) in the sections Σin and Σout, and give rise to the
family of localized solutions u2(x; k). Symmetric localized solutions are formed from a front and
back with the same phase (ϕ1 = ϕ2 mod 2π), while asymmetric localized solutions are formed by
combining a front and back with different phases (ϕ1 6= ϕ2 mod 2π). In this illustration, k = 1
and m = 0.
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3.2 The gluing construction in R4

Consider the system

ux = f(u, µ), (2.1)

with u ∈ R4, µ ∈ R, and we assume f is smooth (at least C2 in u and C1 in

µ). We suppose that this is a reversible, conservative system such that the origin is

hyperbolic and there exists a family of symmetric periodic orbits depending smoothly

on µ. More precisely:

Hypothesis 3.2.1. There exists a linear map R : R4 → R4 with R2 = I and

dim Fix R = 2 so that f(Ru, µ) = −Rf(u, µ) for all (u, µ).

A solution u(x) is called symmetric if u(x) = Ru(−x) for all x or, equivalently,

u(0) ∈ Fix R.

Hypothesis 3.2.2. There exists a smooth function H : R4×R→ R with H(Ru, µ) =

H(u, µ) and 〈∇uH(u, µ), f(u, µ)〉 = 0 for all (u, µ).

Hypothesis 3.2.3. For all µ, f(0, µ) = 0 and Re σfu(0, µ) ⊂ (−∞, αs) ∪ (αu,∞)

for αs < 0 < αu.

We normalize the function H from Hypothesis 3.2.2 such that H(0, µ) = 0 for

all µ. Moreover, due to Hypothesis 3.2.1, the spectrum of fu(u, µ) is invariant under

multiplication by -1, so we may take αs = −αu in Hypothesis 3.2.3.

Hypothesis 3.2.4. There is a closed interval J ⊂ R with nonempty interior such

that (2.1) has, for each µ ∈ J , a periodic orbit γ(x, µ) with minimal period l(µ) such

that:

(i) The family γ(x, µ) depends smoothly on µ ∈ J .
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(ii) γ(x, µ) is symmetric with γ(0, µ) ∈ Fix R for all µ ∈ J .

(iii) For each µ ∈ J , H(γ(x, µ), µ) = 0 and Hu(γ(x, µ), µ) 6= 0 for one and hence

all x.

(iv) γ(x, µ) has two positive, nontrivial Floquet multipliers, e±2πα(µ) with α(µ) > 0

for all µ ∈ J .

We assume without loss of generality that the minimal period l(µ) = 2π for all

µ.

Lemma 3.2.5. ([4]) Assume that Hypotheses 3.2.1—3.2.4 are met. Then there exist

δ > 0, a smooth reversible change of coordinates near γ(·, µ) and smooth real-valued

functions hc, hsj, and huj , j = 1, 2, so that (2.1) restricted to the zero energy level set

is for all µ ∈ J of the form

vcx = 1 + hc(v, µ)vsvu,

vsx = −[α(µ) + hs1(v, µ)vs + hs2(v, µ)vu]vs, (2.2)

vux = [α(µ) + hu1(v, µ)vs + hu2(v, µ)vu]vu,

where v = (vc, vs, vu) ∈ V := S1 × I × I and I = [−δ, δ]. R acts on v via

R(vc, vs, vu) = (−vc, vs, vu). (2.3)

In this coordinate system, we define the sections

Σin := S1 × {vs = δ} × I, Σout := S1 × I × {vu = δ}. (2.4)
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We also define the set

Γ := {(ϕ, µ) ∈ S1 × J : W s(0, µ) ∩W uu(γ(ϕ, µ), µ) ∩ Σout 6= ∅}. (2.5)

We now assume Γ is the graph of a smooth function, and that locally near each

heteroclitic orbit, the intersection of the stable manifold W s(0, µ) with the section

Σout is also described by a smooth function.

Hypothesis 3.2.6. The set Γ is the graph of a smooth function z : S1 → J̊ . Fur-

thermore, there exist an open neighborhood UΓ of Γ in S1 × J , positive constants

ε, b > 0, and a smooth function g : UΓ → I so that

{(ϕ, vs, δ) ∈ W s(0, µ)∩Σout : |vs| < ε, (ϕ, µ) ∈ UΓ} = {(ϕ, vs, δ) = (ϕ, g(ϕ, µ), δ) : (ϕ, µ) ∈ UΓ}

(2.6)

and |gµ(ϕ, µ)| ≥ b > 0 for all (ϕ, µ) ∈ UΓ.

Lemma 3.2.7. ([4]) There exist positive constants L0 and η so that the following is

true for all L > L0 and ϕ ∈ S1: there is a unique solution v(x) of (2.2), defined for

x ∈ [−L,L] such that

v(−L) ∈ Σin, v(L) ∈ Σout, vc(0) = ϕ, v(x) ∈ V ∀x ∈ [−L,L].

Furthermore, we have

v(−L) =
(
ϕ− L+ O(e−ηL), δ, δe−2α(µ)L

(
1 + O(e−ηL)

))
v(0) =

(
ϕ, δe−α(µ)L

(
1 + O(e−ηL)

)
, δe−α(µ)L

(
1 + O(e−ηL)

))
(2.7)

v(L) =
(
ϕ+ L+ O(e−ηL), δe−2α(µ)L

(
1 + O(e−ηL)

)
, δ
)
.

The solution v(x) is smooth in (L, ϕ, µ) and the error estimates in (2.7) can be
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differentiated.

We now show that fronts and backs, i.e., solutions that approach the homogeneous

rest state in backward (respectively forward) time and the periodic orbit γ in forward

(respectively backward) time, can be “glued” together to form both symmetric and

asymmetric localized solutions. Moreover, these solutions depend continuously on

the phases ϕ1 and ϕ2 of the associated fronts and backs. We start by introducing

and parameterizing the front and back solutions in a convenient fashion.

For each ϕ ∈ S1, we define uf (x;ϕ) to be the solution such that

uf (0;ϕ) ∈ Σin ∩W u(0, z(ϕ)) ∩W ss(γ(−ϕ, z(ϕ)), z(ϕ)). (2.8)

Further defining ub(x;ϕ) := Ruf (−x;ϕ), we have

ub(0;ϕ) ∈ Σout ∩W s(0, z(ϕ)) ∩W uu(γ(ϕ, z(ϕ)), z(ϕ)). (2.9)

We note that these definitions imply

|uf (x;ϕ)− γ(x− ϕ)| ≤ Ce−ηx, x ≥ 0 (2.10)

|ub(x;ϕ)− γ(x+ ϕ)| ≤ Ceηx, x ≤ 0 (2.11)

with positive constants C, η > 0 that do not depend on ϕ.

In the coordinate system introduced in Lemma 3.2.5 near the periodic orbit γ,

we record that

uf (0;ϕ) = (−ϕ, δ, 0), (2.12)

ub(0;ϕ) = (ϕ, 0, δ). (2.13)
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In Figure 3.2 we show a schematic illustration of the localized solution whose

existence and uniqueness we prove in the following:

Theorem 3.1. (Gluing fronts and backs to produce localized solutions) Fix ε > 0,

then there exist η,K,C > 0 such that for each ϕ∗1, ϕ
∗
2 ∈ S1 with µ = z(ϕ∗1) = z(ϕ∗2)

and |z′(ϕ∗1)|, |z′(ϕ∗2)| ≥ ε, and for each k ∈ N, k ≥ K, and m ∈ {0, 1}, we can define

ϕ1 = ϕ∗1, ϕ2 = ϕ∗2 + 2mπ, and

L = L(ϕ1, ϕ2, k) :=
ϕ1 + ϕ2

2
+ 2kπ + O(e−η2kπ), (2.14)

ϕ = ϕ(ϕ1, ϕ2, k) :=
ϕ2 − ϕ1

2
+ O(e−η2kπ) (2.15)

such that there exists a unique solution u1(x) = u1(x;ϕ1, ϕ2, k) of (2.1), depending

smoothly on (ϕ1, ϕ2) for each k, with lim|x|→∞ |u1(x)| = 0, u1(x) ∈ V for x ∈ [−L,L],

and in the coordinate system introduced in Lemma 3.2.5 near the periodic orbit γ we

have

u1(−L) =
(
ϕ− L+ O(e−ηL), δ, δe−2α(µ)L

(
1 + O(e−ηL)

))
u1(0) =

(
ϕ, δe−α(µ)L

(
1 + O(e−ηL)

)
, δe−α(µ)L

(
1 + O(e−ηL)

))
(2.16)

u1(L) =
(
ϕ+ L+ O(e−ηL), δe−2α(µ)L

(
1 + O(e−ηL)

)
, δ
)
,

where the first coordinate is understood to be taken modulo 2π. Moreover,

|u1(x)− uf (x+ L;ϕ1)| ≤ Ceηx, x ≤ −L (2.17)

|u1(x)− uf (x+ L;ϕ1)| ≤ Ce−ηL, x ∈ [−L, 0] (2.18)

|u1(x)− ub(x− L;ϕ2)| ≤ Ce−ηL, x ∈ [0, L] (2.19)

|u1(x)− ub(x− L;ϕ2)| ≤ Ce−ηx, x ≥ L (2.20)
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Figure 3.2: A three-dimensional schematic view of the analytic gluing construction, including
the manifolds and sections of interest. Of course, this schematic is only valid locally as the three
dimensional manifold is immersed in four dimensional space. The localized solution u1(x) is shown
in red for x ≤ 0 and in blue for x ≥ 0, indicating the time periods over which it remains exponentially
close to the front and back, respectively. u1(−L) passes through the section Σin exponentially close
(in L) to the point where the unstable manifold of the origin, Wu(0, µ), intersects the (center) stable
manifold W s(γ(x, µ), µ)) of the periodic orbit in the section Σin; this point is in the strong stable
fiber W ss(γ(−ϕ1, µ), µ). Meanwhile, u1(L) passes through the section Σout exponentially close (in
L) to the point where the stable manifold of the origin, W s(0, µ), intersects the (center) unstable
manifold Wu(γ(x, µ), µ)) of the periodic orbit in the section Σout; this point is in the strong unstable
fiber Wuu(γ(ϕ2, µ), µ). At x = 0 (indicated by the change from red to blue coloring), u1(0) has
center coordinate ϕ ≈ ϕ2−ϕ1

2 (see (2.15)). Dotted lines indicate the strong stable and unstable fibers
W ss(γ(−ϕ2, µ), µ) and Wuu(γ(ϕ1, µ), µ), which, by reversibility, intersect Wu(0, µ) and W s(0, µ)
in the sections Σin and Σout, as seen in the figure, and give rise to the family of localized solutions
u2(x; k). Symmetric localized solutions are formed from a front and back with the same phase
(ϕ1 = ϕ2 mod 2π), while asymmetric localized solutions are formed by combining a front and
back with different phases (ϕ1 6= ϕ2 mod 2π). In this illustration, k = 1 and m = 0.
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Similarly, there exists a unique solution u2(x) = u2(x;ϕ1, ϕ2, k) of (2.1), depend-

ing smoothly on (ϕ1, ϕ2) for each k, and with L and ϕ as in (2.14) and (2.15), such

that lim|x|→∞ |u2(x)| = 0, u2(x) ∈ V for x ∈ [−L,L], and

u2(−L) =
(
−ϕ− L+ O(e−ηL), δ, δe−2α(µ)L

(
1 + O(e−ηL)

))
u2(0) =

(
−ϕ, δe−α(µ)L

(
1 + O(e−ηL)

)
, δe−α(µ)L

(
1 + O(e−ηL)

))
(2.21)

u2(L) =
(
−ϕ+ L+ O(e−ηL), δe−2α(µ)L

(
1 + O(e−ηL)

)
, δ
)
,

where again the first coordinate is understood to be taken modulo 2π. Moreover,

|u2(x)− uf (x+ L;ϕ2)| ≤ Ceηx, x ≤ −L (2.22)

|u2(x)− uf (x+ L;ϕ2)| ≤ Ce−ηL, x ∈ [−L, 0] (2.23)

|u2(x)− ub(x− L;ϕ1)| ≤ Ce−ηL, x ∈ [0, L] (2.24)

|u2(x)− ub(x− L;ϕ1)| ≤ Ce−ηx, x ≥ L (2.25)

Remark 3.2.8. By setting ϕ∗1 = ϕ∗2 and m = 0, we recover the branch of symmetric

solutions with center coordinate ϕ = 0 at x = 0. By setting ϕ∗1 = ϕ∗2 and m = 1,

we recover the second branch of symmetric solutions with center coordinate ϕ = π at

x = 0. In each case the families of solutions u1(x) and u2(x) are the same.

Remark 3.2.9. It is evident from the proof of Theorem 3.1 that we have a unique

gluing solution for any ϕ∗1, ϕ
∗
2 with z(ϕ∗1) = z(ϕ∗2) and z′(ϕ∗1), z′(ϕ∗2) 6= 0. We fix

ε > 0 only in order to have uniform constants η,K,C. Thus we have the following

corollary:

Corollary 3.2.10. For any ϕ∗1, ϕ
∗
2 with µ = z(ϕ∗1) = z(ϕ∗2) and |z′(ϕ∗1)|, |z′(ϕ∗2)| 6= 0

there exist η,K,C > 0 such that for each k ≥ K and m ∈ {0, 1}, there exists a

unique solution u1(x) satisfying the conditions in Theorem 3.1. The solution u2(x)

is distinct from u1(x) provided that ϕ∗1 6= ϕ∗2.
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Proof. (Theorem 3.1) We first prove all statements for u1(x). In order for a solution

u1(x) to satisfy lim|x|→∞ |u1(x)| = 0 and u1(±L) ∈ V , we must have

u1(−L) ∈ Σin ∩W u(0, z(ϕ1)), u1(L) ∈ Σout ∩W s(0, z(ϕ2)). (2.26)

[Recall z(ϕ1) = z(ϕ2).] From Hypothesis 3.2.6 we have that (ϕ, vs, δ) ∈ W s(0, µ) ∩

Σout if and only if vs = g(ϕ, µ). Then using (2.3), (ϕ, δ, vu) ∈ W u(0, µ) ∩ Σin if and

only if R(ϕ, δ, vu) = (−ϕ, vu, δ) ∈ W s(0, µ) ∩ Σout if and only if vu = g(−ϕ, µ).

Thus (2.26) is equivalent to

uu1(−L) = g(−uc1(−L), z(ϕ1)) (2.27)

us1(L) = g(uc1(L), z(ϕ2)). (2.28)

We now let

L = L(ϕ1, ϕ2, k, ε1) :=
ϕ1 + ϕ2

2
+ 2kπ + ε1, (2.29)

ϕ = ϕ(ϕ1, ϕ2, k, ε2) :=
ϕ2 − ϕ1

2
+ ε2. (2.30)

We will show that ε1 and ε2 can be chosen such that (2.26) holds and both are

O(e−η2kπ). We note that L + ϕ = ϕ2 + ε1 + ε2 mod 2kπ and L − ϕ = ϕ1 + ε1 −

ε2 mod 2kπ. So by Lemma 3.2.7, the unique solution associated to (L, ϕ) as defined

in (2.29)–(2.30) has

u1(−L) =
(
−ϕ1 − ε1 + ε2 + O(e−ηL), δ, δe−2α(µ)L

(
1 + O(e−ηL)

))
(2.31)

u1(0) =
(
ϕ, δe−α(µ)L

(
1 + O(e−ηL)

)
, δe−α(µ)L

(
1 + O(e−ηL)

))
(2.32)

u1(L) =
(
ϕ2 + ε1 + ε2 + O(e−ηL), δe−2α(µ)L

(
1 + O(e−ηL)

)
, δ
)
. (2.33)
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Thus uc1(−L)− ucf (0;ϕ1) = −ε1 + ε2 + O(e−ηL). To solve (2.27), we substitute from

(2.31) and expand g(−uc1(−L), z(ϕ1)) about (−ucf (0;ϕ1), z(ϕ1)), arriving at

δe−2α(µ)L
(
1 + O(e−ηL)

)
= g(−ucf (0;ϕ1), z(ϕ1)) + gϕ(−ucf (0;ϕ1), z(ϕ1))(−ε1 + ε2 + O(e−ηL))

+O((−ε1 + ε2 + O(e−ηL))2). (2.34)

By Hypothesis 3.2.6,

g(ϕ, z(ϕ)) ≡ 0 (2.35)

so g(−ucf (0;ϕ1), z(ϕ1)) = g(ϕ1, z(ϕ1)) = 0. Thus

ε1 = −δe
−2α(µ)L

(
1 + O(e−ηL)

)
+ O((−ε1 + ε2 + O(e−ηL))2)

gϕ(ϕ1, z(ϕ1))
+ ε2 + O(e−ηL). (2.36)

Now returning to (2.28), we substitute from (2.33), note that uc1(L) − ucb(0;ϕ2) =

ε1 + ε2 + O(e−ηL) and expand g(uc1(L), z(ϕ2)) about (ucb(0;ϕ2), z(ϕ2)) to get

δe−2α(µ)L
(
1 + O(e−ηL)

)
= g(ucf (0;ϕ2), z(ϕ2)) + gϕ(ucf (0;ϕ2), z(ϕ2))(−ε1 − ε2 + O(e−ηL))

+O((ε1 + ε2 + O(e−ηL))2). (2.37)

Then using g(ucf (0;ϕ2), z(ϕ2)) = 0 as before,

ε1 + ε2 =
δe−2α(µ)L

(
1 + O(e−ηL)

)
+ O((ε1 + ε2 + O(e−ηL))2)

gϕ(ϕ2, z(ϕ2))
+ O(e−ηL) (2.38)

so that combining this with (2.36), we have

ε2 =
1

2

[
δe−2α(µ)L

(
1 + O(e−ηL)

)
+ O((ε1 + ε2 + O(e−ηL))2)

gϕ(ϕ2, z(ϕ2))

+
δe−2α(µ)L

(
1 + O(e−ηL)

)
+ O((−ε1 + ε2 + O(e−ηL))2)

gϕ(ϕ1, z(ϕ1))

]
+ O(e−ηL). (2.39)



45

Now by (2.35), gϕ(ϕ1, z(ϕ1)) = −gµ(ϕ1, z(ϕ1))z′(ϕ1) and similarly for ϕ2, so that by

our original assumption combined with Hypothesis 3.2.6, |gϕ(ϕ1, z(ϕ1))|, |gϕ(ϕ1, z(ϕ1))| >

bε. Thus we have ε1, ε2 in (2.29)–(2.30) so that (2.26) holds, and both ε1, ε2 are

O(e−ηL).

Now since we have a solution u1(x) such that u1(−L) = (ϕ1+O(e−ηL), δ, δe−2α(µ)L(1+

O(e−ηL))), it follows that |u1(−L) − uf (0;ϕ1)| = O(e−ηL). Similarly, |u1(L) −

ub(0;ϕ2)| = O(e−ηL). Now since both u1(−L) ∈ W u(0, µ) and uf (−ϕ) ∈ W u(0, µ),

the exponential approach in backward time expressed in (2.17) follows from the stable

manifold theorem. Similarly, u1(L) ∈ W s(0, µ) and ub(ϕ2) ∈ W s(0, µ) implies (2.20).

On the other hand, from the expression (2.2) we have that |u1(x)− uf (x+L;ϕ1)| =

O(e−ηL) on −L ≤ x ≤ 0, so that for K sufficiently large, there exists a constant C

such that for all L(k) with k ≥ K, (2.18) is satisfied. The relation (2.19) is shown

analogously.

The claims for u2(x) follow upon setting u2(x) = Ru1(−x). In particular, the

expressions in (2.21) follow from those in (2.16) by using, for example, u2(−L) =

Ru1(L) along with the relation R(vc, vs, vu) = (−vc, vu, vs). Furthermore,

|u1(x)− uf (x+ L;ϕ1)| ≤ Ceηx, x ≤ −L

implies

|u1(−y)− uf (−y + L;ϕ1)| ≤ Ce−ηy, y ≥ L

|Ru1(−y)−Ruf (−y + L;ϕ1)| ≤ Ce−ηy, y ≥ L

|u2(y)− ub(y − L;ϕ1)| ≤ Ce−ηy, y ≥ L

upon employing the coordinate transform y = −x and applying R, so that (2.17)
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implies (2.25) and the other relations follow similarly.

3.2.1 Additional details for the construction

While the proof of Theorem 3.1 is complete as presented, in the following we ex-

plicitly construct solutions near the periodic orbits for [−L,L] rather than invoking

Lemma 3.2.7. In other words, we prove the first part of Lemma 3.2.7: there exist

positive constants L0 and η so that for all L > L0 and ϕ ∈ S1, there is a unique

solution u(x) of (2.1) defined for x ∈ [−L,L] and lying in the zero-energy level set

such that

u(−L) ∈ Σin, u(L) ∈ Σout, uc(0) = ϕ,

and u(x) stays near the periodic orbits for all x ∈ [−L,L]. We closely follow the

proof of Lemma 6.2 in [4], an analogue of Lemma 3.2.7 for the Swift–Hohenberg

equation posed as on ODE on H3
e (S1)×H2

e (S1)×H1
e (S1)×L2

e(S
1) (the “e” stands for

even periodic functions, but this is not essential). We believe these arguments bear

repeating in order to clarify both the result and the pieces needed for extension to R2n

and appropriate Banach spaces. Moreover, the construction introduces techniques

closely related to those which we will employ in analyzing the stability of localized

solutions.

The basic idea in the following is to construct two solutions, one of which starts

in Σin and is the sum of a strong stable fiber to the periodic orbits plus an offset

that is complementary in Σin, and a second of which ends in Σout and is the sum of

a strong unstable fiber and an offset that is complementary in Σout. We then match

these solutions in the middle. For convenience we write the two solutions as u+(x)

for x ∈ [0, L] and u−(x) for x ∈ [−L, 0], so that u(x) = u+(x+L) for x ∈ [−L, 0] and
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u(−x) = u−(x−L) for x ∈ [0, L]. The key ingredients necessary for the construction

are smooth foliations and the existence of exponential dichotomies for the system

when linearized about the strong (un)stable fibers.

Instead of using Fenichel coordinates in the three dimensional zero energy sub-

space, we proceed in the full four dimensional space. We have a two-parameter family

of periodic orbits γ(·, µ, e) which are smooth in µ, e, where e := H(γ(0, µ, e), µ) for e

near zero, and we normalize the periodic orbits such that γ(0, µ, e) ∈ Fix R for each

(µ, e). We assumed in Hypothesis 3.2.4 that α(µ) > 0 for all µ ∈ J , where ±2πα(µ)

are the two Floquet exponents associated with the zero-energy periodic orbit. Thus

there exists a neighborhood, E, of zero so that for all (µ, e) ∈ J ×E, there exists an

η > 0 such that the two Floquet exponents away from zero have magnitude greater

than η, and the other two are fixed at zero.

Now for fixed (ϕ, µ, e), the strong stable fiber of γ(x + ϕ, µ, e), denoted by

q+(x, ϕ, µ, e), will be unique up to shifts, i.e., we need only fix its location at a

single value of x to define it uniquely. We then use b+ to parameterize q+, so that

q+(x, ϕ, µ, e, b+) is smooth in all arguments and there is a unique b+(ϕ, µ, e) such that

q+(0, ϕ, µ, e, b+(ϕ, µ, e)) ∈ Σin and we can use b+ to parameterize this condition.1

We then have

∣∣γ(x+ ϕ, µ, e)− q+(x, ϕ, µ, e, b+)
∣∣ ≤ Ce−ηx, x ≥ 0, (2.40)

for some C > 0. In the following C will denote any bounded uniform constant,

without keeping track of these constants separately.

1In higher dimensional settings, in addition to capturing the x dependence, b+ will parameterize
the space corresponding to all but the weakest Floquet multiplier (see Hypothesis 3.3.1) and so
will have dimension equal to the dimension of this space plus 1. We then have further smooth
dependence of the solutions on these additional coordinates. See Section 3.3 for precise statements.
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The strong unstable fiber q−(x, ϕ, µ, e, b−) of γ(x+ϕ, µ, e) is defined analogously

and we have

∣∣γ(x+ ϕ, µ, e)− q−(x, ϕ, µ, e, b−)
∣∣ ≤ Ceηx, x ≤ 0. (2.41)

Now linearizing ux = f(u, µ) about a particular fiber q+(x, ϕ+, µ, e+, b+) for x ≥ 0

yields

ux = fu(q
+, µ)u (2.42)

and since the Floquet spectrum of the periodic orbits γ(·) has a gap between the

two Floquet exponents fixed at 0 is bounded away from zero in absolute value by

η > 0, with the exception of , (2.42) has exponential dichotomies (see Appendix A.1)

Φcs
+ (x, y) and Φu

+(x, y) on R+ that are smooth in (ϕ+, µ, e+, b+): fixing ε > 0 such

that η > ε > 0, there exists a C > 0 such that

|Φcs
+ (x, y)| ≤ Ceε(x−y), x ≥ y ≥ 0, (2.43)

|Φu
+(x, y)| ≤ Ce−η(y−x), y ≥ x ≥ 0. (2.44)

We denote by P cs
+ (x) and P u

+(x) the projections associated with these exponential

dichotomies, so that P cs
+ (x) = Φcs

+ (x, x) and P u
+(x) = Φu

+(x, x).

Similarly,

ux = fu(q
−, µ)u (2.45)

has exponential dichotomies Φs
−(x, y) and Φcu

− (x, y) on R− that are smooth in (ϕ−, µ, e−, b−),

and we again denote by P s
−(x) and P cu

− (x) the projections associated with these di-

chotomies.
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We wish to find solutions u±(x) to (2.1) that satisfy

u+(x) = q+(x, ϕ+, µ, e+, b+) + w+(x), x ∈ [0, L]

u+(0) ∈ Σin

u−(x) = q−(x, ϕ−, µ, e−, b−) + w−(x), x ∈ [−L, 0]

u−(0) ∈ Σout

u+(L) = u−(−L).

Since q+(x) solves (2.1), in order for u+(x) to satisfy (2.1) for x ∈ [0, L] we must

have

q+
x + w+

x = f(q+ + w+, µ) = q+
x − f(q+, µ) + f(q+ + w+, µ)

so that w+(x) satisfies

w+
x = f(q+ + w+, µ)− f(q+, µ)

= fu(q
+, µ)w+ +N+(q+, w+, µ) (2.46)

for x ∈ [0, L] and where we have defined N+(q+, w+, µ) := f(q+ +w+, µ)−f(q+, µ)−

fu(q
+, µ)w+. We observe that N+(q+, w+, µ) = O(|w+|2), and also note that if

f ∈ Ck then N+ ∈ Ck−1 so that since q+ is smooth in (ϕ, µ, e, b), N+ is also smooth

in each of these.

We have already noted the exponential dichotomies Φcs
+ (x, y),Φu

+(x, y) for the

linear part of (2.46), so using the variation of constants formula along with these

dichotomies (see Appendix A.2) and letting a+ ∈ RgP u
+(L) an arbitrary element, we
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have

w+(x) = Φu
+(x, L)a+ +

∫ x

L

Φu
+(x, y)N+(q+(y), w+(y), µ)dy

+

∫ x

0

Φcs
+ (x, y)N+(q+(y), w+(y), µ)dy

=: [F(µ, ϕ+, e+, b+, a+, w+)](x) (2.47)

so that solutions of (2.46) correspond to solutions of (2.47) on [0, L]. Since Φcs
+

and Φu
+ are smooth in (µ, ϕ+, e+, b+), as is N+, it is clear that F is smooth in

(µ, ϕ+, e+, b+, a+). Now for each fixed (µ, ϕ+, e+, b+, a+), we show that F maps

C0([0, L],R4) with weighted norm ‖w+‖ := sup0≤x≤L e
η(L−x)|w+(x)| into itself. Using

the inequalities from (2.43) and (2.44) along with N+(q+, w+, µ) = O(|w+|2), we

have:

‖F(µ, ϕ+, e+, b+, a+, w+)‖

≤ C|a+|+ sup
0≤x≤L

Ceη(L−x)

∫ x

L

e−η(y−x)e−2η(L−y)‖w+‖2dy

+ sup
0≤x≤L

Keη(L−x)

∫ x

0

eε(x−y)e−2η(L−y)‖w+‖2dy

= C|a+|+ sup
0≤x≤L

Ce−ηL
∫ x

L

eηy‖w+‖2dy + sup
0≤x≤L

Ce−η(L+x)eεx
∫ x

0

e(2η−ε)y)‖w+‖2dy

= C|a+|+ sup
0≤x≤L

Ce−ηL
(
eηx − eηL

)
‖w+‖2 + sup

0≤x≤L
Ke−η(L+x)eεx

(
e(2η−ε)x − 1

)
‖w+‖2

= C|a+|+ sup
0≤x≤L

C
(
eη(x−L) − 1

)
‖w+‖2 + sup

0≤x≤L
Ce−ηL

(
eηx − e(−η+ε)x

)
‖w+‖2

≤ C|a+|+ C‖w+‖2,

where we have used the convention noted above of subsuming constants, independent

of parameters and variables, into C. Then for any a+ sufficiently small, (2.47) has

a unique solution w+ satisfying |w+(x)| ≤ C|a+|e−η(L−x) for x ∈ [0, L] so that in
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particular |w+(0)| ≤ C|a+|e−ηL. Moreover, we have

w+(L)− a+ =

∫ L

0

Φcs
+ (L, y)N+(q+(y), w+(y), µ)dy

so that |w+(L)− a+| ≤ C|a+|2.

Similarly, w−(x) satisfies

w−(x) = Φs
+(x,−L)a− +

∫ x

−L
Φs
−(x, y)N−(q−(y), w−(y), µ)dy

+

∫ x

0

Φcu
− (x, y)N−(q−(y), w−(y), µ)dy (2.48)

for x ∈ [−L, 0], with a− ∈ RgP s
−(−L). Again for any a− sufficiently small, (2.48)

has a unique solution w−(x) satisfying |w−(x)| ≤ C|a−|e−η(L−x) for x ∈ [0, L], and

as before, |w−(−L)− a−| ≤ C|a−|2.

Then to satisfy the matching condition u+(L) = u−(L), by definition we require

q+(L, ϕ+, µ, e+, b+) +w+(L)− q−(−L, ϕ−, µ, e−, b−)−w−(−L) = 0, or, using (2.40)

and (2.41),

γ(L+ ϕ+, µ, e+)− γ(−L+ ϕ−, µ, e−) + a+ − a− = O(|a+|2 + |a−|2 + e−ηL). (2.49)

We now fix (ϕ, e), and set

e+ = e+ ê, ϕ+ = ϕ+ ϕ̂− L

e− = e− ê, ϕ− = ϕ− ϕ̂+ L

for (ϕ̂, ê) small. Then since for (ϕ̂, ê, a+, a−) = 0 the left hand side of (2.49) vanishes,

and its derivative with respect to these variables is invertible, we have a locally
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unique solution (ϕ̂0, ê0, a
+
0 , a

−
0 ) of (2.49) that is smooth in (µ, e, ϕ, L), and we have

(ϕ̂0, ê0, a
+
0 , a

−
0 ) = O(e−ηL). We then set b+, b− such that q+(0, ϕ + ϕ̂0 − L, µ, e +

ê0, b
+) ∈ Σin and q−(0, ϕ+ ϕ̂0−L, µ, e+ ê0, b

+) ∈ Σin. Then since w+(0) ∈ RgP u
+(0)

and |w+(0)| = O(e−2ηL), we have u+(0) ∈ Σin. Similarly, w−(0) ∈ RgP s
−(0) and

|w−(0)| = O(e−2ηL), so that u−(0) ∈ Σout.

We finish by establishing that for an appropriate choice of e, the solutions u± will

lie in the zero-energy level set. We first show thatH(u+(0)) = H(γ(0, µ, e))+O(e−ηL)

so that d
de
H(u+(0)) 6= 0 for e near 0 by assumption:

H(u+(0)) = H(u+(L)) = H(q+(L, µ, e, ϕ− L, b+) + O(e−ηL))

= H(γ(ϕ, µ, e) + O(e−ηL)) = H(γ(0, µ, e)) + O(e−ηL).

Thus for e near 0, we can determine the unique e = e(µ, ϕ, L) so that H(u+) = 0.

3.3 The gluing construction in R2n

We now consider the system

ux = f(u, µ), (3.1)

with u ∈ R2n and µ ∈ R, and again we assume f is a smooth function. The first

three hypotheses are completely analogous to those for the system in R4, and we do

not repeat them here. The fourth hypothesis is modified as follows:

Hypothesis 3.3.1. There is a closed interval J ⊂ R with nonempty interior such

that (2.1) has, for each µ ∈ J , a periodic orbit γ(x, µ) with minimal period l(µ) such

that:
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(i) The family γ(x, µ) depends smoothly on µ ∈ J .

(ii) γ(x, µ) is symmetric with γ(0, µ) ∈ Fix R for all µ ∈ J .

(iii) For each µ ∈ J , H(γ(x, µ), µ) = 0 and Hu(γ(x, µ), µ) 6= 0 for one and hence

all x.

(iv) γ(x, µ) has two simple Floquet multipliers, e±2πα(µ), with α(µ) > 0 for all

µ ∈ J , and there is an η > 0 such that the remaining Floquet multipliers have

modulus less than e−2π(α(µ)+η) or greater than e2π(α(µ)+η) uniformly in µ ∈ J .

We again assume without loss of generality that the minimal period l(µ) = 2π

for all µ. In this case, for δ > 0 sufficiently small we can write the space V in the

zero energy level set near γ(x, µ) as

V := S1 × I ×B × I ×B, I = [−δ, δ], B = Bδ(0) ∈ Rn−2 (3.2)

with the corresponding coordinate system

v = (vc, vs, vss, vu, vuu), (3.3)

so that within V , W ss(γ(ϕ, µ), µ)) = (ϕ, vs, vss, 0, 0) andW uu(γ(ϕ, µ), µ) = (ϕ, 0, 0, vu, vuu).

We then define the sections

Σin := S1 × {vs = δ} ×B × I ×B, Σout := S1 × I ×B × {vu = δ} ×B. (3.4)

As before we define the set

Γ := {(ϕ, µ) ∈ S1 × J : W s(0, µ) ∩W uu(γ(ϕ, µ), µ) ∩ Σout 6= ∅}. (3.5)
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Our final hypothesis is then similar to that for R4, and additionally enforces that

the stable manifold W s(0, µ) approaches the unstable manifold W u(γ(x, µ), µ) in

backward time along the most weakly unstable direction of the flow near the periodic

orbit.

Hypothesis 3.3.2. The set Γ is the graph of a smooth function z : S1 → J̊ . Fur-

thermore, there exist an open neighborhood UΓ of Γ in S1 × J , positive constants

ε, b > 0, and smooth functions g : UΓ ×B → I and h : UΓ ×B → B so that

{(ϕ, vs, vss, δ, vuu) ∈ W s(0, µ) ∩ Σout : |vs| < ε, (ϕ, µ) ∈ UΓ, v
ss ∈ B}

= {(ϕ, vs, vss, δ, vuu) = (ϕ, g(ϕ, µ, vss), vss, δ, h(ϕ, µ, vss)) : (ϕ, µ) ∈ UΓ, v
ss ∈ B}(3.6)

and |gµ(ϕ, µ, vss)| ≥ b > 0 for all (ϕ, µ, vss) ∈ UΓ ×B.

Under these conditions, we have the following analogue of Lemma 3.2.7:

Lemma 3.3.3. (See Section 3.2.1 and Lemma 6.2 in [4]) There exist positive con-

stants L0 and η so that the following is true for all L > L0 and ϕ ∈ S1: for each

vss, vuu ∈ B there is a unique solution v(x) of (3.1), defined for x ∈ [−L,L] such

that

v(−L) ∈ Σin, v(L) ∈ Σout, vc(0) = ϕ, v(x) ∈ V ∀x ∈ [−L,L].

Furthermore, we have

v(−L) =
(
ϕ− L+ O(e−ηL), δ,O(e−ηL), vss + O(e−ηL),O(e−ηL)

)
v(0) =

(
ϕ,O(e−ηL),O(e−ηL),O(e−ηL),O(e−ηL)

)
(3.7)

v(L) =
(
ϕ+ L+ O(e−ηL),O(e−ηL),O(e−ηL), δ, vuu + O(e−ηL)

)
.

The solution v(x) is smooth in (L, ϕ, µ, vss, vuu) and the error estimates in (3.7) can

be differentiated.
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We now introduce the front and back solutions. As before, we define uf (x;ϕ) so

that

uf (0;ϕ) ∈ Σin ∩W u(0, z(ϕ)) ∩W ss(γ(−ϕ, z(ϕ)), z(ϕ)), (3.8)

and with ub(x;ϕ) := Ruf (−x;ϕ), we have

ub(0;ϕ) ∈ Σout ∩W s(0, z(ϕ)) ∩W uu(γ(ϕ, z(ϕ)), z(ϕ)). (3.9)

By Hypothesis 3.3.2 we then have

uf (0;ϕ) = (−ϕ, δ, h(ϕ, z(ϕ), 0), 0, 0) (3.10)

ub(0;ϕ) = (ϕ, 0, 0, δ, h(ϕ, z(ϕ), 0)). (3.11)

Under these conditions we have the following analogue of Theorem 3.1:

Theorem 3.2. Fix ε > 0, then there exist η,K,C > 0 such that for each ϕ∗1, ϕ
∗
2 ∈ S1

with µ = z(ϕ∗1) = z(ϕ∗2) and |z′(ϕ∗1)|, |z′(ϕ∗2)| ≥ ε, and for each k ∈ N, k ≥ K, and

m ∈ {0, 1}, we can define ϕ1 = ϕ∗1, ϕ2 = ϕ∗2 + 2mπ, and

L = L(ϕ1, ϕ2, k) :=
ϕ1 + ϕ2

2
+ 2kπ + O(e−η2kπ), (3.12)

ϕ = ϕ(ϕ1, ϕ2, k) :=
ϕ2 − ϕ1

2
+ O(e−η2kπ) (3.13)

such that there exists a unique solution u1(x) = u1(x;ϕ1, ϕ2, k) of (3.1), depending

smoothly on (ϕ1, ϕ2) for each k, with lim|x|→∞ |u1(x)| = 0, u1(x) ∈ V for x ∈ [−L,L],
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and in the coordinate system introduced in (3.3) near the periodic orbit γ we have

u1(−L) =
(
ϕ− L+ O(e−ηL), δ, h(ϕ1, 0, z(ϕ1)) + O(e−ηL),O(e−ηL),O(e−ηL)

)
u1(0) =

(
ϕ,O(e−ηL),O(e−ηL),O(e−ηL),O(e−ηL)

)
(3.14)

u1(L) =
(
ϕ+ L+ O(e−ηL),O(e−ηL),O(e−ηL), δ, h(ϕ2, 0, z(ϕ2)) + O(e−ηL)

)
,

where the first coordinate is understood to be taken modulo 2π. Moreover,

|u1(x)− uf (x+ L;ϕ1)| ≤ Ceηx, x ≤ −L (3.15)

|u1(x)− uf (x+ L;ϕ1)| ≤ Ce−ηL, −L ≤ x ≤ 0 (3.16)

|u1(x)− ub(x− L;ϕ2)| ≤ Ce−ηL, 0 ≤ x ≤ L (3.17)

|u1(x)− ub(x− L;ϕ2)| ≤ Ce−ηx, x ≥ L (3.18)

Similarly, there exists a unique solution u2(x) = u2(x;ϕ1, ϕ2, k) of (2.1), depend-

ing smoothly on (ϕ1, ϕ2) for each k, and with L and ϕ as in (3.12) and (3.13), such

that lim|x|→∞ |u2(x)| = 0, u2(x) ∈ V for x ∈ [−L,L], and

u2(−L) =
(
−ϕ− L+ O(e−ηL), δ, h(ϕ2, 0, z(ϕ2)) + O(e−ηL),O(e−ηL),O(e−ηL)

)
u2(0) =

(
−ϕ,O(e−ηL),O(e−ηL),O(e−ηL),O(e−ηL)

)
(3.19)

u2(L) =
(
−ϕ+ L+ O(e−ηL),O(e−ηL),O(e−ηL), δ, h(ϕ1, 0, z(ϕ1)) + O(e−ηL)

)
,
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where again the first coordinate is understood to be taken modulo 2π. Moreover,

|u2(x)− uf (x+ L;ϕ2)| ≤ Ceηx, x ≤ −L (3.20)

|u2(x)− uf (x+ L;ϕ2)| ≤ Ce−ηL, −L ≤ x ≤ 0 (3.21)

|u2(x)− ub(x− L;ϕ1)| ≤ Ce−ηL, 0 ≤ x ≤ L (3.22)

|u2(x)− ub(x− L;ϕ1)| ≤ Ce−ηx, x ≥ L (3.23)

Proof. As before, we wish to show that for L and ϕ as in (3.12)–(3.13) we can

satisfy

u1(−L) ∈ Σin ∩W u(0, z(ϕ1)), u1(L) ∈ Σout ∩W s(0, z(ϕ2)). (3.24)

We note that (ϕ, δ, vss, vu, vuu) ∈ Σin ∩W u(0, µ) if and only if R(ϕ, δ, vss, vu, vuu) =

(−ϕ, vu, vuu, vs, vss) ∈ Σout ∩ W s(0, µ). So by Hypothesis 3.3.2, the conditions in

(3.24) are equivalent to the 2n− 2 conditions

uu1(−L) = g(−uc1(−L), z(ϕ1), uuu1 (−L)) (3.25)

uss1 (−L) = h(−uc1(−L), z(ϕ1), uuu1 (−L)) (3.26)

us1(L) = g(uc1(L), z(ϕ2), uss1 (L)) (3.27)

uuu1 (L) = h(uc1(L), z(ϕ2), uss1 (L)) (3.28)

Define

L = L(ϕ1, ϕ2, k, ε1) :=
ϕ1 + ϕ2

2
+ 2kπ + ε1 (3.29)

ϕ = ϕ(ϕ1, ϕ2, ε2) :=
ϕ2 − ϕ1

2
+ ε2 (3.30)

wss = wss(ϕ1, ε3) := h(ϕ1, z(ϕ1), 0) + ε3 (3.31)

wuu = wuu(ϕ2, ε4) := h(ϕ2, z(ϕ2), 0) + ε4 (3.32)
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with ε1, ε2 ∈ R and ε3, ε4 ∈ Rn−2. Let u1(x) = u1(x;L, ϕ,wss, wuu) be the unique

solution such that u1(x) ∈ V for x ∈ [−L,L] and

u1(−L) =
(
ϕ− L+ O(e−ηL), δ, wss + O(e−ηL),O(e−ηL),O(e−ηL)

)
u1(0) =

(
ϕ,O(e−ηL),O(e−ηL),O(e−ηL),O(e−ηL)

)
(3.33)

u1(L) =
(
ϕ+ L+ O(e−ηL),O(e−ηL),O(e−ηL), δ, wuu + O(e−ηL)

)
.

Then substituting from (3.33) into (3.25), Taylor expanding about

(−ucf (0;ϕ1, z(ϕ1), uuuf (0;ϕ1)) = (ϕ1, z(ϕ1), 0),

and using (3.29)–(3.30), we have

O(e−ηL) = g(ϕ1, z(ϕ1), 0) + gvc(ϕ1, z(ϕ1), 0)(ε2 − ε1 + O(e−ηL))

+ gvss(ϕ1, z(ϕ1), 0)O(e−ηL) + O((ε2 − ε1 + O(e−ηL))2) + O(e−2ηL).

(3.34)

By Hypothesis 3.3.2, g(ϕ1, z(ϕ1), 0) = 0, so

ε1 =
O(e−ηL)(1 + gvss(ϕ1, z(ϕ1), 0)) + O((ε2 − ε1 + O(e−ηL))2)

gvc(ϕ1, z(ϕ1), 0)
+ ε2 + O(e−ηL).

(3.35)

Similarly, substituting from (3.33) into (3.27), Taylor expanding about

(ucb(0;ϕ2), z(ϕ2), ussb (0;ϕ2)) = (ϕ2, z(ϕ2), 0),
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and using (3.29)–(3.30), we have

O(e−ηL) = g(ϕ2, z(ϕ2), 0) + gvc(ϕ2, z(ϕ2), 0)(ε1 + ε2 + O(e−ηL))

+ gvss(ϕ2, z(ϕ2), 0)O(e−ηL) + O((ε1 + ε2 + O(e−ηL))2) + O(e−2ηL)

(3.36)

so that

ε2 =
O(e−ηL)(1− gvss(ϕ2, z(ϕ2), 0)) + O((ε1 + ε2 + O(e−ηL))2)

gvc(ϕ2, z(ϕ2), 0)

− O(e−ηL)(1 + gvss(ϕ1, z(ϕ1), 0)) + O((ε2 − ε1 + O(e−ηL))2)

gvc(ϕ1, z(ϕ1), 0)
+ O(e−ηL).

(3.37)

Then since g(ϕ, z(ϕ), 0) ≡ 0 for all ϕ and |gµ(ϕ, z(ϕ), 0)| > 0 by Hypothesis 3.3.2,

and |z′(ϕi)| > 0 for i = 1, 2 by assumption, both ε1 and ε2 are O(e−ηL).

Turning now to ε3 and ε4, substituting from (3.33) into (3.26), Taylor expanding

about h(−ucf (0;ϕ1), z(ϕ1), uuuf (0;ϕ1)) = h(ϕ1, z(ϕ1), 0), and using (3.31), we have

h(ϕ1, z(ϕ1), 0) + ε3 + O(e−ηL) = h(ϕ1, z(ϕ1), 0) + hvc(ϕ1, z(ϕ1), 0)((ε2 − ε1 + O(e−ηL))

+hvss(ϕ1, z(ϕ1), 0)(O(e−ηL)) + O((ε2 − ε1 + O(e−ηL))2) + O(e−2ηL)

(3.38)

so that ε3 = O(e−ηL). By an analogous argument, ε4 = O(e−ηL). Thus u1(x) with

L, ϕ,wss, wuu as in (3.29)–(3.32) satisfies (3.24), and since εi = O(e−ηL), i = 1, 2, 3, 4,

the expressions in (3.14) also hold.

Now (3.14) combined with (3.10)–(3.11) shows |u1(−L) − uf (0;ϕ1)| = O(e−ηL)

and |u1(L) − ub(0;ϕ2)| = O(e−ηL). Then the expressions (3.15) and (3.18) follow

from the stable manifold theorem, while (3.16) and (3.17) follow from the proof of
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Lemma 3.3.3 (see [4], Lemma 6.2 and Section 3.2.1 above). The claims for u2(x) =

Ru1(−x) follow as before.

Remark 3.3.4. These results can be extended to an appropriate infinite dimensional

Banach space, as is necessary to address patterns on the plane which are localized in

one direction and periodic in the second. Our results immediately carry over to the

infinite dimensional case provided the system is such that we can apply the results

developed in [51, 58] on exponential dichotomies and the existence of stable and

unstable manifolds of the periodic orbits γ(x, µ), foliated by smooth strong stable and

strong unstable fibers. We refer to the treatment of the Swift–Hohenberg equation on

the plane in Section 6.3 of [4] for further details.

While we have not explicitly addressed the presence of an additional Z2 symmetry

here, we remark the results carry over from [4] in a straightforward way. As shown

there, the presence of an additional Z2 symmetry κ implies that z(ϕ) will be π-

periodic (recall that we have taken the minimal period l(u) of the periodic orbits

to be 2π.) To see that this implies the existence of four asymmetric solutions with

the same L and ϕ for a given µ, we take without loss of generality ϕ∗1, ϕ
∗
2 ∈ [0, π)

and note that µ = z(ϕ∗1) = z(ϕ∗2) implies µ = z(ϕ∗1 + π) = z(ϕ∗2 + π) and the

solutions corresponding to ϕ∗1, ϕ
∗
2,m = 0, k = k0 will have the same L and ϕ, up

to exponentially small corrections, as ϕ∗1 + π, ϕ∗2 + π,m = 1, k = k0 − 1. That the

four solutions actually have the same L and ϕ follows by applying κ and invoking

uniqueness. We note that the solutions can thus be written u1(x), Ru1(−x), κu1(x),

and κRu1(−x).
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3.4 Numerical illustrations

We now demonstrate that the appearance of asymmetric patterns is as expected

based on the above arguments, using the planar stripe and spot pattern of the

planar cubic-quintic Swift–Hohenberg equation:

Ut = −(1 + ∂2
x + ∂2

y)
2U − µU + νU3 − U5, (x, y) ∈ R× S1 (4.1)

where S1 = R/2LyZ for some Ly > 0. We note that the bifurcation diagram for these

patterns was first computed in [3]. We recall that steady-state solutions of (4.4) can

be considered as solutions to a spatial dynamical system in u = (u, ux, uxx, uxxx) ∈

Y := H3(S1)×H2(S1)×H1(S1)× L2(S1).

Numerical simulations were completed in Matlab, using a modified version of

Epcont, a predecessor of Coco [14], as in [3]. The modifications made to Epcont

include employing the Newton trust-region solver Fsolve, and projecting out the

approximate translation directions in each predictor step. We use spectral differ-

entiation matrices in the periodic y-direction, and centered finite differences in the

x-direction. In particular, we used ny = 8 Fourier modes and nx = 800 equidistant

points on the domain [−50, 50] × [0, π] with Neumann boundary conditions. These

computations appeared in [42].

Figure 3.3 shows the bifurcation diagram for the stripe and spot pattern of (4.1),

along with selected solution profiles along an R-symmetric snaking branch and a

cross-connecting branch of asymmetric solutions. The term “cross-connecting” refers

to the fact that the solution branch originates in a pitchfork bifurcation from the R-

symmetric branch, and terminates at a pitchfork bifurcation at the κR-symmetric

branch, where κ : u(y) 7→ −u(Ly − y). The solution profiles are shown with the
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Figure 3.3: Bifurcation diagram and particular planar stripes and spots solutions to (4.1), with
numbers indicating the correspondence between the bifurcation diagram and solution profiles. In
the bifurcation diagram, R-symmetric branches are shown in dashed blue, κR-symmetric branches
are in dotted orange, and representative asymmetric branches are in solid gray. Solution profiles are
oriented with the x-axis pointing up, and the color indicating the height of the solution, as indicated
in the color bar. Recalling that solutions are periodic in the y-direction, we show 6 periods for each
solution. Solutions 1 and 3 are R-symmetric solutions, while solution 2 is an asymmetric solution
at the same parameter value. We observe that solution 2 matches solution 1 for x ≤ 0, i.e., the
bottom half of the profiles, while solution 2 matches solution 3 for x ≥ 0, i.e., the top half of the
profiles. The bifurcation diagram for these patterns was first computed in [3].
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Figure 3.4: Bifurcation diagram as in Figure 3.3 and additional planar stripes and spots solutions,
again with numbers indicating the correspondence between the bifurcation diagram and solution
profiles. Here solutions 4 and 6 are κR-symmetric solutions, while solution 5 is an asymmetric
solution at the same parameter value. We observe that solution 5 matches solution 4 for x ≤ 0,
i.e., the bottom half of the profiles, while solution 5 matches solution 6 for x ≥ 0, i.e., the top half
of the profiles.
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periodic y-axis in the horizontal direction, and the x-axis, along which localization

occurs, in the vertical direction. Solutions 1 and 3 are R-symmetric solutions, while

solution 2 is an asymmetric solution, all existing for the same value of µ. We observe

that solution 2 matches solution 1 for x ≤ 0 (the top half of the profiles), while it

matches solution 3 for x ≥ 0 (the bottom half of the profiles).

In Figure 3.4 we provide an additional illustration of our results. We again

show the bifurcation diagram for the stripe and spot pattern of (4.1), along with

additional solution profiles, in this case along a κR-symmetric branch and a self-

connecting asymmetric branch. A “self-connecting” branch is one that begins and

ends at pitchfork bifurcations from the same symmetric branch, in this case a κR-

symmetric branch. Here solutions 4 and 6 are κR-symmetric solutions, while solution

5 is an asymmetric solution. Again we observe that solution 5 matches solution 4

for x ≤ 0 and solution 6 for x ≥ 0.



Chapter Four

Stability of Localized Patterns
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4.1 Introduction

We now turn to the question of stability for localized patterns. Stability is, of course,

an important consideration if we hope to be able to say something about which

solutions are experimentally relevant or physically observable in the wide range of

natural systems mentioned at the outset. In the following two chapters, we will

consider several questions related to the spectra of localized solutions and fronts. In

Figure 4.1, we have plotted the expected spectra of the PDE operators linearized

about a front and localized solution, respectively. We emphasize that the bottom

diagram depicts our expectation, but remains to be rigorously established under

suitable hypotheses in the following.

We first make some remarks on the spectral plots in Figure 4.1. The fact that

the essential spectrum of a localized solution biasymptotic to the trivial state will

correspond to Σ0
ess, the essential spectrum of the trivial state, is well known and

we refer to the review article [56], as well as Appendix B. The appearance of the

spectrum for localized solutions in the left half plane, in which the essential spectrum

of the periodic state, Σγ
ess, breaks up into O(L) eigenvalues has been explained in

[57]. As to the eigenvalues with Reλ ≥ 0, a frequently used result establishing the

nonlinear stability of traveling wave solutions is that, loosely stated, spectral stability

implies nonlinear asymptotic stability provided that the spectrum is bounded away

from 0 in the left half plane, with the exception of a simple eigenvalue at λ = 0

[24]. The application of the result in this case is somewhat delicate due to the

accumulation of spectrum up to the imaginary axis as L→∞, but in any event, the

absence of spectrum in the right half plane is a necessary condition for stability.

There are essentially three questions we wish to address. First, is it true that
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Im �

Figure 4.1: Schematic diagrams of spectra for the front and pulse solutions. Σ0
ess refers to the

essential spectrum of the trivial state, and Σγess and Σγabs to the essential and absolute spectra of
the patterned state. The crosses indicate individual eigenvalues.
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eigenvalues of a localized solution in the right half plane correspond to those of the

front and back from which the solution is formed, added with multiplicity? Second, is

the eigenvalue of the localized solution at λ = 0 simple, provided that the eigenvalue

of the front at λ = 0 is simple in an appropriate sense, or is it too added with

multiplicity? And finally, as eigenvalues corresponding to saddle node and pitchfork

bifurcations move in and out of the right half plane upon varying a parameter, what

happens as they enter the left half plane? We will address the first question in this

chapter, answering in the affirmative. The analysis of the second and third questions,

the latter of which we will define more precisely, requires an analytic extension of

the Evans function of the fronts (and backs) into the left half plane; we construct

this extension in Chapter 5. We then show that the eigenvalue at λ = 0 is in fact

simple for a localized solution, but we also observe that there is a sense in which

this corresponds to adding with multiplicity. We will approach all stability problems

from an ODE perspective, as was briefly motivated in Section 2.1, and is discussed

more fully in Appendix B.

4.2 Exponential dichotomies and general approach

For the results in this chapter we do not require the full set of hypotheses used for

the existence results given in the previous chapter. We do, however, wish to use

the results on the exponential closeness of the localized solutions u1(x) to the fronts

and backs uf (x) and ub(x) and in turn to the periodic solution γ(x), as captured in

Theorems 3.1 and 3.2. In order to clearly identify the hypotheses that are necessary

for our results, and to avoid introducing additional assumptions or machinery, we

reformulate the results of Theorem 3.2 and introduce them as Hypothesis 4.3.1. We

further show how Hypotheses 4.3.1 and 4.3.2 are satisfied in the context of Section
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3.3 (see Lemma 4.3.4).

In the following, we will consider a localized solution along with the front and

back to which it is exponentially close, and show that its temporal eigenvalues in the

right half plane are exponentially close to those of the front and back, added with

multiplicity.

We again consider

ux = f(u, µ) (2.1)

with u ∈ R2n and µ ∈ R.

As described for the particular example of the Swift–Hohenberg equation in Sec-

tion 2.1 and discussed in Appendix B, we will be interested in systems of the form

v̇ = [fu(u∗(x), µ) + λB(u∗(x), µ)]v (2.2)

with v ∈ C2n, λ ∈ C and B : R2n × R → R2n×2n, and where u∗(x) is a particu-

lar solution of (2.1). We assume that f and B are smooth (at least C2 and C1,

respectively).

We will make use of exponential dichotomies possessed by several systems of

the form (2.2) and refer to Appendix A.1 for the relevant definition, as well as

the statement of the so-called roughness theorem for exponential dichotomies. We

further refer to Appendix B for results on the relationship between the spectrum

of a PDE operator, exponential dichotomies of the corresponding ODE, and the

Fredholm properties of the family of operators T (λ).

The general idea will be to use information about (2.2) with u∗(x) = uf (x), ub(x), γ(x)



70

and the trivial 0 solution at λ = λ∗ to establish the presence or absence of nontrivial,

bounded solutions of (2.2) with u∗(x) = u`(x), with u`(x) a localized solution, for λ

near λ∗. There are (at least) two possible ways in which to proceed:

(i) Write the solution to the eigenvalue problem (2.2) with u∗(x) = u`(x) for λ

near λ∗ in terms of the exponential dichotomies for uf and ub at λ = λ∗, using

the variation of constants formula. We take this approach in Section 4.5 and

Appendix C, assuming a simple eigenvalue of the front at λ∗; as compared to

our second approach, it yields more precise information about the eigenvalue

location and eigenfunction form as a perturbation of the eigenfunction of the

front, but at least in the context of determining when a localized solution is

stable, this level of detail is not necessary.

(ii) Write the solution to the eigenvalue problem (2.2) with u∗(x) = u`(x) for λ

near λ∗ directly in terms of exponential dichotomies for this system depending

smoothly on λ sufficiently near λ∗, which exist due to the roughness theorem

for exponential dichotomies. This is the approach we take in Section 4.3 to

study eigenvalues of arbitrary multiplicity in the right half plane. Since we

care primarily about the presence or absence of eigenvalues in the right half

plane, rather than precise locations or characterization of the corresponding

eigenfunctions, this approach provides shorter and cleaner results.

4.3 Eigenvalues in the right half plane

We note that in the following we refer to various constants and rates by C, η >

0 without keeping track of them individually. All such constants may be chosen

independently of L for L > L∗ sufficiently large and other relevant variables. In
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particular, we do not distinguish the constants appearing in our hypotheses regarding

(1) the exponential closeness of the localized solutions to fronts and backs, (2) the

exponential closeness and decay of the fronts and backs to the periodic solution

and the trivial state, and (3) the existence of particular exponential dichotomies. A

localized solution will be unstable if it has an eigenvalue in the right half plane, and

we wish only to establish the presence or absence of such eigenvalues. Thus, more

careful bookkeeping is not relevant in this context.

We let Ω = {λ ∈ C : Reλ > 0}. We fix µ so that the following hypotheses are

satisfied, and suppress all µ dependence for the remainder of this section.

As described in Lemma 4.3.4 below, our first hypothesis allows us to introduce a

reformulated version of the results given in Theorem 3.2 without requiring additional

hypotheses that are extraneous to our present purposes.

Hypothesis 4.3.1. There exists a family of solutions u`,L(x) to (2.1), parameterized

by L = L(k), k ∈ N, with k ≥ K for some K > 0, and such that L(k) increases

monotonically without bound. These solutions, which we will refer to as localized

solutions, satisfy:

u`,L(x) =



uf (x+ L) + w−f (x+ L;L), x ≤ −L

uf (x+ L) + w+
f (x+ L;L), x ∈ [−L, 0]

ub(x− L) + w−b (x− L;L), x ∈ [0, L]

ub(x− L) + w+
b (x− L;L), x ≥ L

(3.1)

where uf (x) and ub(x) are also solutions to (2.1) that are independent of L and
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satisfy limx→−∞ uf (x) = 0 and limx→∞ ub(x) = 0. We also have

w−f (0;L) = w+
f (0;L) (3.2)

uf (L;L) + w−f (L;L) = ub(−L;L) + w+
b (−L;L) (3.3)

w−b (0;L) = w+
b (0;L), (3.4)

and there exist positive constants C and η such that

∣∣w−f (x;L)
∣∣ ≤ Ce−η(L−x), x ≤ 0 (3.5)∣∣w+

f (x;L)
∣∣ ≤ Ce−ηL, x ∈ [0, L] (3.6)∣∣w−b (x;L)
∣∣ ≤ Ce−ηL, x ∈ [−L, 0] (3.7)∣∣w+

b (x;L)
∣∣ ≤ Ce−η(L+x), x ≥ 0. (3.8)

We then require the solutions uf (x) and ub(x) to relate to a single solution γ(x)

as follows:

Hypothesis 4.3.2. There exists a solution γ(x) of (2.1) and positive constants C

and η such that the following holds uniformly in L = L(k), k ≥ K as in Hypothesis

4.3.1:

|uf (L)− γ(0)| ≤ Ce−ηL (3.9)

|ub(−L)− γ(0)| ≤ Ce−ηL. (3.10)

Moreover, there exists a constant c ∈ [0, 2π), and positive constants C and η, all
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independent of L, such that

|uf (x)− γ(x+ c)| ≤ Ce−ηx, x ≥ 0 (3.11)

|ub(x)− γ(x− c)| ≤ Ceηx, x ≤ 0. (3.12)

Finally,

|uf (x)| ≤ Ceηx, x ≤ 0 (3.13)

|ub(x)| ≤ Ce−ηx, x ≥ 0. (3.14)

We will use the exponential closeness of uf (L) and ub(−L) to γ(0) in finding

bounded solutions to (2.2) with u∗(x) = u`,L(x). We include the exponential ap-

proach so that we may take as our final two hypotheses the existence of exponential

dichotomies associated to γ(x) and the trivial state, from which we deduce the exis-

tence of exponential dichotomies of the front and back.

Remark 4.3.3. Since we no longer have dependence on ϕ1 and ϕ2, we emphasize

that the solutions uf (x) and ub(x) are not necessarily related by reversibility, though

this possibility is not excluded. Indeed, we do not use or assume reversibility anywhere

in this section.

As mentioned already, these hypotheses are in fact satisfied in the setting of the

previous chapter:

Lemma 4.3.4. Suppose that we are in the setting of Section 3.3, so that Hypotheses

3.3.1–3.3.2 and the analogues of Hypotheses 3.2.1–3.2.3 are satisfied, and Theorem

3.2 holds. Denote by γ̂(x), ûf (x) and ûb(x) the periodic, front, and back solutions

introduced in Section 3.3. Fix µ ∈ J , ϕ∗1, ϕ
∗
2 ∈ [0, 2π), and m ∈ {0, 1}, with µ =
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z(ϕ∗1) = z(ϕ∗2) and |z′(ϕ∗1)|, |z′(ϕ∗2)| 6= 0. Let ϕ1, ϕ2 and L(ϕ1, ϕ2, k) be as defined in

Theorem 3.2, and let u1(x;ϕ1, ϕ2, k) be the localized solution associated to ûf (x;ϕ1),

ûb(x;ϕ2) as given by Theorem 3.2. Further define ϕ̄ = (ϕ2 − ϕ1)/2 and c = (ϕ1 +

ϕ2)/2 mod 2π. Then there exists K > 0 such that Hypotheses 4.3.1 and 4.3.2 hold,

with L = L(k) as given in Theorem 3.2, u`,L(x) = u1(x − ϕ̄;ϕ1, ϕ2, k), uf (x) =

ûf (x− ϕ̄;ϕ1), ub(x) = ûb(x− ϕ̄;ϕ2), and γ(x) = γ̂(x).

Remark 4.3.5. As is clear from the following proof, the constant K > 0 for which

Hypotheses 4.3.1 and 4.3.2 hold may need to be larger than that for Theorem 3.2.

The rate η > 0 appearing in (3.5)–(3.8) is the same as that appearing in Theorem

3.2, and the constant C can be chosen independently of µ, ϕ1 and ϕ2. The η > 0

appearing in Hypothesis 4.3.2 is bounded below by the η > 0 given in Theorem 3.2.

Proof. (Lemma 4.3.4) Set L = L(k) as in Theorem 3.2, define ϕ̄ := (ϕ2 − ϕ1)/2,

and let u`,L(x) = u1(x− ϕ̄;ϕ1, ϕ2, k), uf (x) = ûf (x− ϕ̄;ϕ1), ub(x) = ûb(x− ϕ̄;ϕ2).

Since ϕ1 and ϕ2 are fixed, we generally suppress dependence on ϕ1 and ϕ2 going

forward.

In order for (3.1) to hold, we define

w−f (x;L) := u`,L(x− L)− uf (x) = u1(x− L− ϕ̄; k)− ûf (x− ϕ̄) (3.15)

and make analogous definitions for w+
f (x;L) and w±b (x;L). Then (3.2)–(3.4) are

automatically satisfied due to the continuity of u1. To avoid cluttered notation in

the following, we write w±f,b(x) = w±f,b(x;L) and u1(x) = u1(x; k), but dependence on

k is, of course, important.

We now consider (3.5)–(3.8). First suppose that ϕ̄ > 0; we can address the case

ϕ̄ < 0 by reversing the roles of uf and ub in the following.
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By (3.15) in Theorem 3.2, we have

|u1(x− L)− ûf (x)| ≤ Ce−ηLeηx, x ≤ 0 (3.16)

so that, since ϕ̄ > 0,

|w−f (x)| = |u1(x− L− ϕ̄)− ûf (x− ϕ̄)| ≤ Ce−ηLeηx, x ≤ 0 (3.17)

also holds. Moreover, since ϕ̄ ≤ 2π, it follows that

|w+
f (x)| = |u1(x− L− ϕ̄)− ûf (x− ϕ̄)| ≤ Ce−ηL, 0 ≤ x ≤ ϕ̄. (3.18)

Then from (3.16) in Theorem 3.2, we have

|u1(x− L)− ûf (x)| ≤ Ce−ηL, 0 ≤ x ≤ L (3.19)

so that

|w+
f (x)| = |u1(x− L− ϕ̄)− ûf (x− ϕ̄)| ≤ Ce−ηL, ϕ̄ ≤ x ≤ L+ ϕ̄ (3.20)

and, as we will use momentarily,

|u1(x− L− ϕ̄)− ûf (x− ϕ̄)| ≤ Ce−ηL, L ≤ x ≤ L+ ϕ̄. (3.21)

Thus we have shown (3.5) and (3.6) hold. Now from (3.17) in Theorem 3.2 we have

|u1(x+ L)− ûb(x)| ≤ Ce−ηL, −L ≤ x ≤ 0 (3.22)

so that

|u1(x+ L− ϕ̄)− ûb(x− ϕ̄)| ≤ Ce−ηL, −L+ ϕ ≤ x ≤ ϕ̄ (3.23)
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To address |w−b (x)| on −L ≤ x ≤ −L+ ϕ̄, we note

|u1(x+ L− ϕ̄)− ûb(x− ϕ̄)| ≤ |u1(x+ L− ϕ̄)− ûf (x+ 2L− ϕ̄)|

+ |ûf (x+ 2L− ϕ̄)− γ(x+ L)|+ |γ(x+ L)− ûb(x− ϕ̄)|.

(3.24)

By (3.21), the first term on the right hand side is bounded by Ce−ηL for x ∈

[−L,−L+ ϕ̄]. We now recall (2.10) and (2.11) from Chapter 3:

|ûf (x+ ϕ1)− γ(x)| ≤ Ce−η(x+ϕ1), x ≥ −ϕ1 (3.25)

|ûb(x− ϕ2)− γ(x)| ≤ Ceη(x−ϕ2), x ≤ ϕ2 (3.26)

where we have reformulated the relations slightly, and stated them for ϕ1 and ϕ2

for clarity. The second term in (3.24) is equivalent to |ûf (x + L − ϕ̄) − γ(x)| on

0 ≤ x ≤ ϕ̄, and since L− ϕ̄ = ϕ1 + 2kπ + O(e−η2kπ) and γ(x) = γ(x+ 2kπ), we can

rewrite this as

|ûf (x+ ϕ1 + 2kπ + O(e−η2kπ))− γ(x+ 2kπ)| (3.27)

Then Taylor expanding ûf (x + ϕ1 + 2kπ + O(e−η2kπ)) about ûf (x + ϕ1 + 2kπ), we

note that |û′f (x + ϕ1 + 2kπ)| is, for any ϕ1, uniformly bounded in k ≥ K, K > 0

sufficiently large, by a multiple of supx∈[0,2π] |γ′(x)|. So we conclude that

|ûf (x+ L− ϕ̄)− γ(x)| ≤ Ce−η2kπ ≤ Ce−ηL (3.28)

uniformly in L = L(k), k ≥ K with K > 0 sufficiently large. Similarly, the last term

in (3.24) is equivalent to |γ(x)− ûb(x− L− ϕ̄)| on 0 ≤ x ≤ ϕ̄ and we note ϕ̄ ≤ ϕ2.

We then have −L− ϕ̄ = −ϕ2 − 2kπ − O(e−η2kπ) and by an analogous argument as

above

|ûf (x− L− ϕ̄)− γ(x)| ≤ Ce−ηL. (3.29)
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This then shows that (3.7) holds. As for (3.8), from (3.23) and ϕ̄ ≤ 2π so that we

can subsume eη2π into the constant, we have

|u1(x+ L− ϕ̄)− ûb(x− ϕ̄)| ≤ Ce−η(L+x), 0 ≤ x ≤ ϕ̄ (3.30)

Moreover, from (3.18) in Theorem 3.2 we have

|u1(x+ L)− ûb(x)| ≤ Ce−η(L+x), x ≥ 0 (3.31)

and again since ϕ̄ ≤ 2π, we have

|u1(x+ L− ϕ̄)− ûb(x− ϕ̄)| ≤ Ce−η(L+x), x ≥ ϕ̄. (3.32)

As we remarked at the beginning, the preceding assumed that ϕ̄ > 0. If ϕ̄ < 0, we

can reverse the arguments, starting with |w+
b (x)|. Thus we conclude that |w+

b (x)| ≤

Ce−η(L+x) on x ≥ 0 directly from (3.18) in Theorem 3.2, as we did above for |w−f (x)|

on x ≤ 0 using (3.15) in Theorem 3.2. For |w−b (x)|, we use (3.18) and (3.17) in

Theorem 3.2 in an analogous fashion to the argument above for |w+
f (x)|, and so on.

If ϕ̄ = 0, as is the case for a symmetric localized solution, all the bounds follow

immediately from Theorem 3.2 and the definition (3.15).

Finally, we show that Hypothesis 4.3.2 holds: we write

|uf (L)− γ(0)| ≤ |uf (L)− uf (2kπ + ϕ1 + ϕ̄)|+ |uf (2kπ + ϕ1 + ϕ̄)− γ(0)| (3.33)

First considering the first term on the right hand side, by definition 2kπ+ϕ1 + ϕ̄ =

L + O(e−η2kπ), so we can Taylor expand about L and again note that |u′f (L)| is

bounded uniformly in L for any ϕ1 by a multiple of supx∈[0,2π] |γ′(x)|. Thus the first

term is O(e−η2kπ) = O(e−ηL). As for the second term, uf (2kπ+ϕ1+ϕ̄) = ûf (2kπ+ϕ1)
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and γ(0) = γ(2kπ), so that by (2.10), the second term is also O(e−ηL). Thus we

have that for C, η > 0, |uf (L)− γ(0)| ≤ Ce−ηL uniformly in L = L(k), k ≥ K with

K > 0 sufficiently large. To show that (3.10) holds, we write

|ub(−L)−γ(0)| ≤ |ub(−L)−ub(−2kπ−ϕ2 + ϕ̄)|+ |ub(−2kπ−ϕ2 + ϕ̄)−γ(0)| (3.34)

and argue analogously. Finally, the remaining statements in Hypothesis 4.3.2 follow

from the definition of uf (x) and ub(x) upon setting c̃ = (ϕ1 +ϕ2)/2. As c̃ is bounded

and γ(x) is 2π periodic, we can then replace c̃ with c = (ϕ1 + ϕ2)/2 mod 2π.

We now have two assumptions of the existence of exponential dichotomies for

the eigenvalue problems associated to γ(x), and the trivial solution at 0. These

then imply exponential dichotomies for uf,b(x) on R+ and R−, which in turn imply

exponential dichotomies for the localized solution on (−∞,−L], [−L, 0], [0, L] and

[L,∞). As noted below, these are natural assumptions for the PDE formulations

we have in mind, but they of course depend on the form of the operator B in (2.2),

and do not arise automatically from the set-up in Chapter 3. (Although inasmuch

as the λ = 0 case reduces to the problem studied in Chapter 3, we note that these

hypotheses are compatible with our previous hypotheses on the spatial eigenvalues

of the linearizations about the 0 solution and γ(x).)

We first assume the existence of an exponential dichotomy of the eigenvalue

problem (2.2) with u∗(x) = γ(x).

Hypothesis 4.3.6. The solution γ(x) of (2.1) is such that for any λ ∈ Ω,

v̇ = [fu(γ(x)) + λB(γ(x))]v (3.35)

has an exponential dichotomy on R. We denote these exponential dichotomies by
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Φs,u
γ (x, y;λ) and the associated projections by P s,u

γ (x;λ) = Φs,u
γ (x, x;λ). The x-

independent dimension dim Rg(P u
γ (x, λ)) is, for all λ ∈ Ω, assumed to be equal to n,

so that dim Rg(P s
γ (x, λ)) = n as well.

Note that in the present context, our only assumptions on γ(x) are given in

Hypotheses 4.3.2 and 4.3.6, and we do not use the particular assumptions on γ(x)

given in Hypothesis 3.3.1 of Chapter 3.

Hypothesis 4.3.6 corresponds to the assumption that the operator corresponding

to the linearization about the periodic solution γ(x) has no essential spectrum in the

open right half plane; as a periodic solution, it has no point spectrum. The condition

dim Rg(P u
γ (x, λ)) = dim Rg(P s

γ (x, λ)) = n is always satisfied for a reversible system,

but see also Remark 4.3.8.

We finally require that the trivial solution has an exponential dichotomy on R:

Hypothesis 4.3.7. There exists a constant d > 0 such that

v̇ = [fu(0) + λB(0)]v (3.36)

has an exponential dichotomy on R for all λ with Reλ > −d. We denote these

dichotomies by Φs,u
0 (x, y;λ) and the associated projections by P s,u

0 (x;λ). The x-

independent dimension dim Rg(P u
0 (x, λ)) is, for all λ with Reλ > −d, assumed to

be equal to n, so that dim Rg(P s
0 (x, λ)) = n as well.

Hypothesis 4.3.7 corresponds to the assumption that the essential spectrum of

the operator corresponding to the linearization about the trivial solution is bounded

away from 0 in the left half plane. For our immediate purposes we only need the

existence of exponential dichotomies for λ ∈ Ω, the open right half plane, but we
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will use this stronger condition in Chapter 5.

Taken together, Hypotheses 4.3.6 and 4.3.7, along with Hypothesis 4.3.2 and the

roughness theorem for exponential dichotomies (see Theorem 1.1, and Remark 1.1.2

in Appendix A.1), then imply that the front and back solutions have exponential

dichotomies on R±. More precisely, for any λ ∈ Ω,

v̇ = [fu(uj(x)) + λB(uj(x))]v (3.37)

with j = f, b has exponential dichotomies on R+ and R−, which we can always choose

to be locally analytic. We denote these dichotomies by Φs,u
j,+(x, y;λ) and Φs,u

j,−(x, y;λ)

with j = f, b, where the subscripts + and − correspond to the dichotomies on R+

and R−, respectively. We again denote the associated projections by P s,u
j,±(x;λ) :=

Φs,u
j,±(x, x;λ). The dimension of the range of each of these projections is equal to n.

This indicates that the operators corresponding to the linearizations about the front

and back solutions have no essential spectrum in the open right half plane, but only

isolated eigenvalues.

Remark 4.3.8. In a general system it may happen that the range of the projection

operator associated to each exponential dichotomy has dimension other than n, in

contrast to the situation for a reversible system where this dimension must equal n.

To account for this possibility, in the above hypotheses we could instead allow an

arbitrary dimension, dim Rg(P u
γ (x, λ)) = i∞, so that dim Rg(P s

γ (x, λ)) = 2n − i∞.

The dimension i∞ is commonly referred to as the Morse index. If it happened that

i∞ 6= n, we would then have the additional requirement that the dimensions of the

exponential dichotomy associated to the trivial solution is compatible with that of γ:

dim Rg(P u
0 (x, λ)) = dim Rg(P u

γ (x, λ)) = i∞
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which would of course imply

dim Rg(P s
0 (x, λ)) = dim Rg(P s

γ (x, λ)) = 2n− i∞.

This would then imply that the dimensions of the dichotomies associated with uf

and ub on R± are compatible with each other and with the dichotomies associated to

γ and the trivial solution. Our results are the same whether we allow an arbitrary

dimension i∞ and enforce the above compatibility condition, or take the dimension

of the range of all projection operators to be n; for simplicity, we make the latter

choice.

We are now in a position to state the main result of this section:

Theorem 4.1. Suppose Hypotheses 4.3.1, 4.3.2, 4.3.6 and 4.3.7 are satisfied, and

define the functions

Df (λ) := det
(
RgP u

f,−(0;λ),RgP s
f,+(0;λ)

)
(3.38)

Db(λ) := det
(
RgP u

b,−(0;λ),RgP s
b,+(0;λ)

)
. (3.39)

Fix λ∗ ∈ Ω and suppose that for mf ,mb ≥ 0 and for some δ > 0,

Df (λ) = (λ− λ∗)mf + O(|λ− λ∗|mf+1) (3.40)

and

Db(λ) = (λ− λ∗)mb + O(|λ− λ∗|mb+1) (3.41)

for λ ∈ Uδ(λ∗), the ball of radius δ centered at λ∗. Then we may define an analytic

function D`,L(λ) such that there exists a δ̂ sufficiently small, with δ > δ̂ > 0, and an

L∗ > 0 sufficiently large, such that the following hold uniformly in L ≥ L∗:
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(i) D`,L(λ) has precisely mf+mb roots, counted with multiplicity, in Uδ̂(λ∗). These

values of λ are O(e−ηL) close to λ∗, with η > 0.

(ii) The system

v̇ = [fu(u`,L(x)) + λB(u`,L(x))] v, (3.42)

has a bounded, nontrivial solution at λ ∈ Uδ̂(λ∗) if and only if D`,L(λ) = 0.

The function D`,L(λ) is defined in (3.76).

Proof. We will show that we have a bounded, nontrivial solution to (3.42) if and

only if D`,L(λ) = 0, where D`,L(λ) is an analytic function of the form

D`,L(λ) =
(
Df (λ) + O(e−ηL)

)(
Db(λ) + O(e−ηL)

)
+ O(e−2ηL). (3.43)

We begin by noting that using (3.1), we can solve the eigenvalue problem (3.42)

in pieces by solving the equations

v̇−f =
[
fu(uf (x) + w−f (x)) + λB(uf (x) + w−f (x))

]
v−f , x ≤ 0 (3.44)

v̇+
f =

[
fu(uf (x) + w+

f (x)) + λB(uf (x) + w+
f (x))

]
v+
f , x ∈ [0, L] (3.45)

v̇−b =
[
fu(ub(x) + w−b (x)) + λB(ub(x) + w−b (x))

]
v−b , x ∈ [−L, 0] (3.46)

v̇+
b =

[
fu(ub(x) + w+

b (x)) + λB(ub(x) + w+
b (x))

]
v+
b , x ≥ 0 (3.47)
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and then constructing our solution as

v(x) =



v−f (x+ L), x ≤ −L

v+
f (x+ L), x ∈ [−L, 0]

v−b (x− L), x ∈ [0, L]

v+
b (x− L), x ≥ L.

(3.48)

Thus we have a bounded solution to (3.42) if and only if we have solutions to

(3.44)–(3.47) along with the matching conditions

v+
f (L)− v−b (−L) = 0 (3.49)

v+
f (0)− v−f (0) = 0 (3.50)

v+
b (0)− v−b (0) = 0. (3.51)

We fix λ∗ ∈ Ω as in the Theorem statement. By the existence of exponential

dichotomies for (3.37) and the roughness theorem for exponential dichotomies (again

see Appendix A.1), we have exponential dichotomies for each equation (3.44)–(3.47),

which can be chosen so that they depend analytically on λ ∈ Uδ(λ∗) for δ > 0 small.

That is, we have

|Φs
`(f,L,−)(x, y;λ)| ≤ Ce−η|x−y|, x ≥ y, |Φu

`(f,L,−)(x, y;λ)| ≤ Ce−η|x−y|, x ≤ y, x, y ≤ 0

|Φs
`(f,L,+)(x, y;λ)| ≤ Ce−η|x−y|, x ≥ y, |Φu

`(f,L,+)(x, y;λ)| ≤ Ce−η|x−y|, x ≤ y, x, y ∈ [0, L]

|Φs
`(b,L,−)(x, y;λ)| ≤ Ce−η|x−y|, x ≥ y, |Φu

`(b,L,−)(x, y;λ)| ≤ Ce−η|x−y|, x ≤ y, x, y ∈ [−L, 0]

|Φs
`(b,L,+)(x, y;λ)| ≤ Ce−η|x−y|, x ≥ y, |Φu

`(b,L,+)(x, y;λ)| ≤ Ce−η|x−y|, x ≤ y, x, y ≥ 0

(3.52)

We denote the associated projections P s,u
`(j,L,±)(x;λ) := Φs,u

`(j,L,±)(x, x;λ), j = f, b.
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Moreover, as a consequence of Hypothesis 4.3.6, we have that

|P u
`(f,L+)(L;λ)− P u

γ (0;λ)| ≤ Ce−ηL (3.53)

|P s
`(b,L,−)(−L;λ)− P s

γ (0;λ)| ≤ Ce−ηL. (3.54)

We now let a := (a+
f , a

−
b ) ∈ Va, b := (b−f , b

+
f , b

−
b , b

+
b ) ∈ Vb and λ ∈ Vλ, where the

spaces Va, Vb, Vλ are defined as follows:

Va := RgP u
γ (0;λ∗)⊕ RgP s

γ (0;λ∗)

Vb :=
(
RgP u

`(f,L,−)(0;λ∗)× RgP s
`(f,L,+)(0;λ∗)

)
×
(
RgP u

`(b,L,−)(0;λ∗)× RgP s
`(b,L,+)(0;λ∗)

)
Vλ := Uδ(λ∗) ⊂ C,

and where Va and Vb are endowed with the maximum norm over components.

For δ sufficiently small and L > L∗ sufficiently large, we can then write solutions

to the eigenvalue problem (3.2) for the localized structure u`,L as

v−f (x) = Φu
`(f,L,−)(x, 0;λ)b−f (3.55)

v+
f (x) = Φs

`(f,L,+)(x, 0;λ)b+
f + Φu

`(f,L,+)(x, L;λ)a+
f (3.56)

v−b (x) = Φs
`(b,L,−)(x,−L;λ)a−b + Φu

`(b,L,−)(x, 0;λ)b−b (3.57)

v+
b (x) = Φs

`(b,L,+)(x, 0;λ)b+
b , (3.58)

where these are defined on (−∞, 0], [0, L], [−L, 0] and [0,∞), respectively. Clearly

any solution of (3.55)–(3.58) and the matching conditions (3.49)–(3.51) with a

and b not both 0 will be a nontrivial, bounded solution to (3.42). On the other

hand, all bounded solutions to (3.42) can be found as solutions to (3.55)–(3.58)
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and (3.49)–(3.51) provided (i) δ is sufficiently small such that RgP s
`(f,L,−)(0;λ) ∩

NP s
`(f,L,−)(0;λ∗) = 0 and similarly for the other projections operating on Vb, which

is guaranteed to hold for some δ > 0 by the analytic dependence of the exponential

dichotomies on λ near λ∗, and (ii) δ is sufficiently small and L∗ is sufficiently large

such that RgP u
`(f,L,+)(L;λ) ∩ NP u

γ (0;λ∗) = 0, and similarly RgP s
`(b,L,−)(−L;λ) ∩

NP s
γ (0;λ∗) = 0, which holds again by analytic dependence of the exponential di-

chotomies, along with the relations (3.53) and (3.54).

We now use the matching conditions (3.49)–(3.51) to solve for a and b. We begin

by using the first matching condition (3.49) to solve for a in terms of b.

Lemma 4.3.9. There exists an L∗ such that for all L > L∗, the following holds

uniformly in L. There exists an operator A1 : Vλ × Vb → Va such that v(x) as given

by (3.55)–(3.58) with a = A1(λ)b solves (3.49) for any b and λ. A1 is analytic in λ

and linear in b, and satisfies

|A1(λ)b| ≤ Ce−ηL|b|. (3.59)

Proof. Substituting from (3.55)–(3.58) into (3.49) gives us:

0 = Φs
`(f,L,+)(L, 0;λ)b+

f + Φu
`(f,L,+)(L,L;λ)a+

f − Φs
`(b,L,−)(−L,−L;λ)a−b − Φu

`(b,L,−)(−L, 0;λ)b−b

= a+
f − a−f + (P u

`(f,L,+)(L;λ)− P u
γ (0;λ))a+

f + (P s
γ (0;λ)− P s

`(f,L,+)(L;λ))a−b

+ Φs
`(f,L,+)(L, 0;λ)b+

f − Φu
`(b,L,−)(−L, 0;λ)b−b . (3.60)

We then define

F1(λ)(a, b) := (P u
`(f,L,+)(L;λ)− P u

γ (0;λ))a+
f + (P s

γ (0;λ)− P s
`(f,L,+)(L;λ))a−b

+ Φs
`(f,L,+)(L, 0;λ)b+

f − Φu
`(b,L,−)(−L, 0;λ)b−b (3.61)
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so that clearly F1(λ)(a, b) is analytic in λ and linear in a and b. Moreover, from

(3.53) and (3.54) and definition of the dichotomies, i.e., the decay of Φs
`(f,L,+)(x, y;λ)

on x ≥ y and Φu
`(b,L,−)(x, y;λ) on x ≤ y, we have

|F1(λ)(a, b)| ≤ Ce−ηL(|a|+ |b|). (3.62)

We further define the map J as

J : Va → C2n (3.63)

(a+
f , a

−
b ) 7→ a+

f − a−b ,

and since Va = RgP u
γ (0;λ∗)⊕RgP s

γ (0;λ∗) = C2n, we have that J is a linear isomor-

phism and ‖J‖ ≤ C. Then we can rewrite (3.60) as

(J + F1(λ)I1)a = F1(λ)(0, b), (3.64)

where I1a := (a, 0). By (3.62), for L ≥ L∗ with L∗ sufficiently large, (J + F1(λ)I1)

is invertible so that we have the solution operator

a = −(J + F1(λ)I1)−1F1(λ)(0, b) =: A1(λ)b, (3.65)

Finally, again from (3.62) we have

|A1(λ)b| ≤ Ce−ηL|b|, (3.66)

which completes the proof.
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Turning now to the second matching condition v+
f (0)− v−f (0) = 0, we have

0 = Φs
`(f,L,+)(0, 0;λ)b+

f + Φu
`(f,L,+)(0, L;λ)a+

f − Φu
`(f,L,−)(0, 0;λ)b−f

= P s
`(f,L,+)(0;λ)b+

f − P u
`(f,L,−)(0;λ)b−f + Φu

`(f,L,+)(0, L;λ)(A1(λ)b)+
f , (3.67)

where we have defined (A1(λ)b)+
f to be the component of A1(λ)b in RgP u

γ (0;λ∗). We

observe that by (3.52) and (3.59),

Φu
`(f,L,+)(0, L;λ)(B(λ)b)+

f = O(e−2ηL|b|) (3.68)

uniformly in λ near λ∗.

Similarly, from the third matching condition v+
b (0)− v−b (0) = 0, we have

0 = Φs
`(b,L,−)(0, 0;λ)b+

b − Φu
`(b,L,−)(0, 0;λ)b−b − Φs

`(b,L,−)(0,−L;λ)(A1(λ)b)−b

= P s
`(b,L,−)(0;λ)b+

b − P u
(`(b,L,−)(0;λ)b−b − Φs

`(b,L,−)(0,−L;λ)(A1(λ)b)−b , (3.69)

where (A1(λ)b)−b is the component of A1(λ)b in RgP s
γ (0;λ∗). From (3.52) and (3.59),

we again have

Φs
`(b,L,−)(0,−L;λ)(A1(λ)(b))−b = O(e−2ηL|b|) (3.70)

uniformly in λ near λ∗.

We have a nontrivial solution at λ near λ∗ if the conditions (3.67) and (3.69) hold
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for b 6= 0. We can rewrite the two conditions as:

 0

0

 =

[ −P u
`(f,L,−)(0;λ) P s

`(f,L,+)(0;λ) 0 0

0 0 −P u
`(b,L,−)(0;λ) P s

`(b,L,+)(0;λ)


+

(
Φu
`(f,L,+)(0, L;λ) −Φs

`(b,L,−)(0,−L;λ)

)
A1(λ)

]
b

=: [PL(λ) +RL(λ)] b. (3.71)

We note that these matrices are square, as we are mapping from Vb with 4n complex

components (for general Morse indices, i∞ + (2n − i∞) + i∞ + (2n − i∞) = 4n) to

C2n × C2n. From (3.68) and (3.70),

RL(λ) = O(e−2ηL), (3.72)

uniformly in λ near λ∗.

We will then have a nontrivial solution to (3.44)–(3.47) along with the matching

conditions (3.49)–(3.51) at λ near λ∗ provided that we can find b ∈ Vb, b 6= 0 such

that (PL(λ) +RL(λ))b = 0. Thus we define P̂ u
`(f,L,−)(0;λ) as P u

`(f,L,−)(0;λ) restricted

to RgP u
`(f,L,−)(0;λ∗):

P̂ u
`(f,L,−)(0;λ) := P u

`(f,L,−)(0;λ)
∣∣∣
RgPu

`(f,L,−)
(0;λ∗)

(3.73)

and similarly for the other projection operators. We further define

P̂L(λ) =

 −P̂ u
`(f,L,−)(0;λ) P̂ s

`(f,L,+)(0;λ) 0 0

0 0 −P̂ u
`(b,L,−)(0;λ) P̂ s

`(b,L,+)(0;λ)


(3.74)
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and

R̂L(λ) = RL(λ)
∣∣∣
Vb
. (3.75)

We thus define

D`,L(λ) := det(P̂L(λ) + R̂L(λ)) (3.76)

so that we have a nontrivial solution of (3.42) at λ near λ∗ if and only if

D`,L(λ) = 0. (3.77)

Now since P̂L(λ) and R̂L(λ) are analytic, as is the determinant, we can write this as

det
(
P̂L(λ)

)
+ R̃L(λ) = 0, (3.78)

where

R̃L(λ) = O
(
|R̂L(λ)|

)
= O(e−2ηL), (3.79)

and we clarify that the first equality is meant asymptotically as λ → λ∗ and the

second as L→∞, so that taken together there exists a C which does not depend on

λ or L such that for λ ∈ Uδ with δ sufficiently small and L > L∗, with L∗ sufficiently

large,

R̃L(λ) ≤ Ce−2ηL. (3.80)

Focusing then on det(P̂L(λ)), we have

det(P̂L(λ)) = det

(
−P̂ u

`(f,L,−)(0;λ) P̂ s
`(f,L,+)(0;λ)

)
det

(
−P̂ u

(`(b,L,−)(0;λ) P̂ s
`(b,L,−)(0;λ)

)
(3.81)

where again the hats indicate that the projections are restricted to the range of the
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corresponding projection with λ = λ∗. But we note that

RgP u
`(f,L,−)(0;λ)

∣∣∣
RgPu

`(f,L,−)
(0;λ∗)

→ RgP u
`(f,L,−)(0;λ) (3.82)

is an isomorphism with uniform bound in λ near λ∗, and similarly for the other

projection operators. So then we have a nontrivial solution if and only if

det
(
RgP u

`(f,L,−)(0;λ),RgP s
`(f,L,+)(0;λ)

)
det
(
RgP u

`(b,L,−)(0;λ),RgP s
`(b,L,+)(0;λ)

)
+R̃L(λ) = 0.

(3.83)

Now since we also have that |P s
`(f,L,+)(0;λ)−P s

f,+(0;λ)| ≤ Ce−ηL, and analogously

for projections associated with the other exponential dichotomies, we have

0 =
(
det
(
RgP s

f,+(0;λ),RgP u
f,−(0;λ)

)
+ O(e−ηL)

) (
det
(
RgP s

b,−(0;λ),RgP u
b,+(0;λ)

)
+ O(e−ηL)

)
+ O(e−2ηL). (3.84)

We note that by the definitions (3.40) and (3.41), our requirement can then be

written

D`(λ) =
(
Df (λ) + O(e−ηL)

)(
Db(λ) + O(e−ηL)

)
+ O(e−2ηL) = 0. (3.85)

Since, by assumption,

Df (λ) = (λ− λ∗)mf + O(|λ− λ∗|mf+1) (3.86)

and

Db(λ) = (λ− λ∗)mb + O(|λ− λ∗|mb+1) (3.87)

hold for λ ∈ Uδ(λ∗), we can use Rouché’s Theorem to complete our proof:
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Lemma 4.3.10. Suppose that (3.86) and (3.87) hold for λ ∈ Uδ0(λ∗) and D`,L(λ) is

as defined in (3.76) for λ ∈ Uδ1(λ∗). Then there exists a δ̂ satisfying min{δ0, δ1} >

δ̂ > 0 such that for L∗ > 0 sufficiently large, D`,L(λ) has exactly mf + mb ze-

roes in Uδ̂(λ∗), uniformly in L ≥ L∗, which are O(e−ηL/f(mf ,mb)) close to λ∗, with

f(mf ,mb) = max{mf ,mb}+ ε and ε > 0 arbitrarily small.

Proof. Rouché’s theorem can be stated as follows: Let K ⊂ C a closed, bounded

region with ∂K a simple closed contour, and suppose f, g : K → C are analytic with

|f(z)− g(z)| < |f(z)|+ |g(z)| (3.88)

on ∂K. Then f and g have the same number of zeros in K, counted with multiplicity.

In the present case, working from the expression for D`,L(λ) given in (3.85), we

let z = λ− λ∗, and define

f(z) = zmf+mb

g(z) = zmf+mb + O(zmf+mb+1) + O(e−ηL(zmf + zmb)) + O(e−2ηL) (3.89)

with K = Br(0) for some r > 0. We wish to find the smallest r such that f and g

have the same number of zeros in K. We require

O(rmf+mb+1) + O(e−ηL(rmf + rmb)) + O(e−2ηL) < 2rmf+mb −O(rmf+mb+1) (3.90)

−O(e−ηL(rmf + rmb))−O(e−2ηL)

or

O(e−2ηL) < 2rmf+mb
(
1−O(r)−O

(
e−ηL(r−mb + r−mf )

))
(3.91)

In other words, for L∗ sufficiently large, there exists a C such that we can write the
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requirement as

Ce−2ηL < 2rmf+mb
(
1− Cr − Ce−ηL(r−mb + r−mf )

)
. (3.92)

Then setting r = C−1e−ηL/f(mf ,mb), where f(mf ,mb) is a function to be determined,

we require
mf+mb

f(mf ,mb)
≤ 1 as well as

mf

f(mf ,mb)
< 1

2
and mb

f(mf ,mb)
< 1

2
, where we require

strict inequalities to ensure the second factor in (3.92) can be made arbitrarily close

to 1 without requiring dependence of the constant on mf or mb. Thus we need

f(mf ,mb) > 2 max{mf ,mb}, and so we conclude that r = O(e−ηL/f(mf ,mb)), where

f(mf ,mb) = 2 max{mf ,mb}+ ε, where ε > 0.

This completes the proof of Theorem 4.1.

Remark 4.3.11. We expect that the algebraic multiplicity of λ considered as an

eigenvalue of the PDE problem associated to (3.42) (in other words, the multiplicity

of λ as an eigenvalue of T (λ), see Appendix B) should be equal to the multiplicity

of λ as a root of D`,L(λ, 0). We refer to [55, Section 4 and Appendix B] for related

computations. We have not, however, carried this through explicitly.

4.4 The translation eigenvalue at λ = 0

Having shown that the exponential closeness of eigenvalues of the localized solution

to those of the front and back in the right half plane, we now discuss the situation at

λ = 0. As mentioned initially, provided the front and back have simple eigenvalues

at λ = 0 in an appropriate sense, we expect that the eigenvalue of the localized

solution at λ = 0 will also be simple. This is in contrast to the case for localized
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solutions constructed from gluing together fronts and backs connecting stable rest

points (in the PDE sense), where two eigenvalues arise near λ = 0 [1, 47, 55].

To appreciate the importance of this distinction, consider that if there were two

eigenvalues for the localized solution arising from λ = 0, we would only be able to

locate one at λ = 0 by translation invariance, and we would then need to track

the other. While our results above show that asymptotically in L there can be no

eigenvalues in the right half plane, for any finite value of L, it is possible that this

second eigenvalue arising from λ = 0 could lie near 0 in the right half plane. As we

will see, this does not happen, and in each of the numerical examples presented in

Section 4.6 below, we indeed observe a single eigenvalue at λ = 0.

Heuristically, we can appreciate the difference between localized periodic and

localized monotone solutions by arguing as follows: in both cases, the eigenvalue

at λ = 0 for the front (and back) will correspond to the derivative of the front

solution, existing due to translation invariance. However, in the monotone pulse

case, this function will be localized around the front and back interfaces, so that we

can connect the front and back interfaces to produce two different eigenfunctions; if

the front and back both return to the same rest state so that the pulse represents a

homoclinic solution, then we will have an even and an odd eigenfunction. The odd

solution will remain at λ = 0 as it corresponds to the x-derivative of the localized

solution, while the even solution will exist near λ = 0, but its position still needs

to be tracked. In contrast, the derivative of the front and back corresponding to a

localized periodic solution will still be periodic, rather than localized at the interfaces.

We then lose the freedom to construct two different eigenfunctions, as the phases

of the two eigenfunctions must match in the middle. Thus we can only realize one

eigenfunction, corresponding to the derivative of the localized solution, which we

know must lie at λ = 0.
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Alternatively, we can argue in terms of functions spaces: since the front and

back are both asymptotically periodic in one direction, the translation eigenfunction

with eigenvalue zero corresponding to the derivative of each with respect to x is not

properly an eigenfunction in a space of bounded functions. This of course is reflected

in the fact that 0 is contained in the essential spectrum of the front and back. Thus it

is only by matching these two putative eigenfunctions together that we realize a true

eigenfunction of the localized solution in a space of bounded functions. Again since

the functions are not exponentially small at the matching point, there is only one

way in which this function can be constructed, and in particular it must correspond

to the eigenfunction at λ = 0 given by the x-derivative of the localized solution. All

of these arguments will be made precise in Chapter 5, where we extend the Evans

function of the front analytically across λ = 0.

4.5 Special case: simple eigenvalue of the front

As mentioned at the outset, additional information about the eigenvalues and eigen-

functions associated to localized solutions may be obtained by following a slightly

different but closely related strategy to that employed in Section 4.3. In particular,

in the case of a simple eigenvalue of the front we have the following result:

Theorem 4.2. There exists an L∗ > 0 such that the following holds uniformly in

L > L∗. There exists a small δ > 0 such that (3.42) has a bounded, nonzero solution

for λ ∈ Uδ(λ∗) if and only if

−
〈
ψ∗(L), P u

γ (0;λ∗)vf∗(L)
〉
− (λ− λ∗)M +R(λ− λ∗) = 0 (5.1)
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where

M =

∫ ∞
−∞

〈
ψ∗(s), B(uf (s))vf∗(s)

〉
ds (5.2)

and R is analytic in λ− λ∗ and satisfies

|R(λ−λ∗)| ≤ C
(
e−αL∗

(
sup
s≥L∗
|B(uf )(s)vf∗(s)|+ |vf∗(L∗)|+e−ηL∗+ |λ−λ∗|

)
+e−ηL∗

)
(5.3)

Here vf∗(x) is the eigenfunction associated with the eigenvalue λ∗ of the front

uf (x) at λ∗, i.e., the unique bounded solution to

v̇ = [fu(uf (x)) + λB(uf (x))] v (5.4)

at λ∗, while ψ∗ is the unique bounded solution of the adjoint equation

ẇ = − [fu(uf (x)) + λB(uf (x))]∗w (5.5)

at λ∗, and we assume that the eigenvalue problem associated to the back has no

nontrivial bounded solution at λ∗. Of course, the same result would hold with the

conditions on the front and back switched. Since the proof is rather long and we

already have a general result in Theorem 4.1, we refer to Appendix C for the complete

set-up and proof of Theorem 4.2.

4.6 Numerical results

In this section we illustrate our results numerically, using the Swift–Hohenberg equa-

tion. In particular, we will examine the stripe and spot pattern of the cubic-quintic
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Figure 4.2: Selected branches in the bifurcation diagram for stripe and spot patterns, showing
the three branches of solutions whose spectra will be analyzed in the following: symmetric (blue),
asymmetric cross-connecting (orange) and asymmetric self-connecting (yellow). See also Figure 3.3.

Swift–Hohenberg equation. We note that spectral computations for these equations

have been published previously in [3].

Bifurcation diagrams were computed via numerical continuation in Matlab,

as described in Section 3.4 above. Operators were again computed using spectral

differentiation matrices in the periodic y-direction, and centered finite differences in

the x-direction, with ny = 8 Fourier modes and nx = 800 equidistant points, with

boundary conditions and domains as indicated below. The built-in Matlab routine

eigs with initial shift sigma = 0.5 was used to compute the 20 largest eigenvalues of

the operator linearized about each solution along a branch, with operator boundary

conditions as indicated.
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We first recall the bifurcation structure of these patterns, which was shown in

Figures 3.3 and 3.4, along with particular solution profiles. Figure 4.2 shows an R-

symmetric branch, along with one cross-connecting and one self-connecting asymmet-

ric branch. Note that the cross-connecting branch ends at a κR-symmetric branch

(not shown). All information necessary for constructing its bifurcation structure is

contained in the R-symmetric branch.

4.6.1 Symmetric localized solutions

We begin by confirming that the multiplicity of eigenvalues is as expected. In

Figure 4.3 we show the eigenvalues computed along one period of the symmet-

ric snaking branch, computed with Neumann boundary conditions on the domain

[−50, 50]× [0, π]. Along the x-axis we plot the cumulative change in the parameter

µ, while the y-axis shows the real part of λ, which is in fact just λ in this case; all

the eigenvalues are real as the operator L is self-adjoint.

In Figure 4.4 we again show the eigenvalues for the symmetric localized solution,

along with an overlay of the eigenvalues of a “front” solution computed on the

domain [0, 50] × [0, π], again with Neumann boundary conditions. Of course, as

soon as we begin computing on a bounded domain, we are effectively computing a

localized solution. Our aim here is thus to illustrate that the correspondences and

multiplicities are as expected, and we do not claim or attempt a test of exponential

closeness. We indeed observe a single eigenvalue for the front with Reλ > 0 giving

rise to two such eigenvalues for the symmetric localized solution, which correspond

to saddle node and pitchfork bifurcations. The eigenvalue of the symmetric localized

solution at λ = 0 is simple. In Figure 4.5, we focus on the eigenvalues with largest

real part.
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Figure 4.3: Left: Eigenvalues for symmetric localized solutions along one period of the R-
symmetric snaking branch, with Reλ plotted as a function of the cumulative change in µ. Note
there are two eigenvalues for the symmetric localized solution with λ > 0, corresponding to saddle
node and pitchfork bifurcations, while the eigenvalue at λ = 0 is simple. Right: the bifurcation
diagram for R-symmetric localized solutions, with corresponding points on the eigenvalue diagram
as indicated. Note that a point on the bifurcation diagram at right corresponds to a vertical slice
in the eigenvalue plot at left.
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Figure 4.4: Eigenvalues for symmetric localized solutions (solid), as shown in Figure 4.3, along
with eigenvalues for corresponding fronts (dots) overlaid along one period of a snaking branch.
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Figure 4.5: Detail of the top left quadrant of Figure 4.4, focusing on the leading eigenvalues for
the first unstable portion of the symmetric branch.
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4.6.2 Asymmetric localized solutions

Focusing now on the asymmetric localized solutions, we consider both a cross-

connecting and self-connecting branch, both of which were depicted in Figure 4.2.

We begin in Figure 4.6 with eigenvalues of the cross-connecting branch of asymmet-

ric localized solutions, with correspondences to the bifurcation diagram as indicated.

In Figure 4.7 we again show these eigenvalues, along with an overlay of the eigenval-

ues for the corresponding “front” and “back” solutions as described above. Here we

find that one unstable eigenvalue arises from the front, and the other from the back,

so that each is simple for the localized structure. In Figure 4.8 we show a detail

of Figure 4.7, focusing on the leading eigenvalues. We observe that the number of

eigenvalues with Reλ > 0, changes from one to two and back to one, so that the

localized solutions are unstable along the entire branch.

In Figure 4.9 we show eigenvalues for the self-connecting branch of asymmetric lo-

calized solutions, again with correspondence to the bifurcation diagram as indicated.

In Figure 4.10 we repeat these eigenvalues, along with an overlay of the eigenvalues

for the corresponding “front” and “back” solutions. We once again find that one

unstable eigenvalue arises from the front and one from the back, so that both are

simple. However, in contrast to the cross-connecting branch which has two unstable

eigenvalues in the middle section, the middle section of the self-connecting branch

has no unstable eigenvalues, as it arises from two stable front (back) solutions. In

Figure 4.11 we show a detail of Figure 4.7, focusing on the leading eigenvalues.
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Figure 4.6: Left: Eigenvalues for asymmetric localized solutions along a cross-connecting branch,
with Reλ plotted as a function of the cumulative change in µ. Note that each of the eigenvalues
with λ > 0 is simple, as is the eigenvalue at λ = 0. Right: the bifurcation diagram for the cross-
connecting asymmetric localized solutions repeated from Figure 4.2, with corresponding points
on the eigenvalue diagram as indicated. Note that a point on the bifurcation diagram at right
corresponds to a vertical slice in the eigenvalue plot at left.
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Figure 4.7: Eigenvalues for asymmetric localized solutions along a cross-connecting branch (solid),
with eigenvalues for corresponding fronts (dots) and backs (triangles) overlaid. Note that one
unstable eigenvalue arises from the front, and the other from the back, so that each is simple.
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Figure 4.8: Detail of Figure 4.7, focusing on the leading eigenvalues.
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Figure 4.9: Left: Eigenvalues for asymmetric localized solutions along a self-connecting branch,
with Reλ plotted as a function of the cumulative change in µ. Note that each unstable eigenvalue
is simple, as is the eigenvalue at λ = 0. Right: the bifurcation diagram for the cross-connecting
asymmetric localized solutions repeated from Figure 4.2, with corresponding points on the eigen-
value diagram as indicated. Note that a point on the bifurcation diagram at right corresponds to
a vertical slice in the eigenvalue plot at left.
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Figure 4.10: Eigenvalues for asymmetric localized solutions along self-connecting branch (solid),
with eigenvalues for corresponding fronts (dots) and backs (triangles) overlaid. Note that one
unstable eigenvalue arises from the front, and the other from the back, so that each is simple. Both
the front and the back are stable in the middle section, so that the asymmetric localized solution
is as well for these parameter values.
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Figure 4.11: Detail of Figure 4.10, focusing on the leading eigenvalues.



Chapter Five

Embedded Eigenvalues and the

Spectrum of Fronts
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� > 0 � = 0 � < 0

Figure 5.1: Spatial (Floquet) eigenvalues for the ODE corresponding to the PDE eigenvalue
problem for the periodic solution. The white dots indicate simple eigenvalues, while the black dot
corresponds to two eigenvalues at the origin. The three panels indicate the spatial eigenvalues as
λ moves through zero along the real axis; see also Figure 5.2 for depictions in the entire complex
plane. Note that these are the four eigenvalues with smallest real part; for higher dimensional
systems, we assume that the real part of the remaining eigenvalues is uniformly bounded away
from the four shown here.

5.1 Introduction

As noted in Chapter 4, our techniques require some modification when we reach

λ = 0, as at this point we lose the exponential dichotomies for the periodic solution,

and thus for the front. Indeed, we make a specific assumption about the way in

which we lose the exponential dichotomy of the periodic solutions γ(x), which in this

chapter will be referred to as up(x), since we reserve γ for use in the analytic extension

of the Evans function, where we set γ2 = λ according to standard notation. In

particular, we assume that the Floquet spectrum of the periodic orbit is as depicted

in Figure 5.1: as λ decreases through zero along the real axis, the two weakest spatial

eigenvalues collide at zero as λ reaches zero, and then move onto the imaginary axis

for λ < 0. The picture at λ = 0 is consistent with the set-up in Chapter 3.

The key point is in some sense the assumption that the spatial eigenvalues move

onto the imaginary axis as λ crosses through zero along the real axis, which we show

in Section 5.3.1 occurs generically for PDEs supporting a family of periodic solutions;
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Im �

Re �

Figure 5.2: Left: A (necessarily) unsuccessful attempt to label the spatial eigenvalues closest to
the origin consistently as functions of λ. Right: A successful rendering of the spatial eigenvalues
as functions of γ, where γ2 = λ. Note that γ forms a two-fold cover of λ.

if the spatial eigenvalues depended analytically on λ, they would generically move

through each other after colliding at the origin, and continue along the real (ν) axis.

However, here the leading eigenvalues go as ±
√
λ, so that an analytic description of

their associated eigenvectors necessitates the introduction of γ2 = λ. In Figure 5.2

we show the impossibility of labeling the spatial eigenvalues consistently as functions

of λ, as well as a successful labeling when we consider the eigenvalues as functions

of γ rather than λ. We note that a consistent labeling is possible when restricted to

the right half λ plane, which is the domain of the standard Evans function for the

front.

As mentioned, our introduction of the extended Evans function is partially mo-

tivated by our desire to analyze the case λ = 0 in the stability problem for localized

systems. Having set up the extended Evans function in Section 5.4, we prove in Sec-

tion 5.5 that the eigenvalue at λ = 0 is simple, first in the special case of a symmetric

localized solution, and then for general localized solutions.

Our analysis of the extended Evans function is further motivated by the appear-

ance of the numerically computed spectra in Figure 4.3, and seen previously in [8]
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and [3]. The results in [31, 32] suggest that, upon reaching the essential spectrum,

an eigenvalue should generically move onto the Riemann sheet with Re γ < 0. It

would therefore correspond to a resonance pole rather than genuine eigenvalue, and

should no longer be visible in spectral computations. However, as seen in Figure 4.3,

for example, the saddle node and pitchfork eigenvalues can indeed be tracked as

they move through the essential spectrum. We describe in Section 5.6 how this phe-

nomenon arises under the conditions hypothesized here, but a complete description

of the PDE or ODE systems which do (or do not) support such behavior is not yet

available.

Before we can begin our construction of the extended Evans function, Section 5.2

contains preparatory material necessary to treat the asymptotically periodic systems

we have in mind, i.e., eigenvalue problems for fronts that exponentially approach

periodic solutions. We note that our treatment of the extended Evans function most

closely follows [31, 32], though the use of the Evans function within the essential

spectrum dates back to [50]. We finally note that the following results are for finite

dimensional ODE systems, corresponding to PDE problems posed on the real line.

We believe that our arguments may be generalizable to ODEs posed on infinite

dimensional Hilbert spaces, but the extension to general Banach spaces is not clear.

5.2 Preliminaries

Suppose we have a system of the form

ux = A(x, λ)u, (2.1)
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where x ∈ R, λ ∈ C, u ∈ Cn and A(·, λ) : C 7→ C0(R,Cn×n) is analytic in λ. Further

suppose

lim
x→−∞

A(x, λ) = A−(λ) (2.2)

lim
x→+∞

A(x, λ) = Aper(x, λ), (2.3)

so that A− is a constant coefficient matrix with respect to x and Aper(x, λ) = Aper(x+

p, λ) for each x, with fixed p > 0. In fact, we will suppose that the approach is

exponential, i.e.,

|A(x, λ)− A−(λ)| ≤ Ceηx, x ≤ 0 (2.4)

|A(x, λ)− Aper(x, λ)| ≤ Ce−ηx, x ≥ 0 (2.5)

for C, η > 0, uniformly in λ ∈ Ω ⊂ C, Ω compact. This is, of course, motivated by

the eigenvalue problem for fronts, but we first address it as a general problem.

We wish to show that we can write solutions to (2.1) as u = P±v where P± =

P±(x, λ) are defined on x ≥ 0 and x ≤ 0 respectively, P±(·, λ) : C 7→ C0[0,±∞) are

analytic, and v satisfies

vx = A−(λ)v, x ≤ 0 (2.6)

vx = Aper(x, λ)v, x ≥ 0. (2.7)

For x ≤ 0 this is a standard application of the conjugation lemma, a corollary

of the gap lemma [21, 30]. For x ≥ 0 we need to modify the proof of the constant

coefficient version for the periodic case. Before we proceed, we first need the estab-

lish analyticity of the Floquet representations of periodic linear systems depending
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analytically on λ.

5.2.1 Analyticity of Floquet representation

Since we will be working with periodic systems, we naturally expect to employ

Floquet theory. Of course it is well-known that for each value of λ, the system

ux = Aper(λ, x)u

will have a general solution

u(x) = S(x, λ)eR(λ)xu0.

However, in order to obtain the analyticity necessary for our later results, we will

require analyticity of the matrix R(λ). It is not immediately clear from standard

proofs of the existence of a Floquet representation (e.g., [10, 23]) that this is possible.

Therefore, we first show in Lemma 5.2.1 that such a construction is possible. We use

this result in proving periodic versions of the gap lemma and conjugation lemma.

Lemma 5.2.1. (Analyticity of Floquet Representation) Suppose A(x, λ) =

A(x+ p, λ) for each x ∈ R, with fixed p > 0, and that for fixed λ0 ∈ C, A(·, λ) : C 7→

C0(R,Cn×n) is analytic in λ near λ0. If Ψ(x, λ) is a fundamental matrix solution of

ux = A(x, λ)u,

then Ψ(x, λ) has a representation

Ψ(x, λ) = S(x, λ)eR(λ)x, (2.8)



111

with S(x+ p, λ) = S(x, λ) for all x, and S(·, λ) and R(λ) analytic in λ near λ0.

Proof. We begin as usual, noting that if Ψ(x, λ) is a fundamental matrix solution

then so is Ψ(x+ p, λ), so that there exists a nonsingular matrix C(λ), analytic in λ

and constant in x, such that

Ψ(x+ p, λ) = Ψ(x, λ)C(λ).

Now we wish to show that we can construct a matrix R(λ), analytic in λ, such that

eR(λ)p = C(λ). (2.9)

We start by writing C = C(λ0), so that

C(λ) = C +
∞∑
k=1

(λ− λ0)

k!

∂k

∂λk
C|λ0 =: C + (λ− λ0)D(λ), (2.10)

where |D(λ)| ≤M uniformly in some neighborhood of λ0.

We first establish the result for C = J a single Jordan block with the particular

form

J =



λ̃ ε 0

λ̃ ε

. . . . . .

. . . ε

0 λ̃


, (2.11)

with J ∈ Cm×m and where we may choose ε as small as we like. Given C in the form
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(2.11) and using (2.10), we have

C(λ) = λ̃

(
I +

1

λ̃
(N + (λ− λ0)D(λ))

)
,

where N has ε above the diagonal and 0 everywhere else. Defining

Ñ(λ) := N + (λ− λ0)D(λ),

we choose ε so that |N | < 1/2|λ̃| and then fix |λ − λ0| sufficiently small so that

|(λ − λ0)D(λ)| < 1/2|λ̃|, which is possible since |D(λ)| ≤ M uniformly in some

neighborhood of λ0. Thus

|Ñ(λ)| ≤ |N |+ |(λ− λ0)D(λ)| < 1

|λ̃|
.

We now write

lnC(λ) = (ln λ̃)I +
∞∑
j=1

(−1)j+1

j

(
Ñ(λ)

λ̃

)j

,

which holds since |N(λ)/λ̃| < 1. Thus our desired matrix R(λ) in the special case

C = J is given by

R(λ) =
1

p

(ln λ̃)I +
∞∑
j=1

(−1)j+1

j

(
Ñ(λ)

λ̃

)j


and we can see from the above that this is indeed analytic.

Now suppose that C is of general form, and let P (ε) be such that

P−1(ε)CP (ε) =


J1 0

. . .

0 Jr

 ,
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where each Jk has the form (2.11) for an appropriate λ̃k. We now have

P−1(ε)C(λ)P (ε) = P−1(ε)CP (ε) + (λ− λ0)P−1(ε)D(λ)P (ε)

=


J1 0

. . .

0 Jr

+


D̂1 0

. . .

0 D̂r

+ D̂, (2.12)

where we have split the matrix (λ− λ0)P−1(ε)D(λ)P (ε) into blocks D̂1, . . . , D̂r cor-

responding to the size of the blocks J1, . . . , Jr, while D̂ consists of all remaining

entries after subtracting these blocks. Dependence on ε, λ, λ0 has been suppressed

for notational convenience.

We have shown above that for each block problem Jk+D̂k we have R̂k(λ) analytic

so that eR̂k(λ)p = Jk + D̂k (where ε is first chosen so that |Nk| < 1/2 mink |λ̃k|, so

that P := P (ε) is fixed, and λ is then constrained by appropriately defined M̂k and

λ̃k). By basic properties of the exponential, if we define R̂(λ) composed of the blocks

R̂k(λ), then eR̂(λ)p = diag[eR̂1(λ)p, . . . , eR̂r(λ)p] so that eR̂(λ)p is equal to the first two

terms on the right hand side of (2.12).

It now remains to show that given R̂(λ) analytic such that eR̂(λ) = Ĉ(λ), there

exists R∗(λ) analytic such that eR
∗(λ)p = Ĉ(λ) + D̂(λ). We write

Ĉ(λ) + D̂(λ) = Ĉ(λ)(I + Ĉ−1(λ)D̂(λ)),

and claim

ln(Ĉ(λ) + D̂(λ)) = R̂(λ) +
∞∑
j=1

(−1)j+1

j

(
Ĉ−1(λ)D̂(λ)

)j
. (2.13)

Since Ĉ(λ) is nonsingular, Ĉ−1(λ) is well-defined and |Ĉ−1(λ)| < M̂ uniformly for
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λ in some neighborhood of λ0. So then choosing |λ − λ0| sufficiently small so that

|Ĉ−1(λ)D̂(λ)| < 1, and still respecting the constraints required for the definition of

R̂(λ), (2.13) holds and we have R∗(λ) analytic as desired. In summary, setting

R(λ) =
1

p
P

(
R̂(λ) +

∞∑
j=1

(−1)j+1

j

(
Ĉ−1(λ)D̂(λ)

)j)
P−1, (2.14)

R(λ) is well-defined, analytic and satisfies (2.9).

We now conclude in the standard fashion. We define S(x, λ) = Ψ(x, λ)e−R(λ)x,

so that S(x+ p, λ) = Ψ(x + p, λ)e−R(λ)(x+p) = Ψ(x, λ)eR(λ)pe−R(λ)pe−R(λ)p = S(x, λ),

and S is clearly analytic in λ.

5.2.2 Gap and conjugation lemmas with periodic coefficients

Having shown that an analytic Floquet construction is possible, we now proceed

with periodic analogues of the gap and conjugation lemmas.

Lemma 5.2.2. (Gap Lemma with Periodic Coefficients, cf [21, 30]) Suppose

that we are in the setting described above, and in particular that (2.5) holds for the

system (2.1). Further suppose that associated to the system

vx = Aper(λ, x)v (2.15)

is a Floquet representation of the evolution

Φ(x, λ) = S(x, λ)eR(λ)x. (2.16)

If v∗(λ) is an eigenvector of R(λ) with eigenvalue ν(λ), then there exists a solution
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of (2.1) of the form

u(x, λ) = eν(λ)xS(x, λ)v(x, λ) (2.17)

where v is C1 in x and locally analytic in λ, and for any fixed η̃ < η satisfies

v(x, λ) = v∗(λ) + O(e−η̃x|S−1(λ)||S(λ)||v∗(λ)|), x ≥ 0. (2.18)

Proof. Suppressing the λ dependence and letting u(x) = eνxS(x)v(x), we find that

(2.1) is equivalent to

vx = (R− νI)v + Θ(x)v, (2.19)

where

Θ(x) = Θ(x, λ) := S−1(x, λ)(A(x, λ)−Aper(x, λ))S(x) = O(e−ηx|S−1(λ)||S(λ)|), x ≥ 0.

(2.20)

To see this, we argue as follows: substitution immediately yields

[νeνxS(x) + eνxSx(x)] v + eνxS(x)vx = AeνxS(x)v

which we rewrite as

S(x)vx = A(x)S(x)v − νS(x)v − Sx(x)v.

It is always true for a Floquet representation that Aper(x)S(x) = Sx(x) + S(x)R, as

can be checked by differentiation. Consequently, subtracting and adding S(x)Rv to
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the above, we have

S(x)vx = A(x)S(x)v − νS(x)v − AperS(x)v + S(x)Rv

or

S(x)vx = S(x)(R− νI)v + (A(x)− Aper(x))S(x)v

so that

vx = (R− νI)v +
[
S−1(x)(A(x)− Aper(x))S(x)

]
v

as was claimed.

We now choose η1 with η̃ < η1 < η such that there is a gap between the spectrum

of R and ν−η1, i.e., |Re (spec R− (ν − η1)) | > 0. Then fixing a point λ = λ∗, we can

define for all λ in a neighborhood of λ∗ the spaces Es(λ) and Eu(λ) corresponding

to generalized eigenspaces of the eigenvalues of R with real part less than ν− η1 and

greater than ν − η1, respectively. Associated to these spaces we have projections

P u(λ) and P s(λ) analytic in λ such that

∣∣e(R−νI)xP u
∣∣ ≤ Ce−η1x, x ≤ 0,

∣∣e(R−νI)xP s
∣∣ ≤ Ce−η1x, x ≥ 0. (2.21)

We wish to find a solution v(x, λ) to (2.19) satisfying (2.18). As can be un-

derstood by consideration of the above projections with the evolution operator, we

define the map T by

T v(x) = v∗+

∫ x

M

e(R−νI)(x−y)P sΘ(y)v(y)dy−
∫ ∞
x

e(R−νI)(x−y)P uΘ(y)v(y)dy. (2.22)
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From this we see that, for any v1(x) and v2(x), we have the bound

|T v1 − T v2|(x) ≤
(∫ x

M

e−η(x−y)e−ηydy +

∫ ∞
x

e−η(x−y)e−ηydy

)
C|S−1||S||v1 − v2|∞

= C
e−η1(x−M)e−ηM

η − η1

|S−1||S||v1 − v2|∞. (2.23)

So for λ in a compact neighborhood and M sufficiently large, the terms preceding

|v1 − v2|∞ in (2.23) will be strictly less than 1, so that T is a contraction mapping

on L∞[M,∞). Thus we have a unique solution v̄ ∈ L∞[M,∞) to v = T v. Since this

solution may be obtained iteratively starting with v0 = 0, it is analytic in λ as the

uniform limit of analytic iterates. By differentiating, we can see that v̄ a bounded

solution of (2.19), so that with v(x, λ) = v̄(x, λ), (2.17) is a solution of (2.1) on

[M,∞). Furthermore, letting v1 = v̄ and v2 = 0 in the above, we have

|v̄ − v∗| = |T v̄ − T 0| ≤ Ce−η̃x|S−1||S||v̄| ≤ Ce−η̃x|S−1||S||v∗| (2.24)

so that (2.18) holds. This bound, as well as analyticity, extends to x ≥ 0 by consid-

ering the initial value problem at x = M .

Corollary 5.2.3. (Conjugation Lemma with Periodic Coefficients, cf [46])

Suppose that (2.5) holds for the system (2.1), and fix 0 < η̃ < η, λ0 ∈ Ω. Then there

exists locally to λ0 an invertible transformation P (x, λ), x ≥ 0, which is analytic in

λ, such that

|P (x, λ)− I| ≤ Ce−η̃x, (2.25)

and under the transformation u = P (x, λ)v, (2.1) becomes

vx = Aper(x, λ)v, x ≥ 0. (2.26)
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Proof. Let u = P (x, λ)v and suppose (2.26) holds. Substituting into (2.1) we have

Px(x, λ)v + P (x, λ)Aper(x, λ)v = AP (x, λ)v,

so we wish to find P such that

Px = AP − PAper =: AP. (2.27)

We note A is such that limx→∞A = Aper, where AperP := AperP − PAper, and the

convergence is with exponential rate η as before. Moreover we see that Aper has

eigenvalue, eigenvector pair 0, I for every λ. If we write a Floquet representation

associated to Aper as

Φ(x, λ) = Ŝ(x, λ)eR̂(λ)x, (2.28)

then AperI = 0 implies Ŝ(x, λ)eR̂(λ)xI = I. This holds if 0, I is an eigenvalue,

eigenvector pair for R̂(λ) (and Ŝ(x) has eigenvalue, eigenvector pair 1, I). More

generally, R̂ may have eigenvalue α ∈ C with eigenvector I, while Ŝ(x) is of the form

e−αx; since Ŝ(x) is periodic, α must be pure imaginary. From Lemma 5.2.2 we then

have for k ∈ R the solution P = eikxe−ikx(I + O(e−η̃x|eikx||e−ikx||I|)) = I + O(e−η̃x),

which is as desired.

Remark 5.2.4. Note that we can in fact conjugate the system (2.1) for x ≥ 0 to

the constant coefficient system

wx = R(λ)w (2.29)

via the relation u = P (x, λ)S(x, λ)w, where R(λ) and S(x, λ) are associated to

Aper(x, λ) and P again satisfies (2.25). That these two formulations are equivalent
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can be seen by letting v = S(x, λ)w so that

vx = Sx(x, λ)w + S(x, λ)wx

= Sx(x, λ)w + S(x, λ)R(λ)w

= (Sx(x, λ) + S(x, λ)R(λ))S−1(x, λ)v

= Aper(x, λ)S(x, λ)S−1(x, λ)v

= Aper(x, λ)v.

5.3 Hypotheses and motivations

Having established the necessary technical tools, we now turn to our specific problem.

We will once again consider

ux = f(u, µ) (3.1)

with u ∈ R2n and µ ∈ R, and the eigenvalue problems

vx = [fu(u∗(x), µ) + λB]v (3.2)

with v ∈ C2n, λ ∈ C and B ∈ R2n×2n, and u∗(x) a particular solution of (3.1). Note

that, for simplicity, we take B to be a fixed matrix in this chapter.

In order to address the behavior of the saddle node eigenvalues along snaking

branches, we will assume that all hypotheses from Chapter 3, in particular Sec-

tion 3.3, hold here for the system (3.1). We recall that under these hypotheses we

have a reversible, conservative system such that the origin is hyperbolic and there

exists a family of symmetric periodic orbits depending smoothly on µ. Again we

remark that the periodic solutions will be denoted by up(x, µ) or simply up(x) in this
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chapter, as we will employ the standard notation γ2 = λ. We also have conditions

on the intersection of the stable manifold from the origin W s(0, µ) and the strong

unstable fibers of the periodic orbit W uu(γ(ϕ, µ), µ) as detailed in Hypothesis 3.3.2.

As in Chapter 4, we initially fix µ and address a particular family of localized

solutions u`,L associated to a front uf (x) with phase ϕ∗1 and back ub(x) with phase ϕ∗2,

and z(ϕ∗1), z(ϕ∗2) 6= 0, and m ∈ {0, 1} fixed as in Theorem 3.2. We will reintroduce µ

in analyzing the behavior of the saddle node eigenvalue near the essential spectrum

of the periodic orbits.

In the following we will give results on symmetric and asymmetric localized solu-

tions, and we will use reversibility to relate assumptions on the form of exponentially

decaying solutions of the eigenvalue problem for the back, expressed in the trans-

formed coordinate system, to analogous assumptions for the front (though we note

that reversibility is otherwise not essential for the general result). We note that the

parameterizations for Chapters 3 and 4 match for symmetric localized solutions with

m = 0, but there is a shift of π for m = 1.

In the present setting the most convenient parameterization will be that of Chap-

ter 4 shifted by mπ; more precisely if ũ`,L(x), ũf (x) and ũb(x) are the solutions from

Chapter 4, in the present chapter we set u`,L(x) = ũ`,L(x+mπ), uf (x) = ũf (x+mπ)

and uf (x) = ũb(x + mπ). This is equivalent to using ϕ̃ = (ϕ∗2 − ϕ∗1)/2 in place of

ϕ̄ = (ϕ2 − ϕ1)/2 in the transformation described in Lemma 4.3.4.

With the above definitions, the parameterization for symmetric localized solu-

tions exactly matches that of Chapter 3 whether m = 0 or m = 1. However, asym-

metric solutions are shifted by the phase differential from either 0 or π depending

on whether m = 0 or m = 1. Matching will therefore be done either in the 0 or π
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phase of the periodic solution depending upon whether m = 0 or m = 1. Note that

we could have used the same parameterization in Chapter 4, in which case we would

have set Va = RgP u
γ (mπ;λ∗) ⊕ RgP s

γ (mπ;λ∗) in the proof of Theorem 4.1. In the

present case we will use the conjugation lemma to move into a constant coefficient

framework, but we will still have a matching condition which carries x-dependence

via the periodic Floquet matrix.

We finally suppose that Hypothesis 4.3.7 continues to hold: the essential spec-

trum of the trivial solution is bounded away from the imaginary axis in the left half

plane.

We are interested in writing down the Evans function for the eigenvalue problem

associated to the front

vx = [fu(uf (x)) + λB]v =: Af (x, λ)v (3.3)

using information about the periodic orbits

vx = [fu(up(x)) + λB]v =: Ap(x, λ)v. (3.4)

We have

|uf (x+ ϕ∗1)− up(x)| ≤ Ce−ηx, x ≥ 0 (3.5)

so that

|Af (x+ ϕ∗1, λ)− Ap(x, λ)| ≤ Ce−ηx, x ≥ 0 (3.6)

uniformly in λ near 0.

In the case ϕ1 6= ϕ2 we will also be interested in the eigenvalue problem for the
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back, given by

vx = [fu(ub(x)) + λB]v =: Ab(x, λ)v (3.7)

where we know

|ub(x− ϕ∗2)− up(x)| ≤ Ceηx, x ≤ 0

so that

|Ab(x− ϕ∗2, λ)− Ap(x, λ)| ≤ Ceηx, x ≤ 0

uniformly in λ near 0.

In Chapter 4 we did not use the periodicity of the solutions up(x), which is

reasonable given that the result of adding eigenvalues with multiplicity is known

for monotone pulse solutions. The periodicity of up(x) will, however, play a crucial

role in the following. Our next Hypothesis is consistent with Hypothesis 4.3.6 in

Chapter 4, but explicitly specifies the way in which the exponential dichotomies are

lost at λ = 0.

Hypothesis 5.3.1. There exists δ > 0 such that, for λ ∈ Uδ(0), the eigenvalue

problem

vx = [fu(up(x)) + λB]v. (3.8)

has associated Floquet matrices S(x, λ) and R(λ), chosen analytically for some neigh-

borhood of λ = 0, which we take without loss of generality to include Uδ(0), and there

exists a V (λ), analytic and invertible for λ ∈ Uδ(0), such that V −1(λ)R(λ)V (λ) =



123

J(λ), where

J(λ) =



0 1 0 · · · 0

λ 0 0 · · · 0

0 0

...
... D(λ)

0 0


(3.9)

and D(λ) is a diagonal matrix such that at λ = 0 all entries are real and bounded

away from zero by α > 0. We denote by ±α(λ) the entries of D(λ) with smallest

real part at λ = 0 and we assume that these are further bounded away in real part

from the remaining entries by some η > 0.

In other words, we assume the dispersion relation d(ν, λ) = det(R(λ) − νI) for

ν ∈ iR has a double root at (ν, λ) = (0, 0) with dν(0, 0) = 0. We do not actually need

the matrix D to be diagonal, only that the leading stable and unstable eigenvalues

at λ = 0 are simple and bounded away from zero and the rest of the spectrum, as

we supposed in Hypothesis 3.3.1.

Further hypotheses dictating the order of the roots of the Evans function of the

front will be given in Sections 5.5 and 5.6, once we have written down the Evans

function in Section 5.4.

To motivate our set-up, in the following subsection we show that Hypothesis 5.3.1

is generically satisfied for a reversible PDE system supporting a family of symmetric

stationary periodic solutions.
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5.3.1 A PDE system

Loosely stated, we will show that Hypothesis 5.3.1 holds generically for the ODE

eigenvalue problem arising from a reversible and/or conservative PDE supporting a

stationary periodic solution, where we assume that the operator Lper associated to

the linearization about the periodic solution has a simple eigenvalue at λ = 0.

We consider a PDE of the form

Ut = A(∂x)U +N (U), x ∈ R, U ∈ X , µ ∈ R (3.10)

where A(·) is a vector-valued polynomial, X is a Banach space of functions U(x) so

that A(∂x) : X → X is closed and densely defined, and N : X × R → X is some

nonlinearity defined via pointwise evaluation of U and possibly derivatives of U . We

further consider the corresponding ODE

ux = f(u) (3.11)

with u = (U,Ux, . . . )
T ∈ Rn.

We suppose that (3.10) has a stationary solution Qper(x + p) = Qper(x) for all

x, and we define qper(x) := (Qper(x), ∂xQper(x), . . . )T ∈ Rn. We further define the

linearized operator

Lper := A(∂x)U + ∂UN (Qper(x))U. (3.12)

with the associated ODE eigenvalue problem

ux = [fu(qper(x)) + λB]u (3.13)
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We now assume that our system is reversible:

Hypothesis 5.3.2. (3.10) is symmetric under x 7→ −x, so that if U(x) is a solution,

so is U(−x).

This generically implies our next hypothesis, that the system (3.10) admits not

only the stationary solution Qper(x), but a family of periodic stationary solutions

Qper(x; ε); see [62] or [16]. We state this as a separate hypothesis for clarity, and

note that conservative ODE systems, corresponding to variational PDE systems also

generically support families of periodic solutions; again see [62].

Hypothesis 5.3.3. There exists a family of symmetric spatially periodic solutions

Qper(x; ε) to (3.10) for ε not necessarily small, with Qper(x) =: Qper(x; ε0), and

Qper(x+ T (ε); ε) = Qper(x; ε), T (ε) > 0 for all x and ε in a neighborhood of ε0.

We define qper(x; ε0) := (Qper(x; ε0), ∂xQper(x; ε0), . . . )T ∈ Rn. Our final hypoth-

esis concerns the operator Lper defined in (3.2), which we emphasize is associated to

the periodic orbit Qper(x; ε0).

Hypothesis 5.3.4. λ = 0 is simple as an eigenvalue of Lper.

We note that this implies N(Lper) = span{∂xQper(x; ε0)} since substitutingQper(x) =

Qper(x; ε0) for U(x, t) in (3.10) and differentiating with respect to x yields

0 = A(∂x)∂xQper(x) +N (Qper(x))∂xQper(x) = Lper∂xQper(x). (3.14)

Similarly, (3.13) with λ = 0 has solution ∂xqper(x; ε0).

Lemma 5.3.5. Suppose that Hypotheses 5.3.2–5.3.4 hold. Then Hypothesis 5.3.1

holds for the linearization of (3.11) about qper(x; ε0), with the entry λ appearing in
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the second row, first column of J replaced by aλ for a 6= 0, and the form of D holding

generically for a reversible system.

Proof. We first show that Hypothesis 5.3.4 implies that the period T (ε) of the

solutions qper(x; ε) satisfies d
dε
T (ε0) 6= 0. We introduce y = x/T (ε) so that

uy = T (ε)f(u).

Differentiating this with respect to ε yields

∂εuy =
d

dε
T (ε)f(u) + T (ε)fu(u)∂εu

=
d
dε
T (ε)

T (ε)
uy + T (ε)fu(u)∂εu (3.15)

Letting u∗ = qper(x; ε0) and writing v = ∂εu∗, we then have

v′ =
d
dε
T (ε0)

T (ε0)
u′∗ + T (ε0)fu(u∗)v, (3.16)

where ′ = d
dy

. Then d
dε
T (ε0) 6= 0 or we would have a second solution v = ∂εqper of

(3.13) with λ = 0, contradicting λ = 0 simple as an eigenvalue of Lper.

We now show that the Floquet exponent matrix R(0) associated to (3.13) with

λ = 0 has a two dimensional Jordan block with Floquet exponent ν = 0.

Writing Φ(x, y) for the 1-periodic flow associated to v′ = T (ε0)fu(u∗)v, we use
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variation of constants to find a 1-periodic solution v(x) to (3.16):

v(x) = Φ(x, 0)v(0) +

∫ x

0

Φ(x, y)
d
dε
T (ε0)

T (ε0)
u′∗(y)dy

= Φ(x, 0)v(0) +
d
dε
T (ε0)

T (ε0)

∫ x

0

u′∗(x)dy

= Φ(x, 0)v(0) +
d
dε
T (ε0)

T (ε0)
u′∗(x)x.

Then

v(0) = v(1) = Φ(1, 0)v(0) +
d
dε
T (ε0)

T (ε0)
u′∗(0)

so

Φ(1, 0)v(0) = v(0)−
d
dε
T (ε0)

T (ε0)
u′∗(0).

Thus eR(0) has a block of the form

 1 c

0 1

 , c 6= 0, so that R(0) has a block of

the form

 0 1

0 0

 under an appropriate coordinate transformation.

We can then assume generically that all remaining Floquet exponents are nonzero

and distinct, so that there exists an invertible matrix V = V (0) such that

V −1R(0)V =



0 1 0 · · · 0

0 0 0 · · · 0

0 0

...
... D

0 0


for D diagonal.
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We now show that for λ 6= 0, the entry in the second row, first column of the

Jordan block will be of the form aλ+ O(λ2), for a 6= 0.

Considering the upper left block of the matrix V −1R(0)V =: R̃(0), we denote

(with a small abuse of notation) N(R̃(0)) = Rg(R̃(0)) by u∗ and N(R̃(0)T ) =

Rg(R̃(0)T ) by ψ∗, so that 〈ψ∗, u∗〉 = 0 and 〈ψ∗, uε〉 6= 0.

Now considering the eigenvalue problem for λ 6= 0, we write

v = [A(y) + λB]v (3.17)

and look for a solution of the form v(y) = u∗(y) + λw(y), where we wish to show

〈ψ∗(1), v(1)〉 = aλ with a 6= 0.

Since u∗(y) satisfies vy = A(y)v, we have

w = [A(y) + λB]w(y) +Bu∗ (3.18)

Moreover, at λ = 0 we have

w = A(y)w(y) +Bu∗ (3.19)

so that using the variation of constants formula, we have

w(y) = Φ(y, 0)w(0) +

∫ y

0

Φ(y, x)Bu∗(x)dx (3.20)
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Thus

〈ψ∗(1), w(1)〉 = 〈ψ∗(1),Φ(1, 0)w(0) +

∫ 1

0

Φ(1, x)Bu∗(x)dx〉

= 〈ψ∗(1),Φ(1, 0)w(0)〉+

∫ 1

0

〈ψ∗(x), Bu∗(x)〉dx. (3.21)

Now writing w(0) generically as w(0) = αu∗(0) + βuε(0), we have

Φ(1, 0)w(0) = αu∗(0) + β(uε(0) + u∗(0)) (3.22)

so that

〈ψ∗(1),Φ(1, 0)w(0)〉 = 〈ψ∗(1), βuε(0)〉. (3.23)

Thus with v(1) = u∗(1) + λw(1), we have

〈ψ∗(1), v(1)〉 = λ〈ψ∗(1), w(1)〉

= λ

(
β〈ψ∗(1), uε(0)〉+

∫ 1

0

〈ψ∗(x), Bu∗(x)〉dx
)

(3.24)

Now the first part of the expression multiplying λ is zero only if β = 0, while the

second part is nonzero as λ = 0 is a simple eigenvalue by Hypothesis 5.3.4. Thus we

indeed have 〈ψ∗(1), v(1)〉 = aλ with λ 6= 0, as desired.

5.4 The extended Evans function

We will focus in the following on the system in R4. In fact, for the purpose of

analyzing possible eigenvalues of the localized solution at λ = 0, the 2x2 center

space would be sufficient. However, we will need the four dimensional space to

understand the behavior of the saddle node, and so we work in four dimensions from
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the outset. Of course, eigenvalues associated with faster modes may play a role in

additional bifurcations, but we will not concern ourselves with these here. Explicitly,

we then have

J(λ) =



0 1 0 0

λ 0 0 0

0 0 −α(λ) 0

0 0 0 α(λ)


. (4.1)

We now invoke the periodic conjugation lemma with η̃ satisfying η > η̃ > 0 fixed, so

that solutions to (3.3) are given by

v(x) = P (x, λ)S(x, λ)V (λ)w(x) (4.2)

where w(x) solves

wx = J(λ)w (4.3)

and P (x, λ) = I + O(e−η̃x).

We observe that the eigenvectors of J(λ) are



1

−
√
λ

0

0


,



1
√
λ

0

0


,



0

0

1

0


,



0

0

0

1


(4.4)

with eigenvalues −
√
λ,
√
λ,−α(λ), α(λ). We therefore introduce γ2 = λ so that we

arrive at a coordinate system which is analytic in γ.

We define D̂(γ) to be the diagonal matrix with entries −γ, γ,−α(γ2), α(γ2), and
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define V1(γ) and V −1
1 (γ) such that V1(γ)D̂(γ)V −1

1 (γ) = J(λ):

V1(λ) =



1 1 0 0

−γ γ 0 0

0 0 1 0

0 0 0 1


, V −1

1 (γ) =



1
2
− 1

2γ
0 0

1
2

1
2γ

0 0

0 0 1 0

0 0 0 1


.

We note that we have a singularity (a pole of order 1) at γ = 0, but we emphasize

that this will not present a problem as our goal is not to write V1(γ) analytic in γ

but rather to ensure that the Evans function is analytic in γ, i.e., that we are able

to choose analytic basis functions.

For future reference, we also record that the evolution of (4.3) is given by

eJ(λ)x =



1
2
(e−γx + eγx) 1

2γ
(−e−γx + eγx) 0 0

γ
2
(−e−γx + eγx) 1

2
(e−γx + eγx) 0 0

0 0 e−α(γ2)x 0

0 0 0 eα(γ2)x


(4.5)

=



cosh(γx) 1
γ

sinh(γx) 0 0

γ sinh(γx) cosh(γx) 0 0

0 0 e−α(γ2)x 0

0 0 0 eα(γ2)x


(4.6)

We note that cosh(γx) = 1 + O(γ2x2), while sinh(γx) = xγ + O(γ3x3). Moreover,

since cosh(x) is even and sinh(x) is odd, their power series contain only even and

odd terms respectively, so that γ sinh(γx) and 1
γ

sinh(γx) both have only even terms.

Thus eJ(λ)x is in fact analytic in γ2 = λ, as of course it must be.



132

Now referring to the columns of V1 by v1, . . . , v4, the stable subspace for the

periodic orbits in the transformed system is then spanned by the first and third of

these vectors, and the unstable subspace by the second and fourth, i.e.,

Es
p(γ) = span {v1, v3} , Eu

p (γ) = span {v2, v4} . (4.7)

We then fix x = x0 > 0 so that in our transformed coordinate system we have

the extended Evans function

Df (γ) = det(Eu
f,−(x0, γ), Es

p(γ)). (4.8)

We note that for Re γ > 0, with γ such that the transformations P (x0, λ), S(x0, λ)

and V (λ) are analytic and invertible, the roots of (4.8) and the standard Evans

function in λ are in one-to-one correspondence.

We now write (4.8) generically as

Df (γ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 g1 1 0

f2 g2 −γ 0

f3 g3 0 1

f4 g4 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= γ(f4g1 − f1g4) + f4g2 − f2g4 (4.9)

where all fi, gi are functions of γ, which are analytic in λ = γ2, and f and g are

linearly independent.
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5.5 The eigenvalue at λ = 0

We remark at the outset that, although the Evans function of the front loses ana-

lyticity in λ at λ = 0, the Evans function of the localized solution must in fact be

analytic for all λ with Reλ > −d as in Hypothesis 4.3.7, i.e., for all λ to the right of

Σ0
ess. This may be seen in any number of equivalent ways, but essentially follows from

the fact that the localized solution is asymptotically a constant coefficient problem,

so that its essential spectrum is given by Σ0
ess, and the Evans function is analytic

in any connected component of the complex plane that does not include essential

spectrum, i.e., Ω ⊂ C \ Σess; see Appendix B.

We show in the following that, given simple roots of the front and back at γ = 0,

the only eigenvalue for the localized solution in the closed right half plane will be

at λ = 0. We provide proofs here for the symmetric localized solutions, and also

for general localized solutions. Note that the symmetric localized solutions are also

covered by the latter proof. We remark that, in some sense, we can think of these

results as saying that a simple root in γ for both the front and back corresponds to

a γ2 root for the localized solution, and therefore a simple root in λ.

We first impose assumptions to ensure a simple root of the front. Thinking of

the vector f in (4.9) as corresponding to the translation eigenvector motivates the

following assumptions on the form of Eu
f,−(γ) in our transformed coordinate system:

Hypothesis 5.5.1. The components f2 and f4 of Eu
f,−(x0, γ) vanish at 0: f2(0) =

f4(0) = 0, while f1(0) 6= 0 and g4(0) 6= 0.

We remark that f1(0) 6= 0 corresponds to the fact that the translation eigenvalue

at 0 is given by the derivative of the front, so that it has a nonzero component in
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this direction. Given this and the linear independence of f and g, we replace f by

g̃ = g− g1
f1
f so that g̃1 = 0. Since f4(0) = 0, we continue to have g̃4(0) 6= 0. We drop

the tildes going forward.

Now given Hypothesis 5.5.1, we see that for γ ∈ Uδ(0),

Df (γ) = −γf1(0)g4(0) + γ2

(
d

dγ2
f4(0)

d

dγ2
g2(0)− d

dγ2
f2(0)

d

dγ2
g4(0)

)
+ O(γ3).

Thus we have a simple root of Df (γ) at γ = 0.

In the case that uf (x) 6= Rub(−x), we have the analogous hypothesis for ub(x):

Hypothesis 5.5.2. The components f+
2 and f+

3 of Eu
b,+(−x0, γ) vanish at 0: f+

2 (0) =

f+
3 (0) = 0, while f+

1 (0) 6= 0 and g+
3 (0) 6= 0.

We note that Hypothesis 5.5.2 asserts the same structure as Hypothesis 5.5.1,

upon employing the action of the reverser R. We then have

Db(γ) = det(Eu
p (γ), Es

b,+(−x0, γ)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 f+
1 0

γ 0 f+
2 g+

2

0 0 f+
3 g+

3

0 1 f+
4 g+

4

∣∣∣∣∣∣∣∣∣∣∣∣∣
= γf+

1 g
+
3 + γ2(f̂+

3 g
+
2 − f̂+

2 g
+
3 ) + O(γ3)

so that we have a simple root of Db(γ) at γ = 0.
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5.5.1 Special case: symmetric localized solutions

For symmetric localized solutions, rather than defining the Evans function separately

for the front and back and employing a matching argument, we define “even” and

“odd” Evans functions for the localized solutions by replacing the stable forward

space with the spaces Fix R and Fix (−R). In particular, we consider the spaces

Fix R and Fix (−R) at the center of the symmetric localized solutions, and pull

them back under the flow of (4.3) to the point x0 where we wrote down the Evans

function of the front.

Theorem 5.1. Under the hypotheses in Section 3.3, along with Hypotheses 4.3.7,

5.3.1 and 5.5.1, there exists an L∗ > 0 such that the following holds uniformly in

L > L∗: there exists a δ̂ > 0 such that

vx = [fu(u`,L(x)) + λB]v (5.1)

with u`,L(0) ∈ Fix R has a nontrivial bounded solution at λ = 0 given by v(x) =

∂xu`,L(x), and (5.1) has no other nontrivial bounded solutions for

λ ∈ Uδ̂(0) ∩ {λ : Reλ ≥ 0}.

Remark 5.5.3. As seen in the following proof, there will be solutions approaching

the imaginary λ axis from Reλ < 0 with increasing L, but we are able to distinguish

these from solutions with Reλ ≥ 0, so that we have a uniform result in L. The result

in fact holds on the set Sγ := {γ = r(1 + di) : r, d ∈ R, r ≥ 0, |d| ≤ C} where C is

any bounded constant, corresponding to the complex λ plane less the sector bounded

by rays at approximately −C ± 2i (precisely, −C + 1
C
± 2i), and encompassing the

negative real λ axis (see Figure 5.3). However, the allowable size of δ̂ will decrease

with increasing C, and the result for Reλ ≥ 0 is sufficient.
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Im �

Re �

Figure 5.3: Schematic depiction of the regions the complex γ and λ planes where we have a simple
root in λ near zero. In the proof of Theorem 5.1, we use the region Sγ := {γ = r(1 + di) : r, d ∈
R, r ≥ 0, |d| ≤ C} with C = 2.

Proof. (Theorem 5.1) We first observe that in the transformed coordinate system

corresponding to linearization about the symmetric periodic orbit up(x), we have

Fix (−R) = span





1

0

0

0


,



0

0

1

−1




, Fix R = span





0

1

0

0


,



0

0

1

1




.

We will refer to Fix (−R) and Fix R as odd and even subspaces, respectively.

Now we recall that |u`,L(x − L) − uf (x)| ≤ Ce−ηL uniformly in L for all x ≤ L.

Since the x0 at which we wrote our coordinate system is fixed, we take L large so

that L > x0 and we have

Eu
`,L,−(x0, γ) = Eu

f,−(x0, γ) + O(e−ηL).

We may in fact take L − x0 = L without loss of generality, so that pulling back
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Fix (−R) for time or distance L under the flow given in (4.6), we have



cosh(γL)

−γ sinh(γL)

0

0


,



0

0

eα(γ2)L

−e−α(γ2)L


which we normalize as



cosh(γL)

−γ sinh(γL)

0

0


,



0

0

1

−e−2α(γ2)L


.

Thus the Evans function of the symmetric localized solution with odd boundary

condition in the middle is given by

Dodd,L(γ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 0 cosh(γL) 0

γ2f̂2 g2 −γ sinh(γL) 0

f3 g3 0 1

γ2f̂4 g4 0 −e−2α(γ2)L

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ O(e−ηL)

= −

∣∣∣∣∣∣∣∣∣∣
f1 0 cosh(γL)

γ2f̂2 g2 −γ sinh(γL)

γ2f̂4 g4 0

∣∣∣∣∣∣∣∣∣∣
− e−2α(γ2)L

∣∣∣∣∣∣∣∣∣∣
f1 0 cosh(γL)

γ2f̂2 g2 −γ sinh(γL)

f3 g3 0

∣∣∣∣∣∣∣∣∣∣
+ O(e−ηL)

= γ2

(
sinh(γL)

γ
f1g4 − cosh(γL)(f̂2g4 − f̂4g2)

· · · − e−2α(γ2)L
(

cosh(γL)(f̂2g3 − f3g2)− sinh(γL)

γ
f1g3

))
+ O(e−ηL)

(5.2)
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where fi, gi are evaluated at γ = 0, and f̂i = 2 d
dγ2
fi(0), i = 2, 4. We note that, as the

determinant of vectors that depend analytically on λ, Dodd,L(γ) is in fact analytic

in γ2 = λ, as we knew a priori it should be. We now wish to show that we have a

unique root near λ = 0 for Reλ ≥ 0. We can then conclude that we in fact have a

root at λ = 0, since direct substitution confirms that v(x) = ∂xu`,L(x) is a solution

of (5.1) with λ = 0.

We will consider the set Sγ = {γ = r(1 + di) : r, d ∈ R, r ≥ 0, |d| ≤ 2}, so that

defining Sλ := {λ : λ = γ2, γ ∈ Sγ}, we have {λ : Reλ ≥ 0} ⊂ Sλ.

We now rewrite the factor following γ2 in (5.2) as

(a1 + a2e
−α(γ2)L)

sinh(γL)

γ
+ (b1 + b2e

−α(γ2)L) cosh(γL) =: F (γ, L) (5.3)

We first note that Reα(λ) > 0 for all λ ∈ Uδ(0) so that e−2α(γ2)L is strictly decreasing

in L. Additionally, limγ→0 F (γ, L) = (a1 + a2e
−α(γ2)L)L + (b1 + b2e

−α(γ2)L), so that

as L increases, this is approximately a1L and therefore bounded below in modulus

(note a1 = f1g4, and recall that both f1 and g4 are nonzero by assumption.) We now

consider F (γ, L) for |γL| < 1 and |γL| ≥ 1 separately, with γ ∈ Sγ \ {0}.

Writing y = γL and first considering |y| < 1, we have

∣∣∣∣L(a1 + a2e
−α(γ2)L)

ey − e−y
2y

∣∣∣∣ > ∣∣∣∣(b1 + b2e
−α(γ2)L)

ey + e−y

2

∣∣∣∣ (5.4)

uniformly in L for L sufficiently large, since (ey − e−y)/y = 1 + O(y2) and also

ey + e−y = 1 + O(y2).
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On the other hand, for |y| ≥ 1, we have

∣∣∣(a1 + a2e
−α(γ2)L)(ey − e−y)

∣∣∣ > ∣∣∣γ(b1 + b2e
−α(γ2)L)(ey + e−y)

∣∣∣ (5.5)

uniformly in L for L sufficiently large, provided that

|γ| ≤ |a1|
2|b1|

(
1− e−2/

√
5

1 + e−2/
√

5

)
=: δ̃ (5.6)

where the
√

5 comes from
√

1 + d2 with d = 2, and we note (1−e−2/
√

5)/(1+e−2/
√

5) ≈

0.42. We have assumed b1 6= 0; if b1 = 0, then we have

∣∣∣(a1 + a2e
−α(γ2)L)(ey − e−y)

∣∣∣ > ∣∣∣γ(b2e
−α(γ2)L)(ey + e−y)

∣∣∣ (5.7)

uniformly in L for L sufficiently large, for all γ.

In summary, we have shown that F (γ, L) is uniformly bounded below in modulus

for L > L∗, with γ ∈ Uδ̃(0) ∩ Sγ \ {0}, with δ̃ as in (5.6). Since the remaining

term in (5.2) is O(e−ηL), we can then conclude the existence of a unique root λ for

λ ∈ Sλ ∩ Uδ̂(0), which as noted above implies a unique root at λ = 0 for λ ∈ {λ :

Reλ ≥ 0} ∩ Uδ̂(0).

We now turn to the Evans function for a symmetric localized solution with even

boundary condition in the middle. Pulling back Fix R, we have



− 1
γ

sinh(γL)

cosh(γL)

0

0


,



0

0

eα(γ2)L

e−α(γ2)L
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Due to the form of sinh(x), we see that 1
γ

will not pose a problem and we leave this

as is, and renormalize as



− 1
γ

sinh(γL)

cosh(γL)

0

0


,



0

0

1

e−2α(γ2)L


so that

Deven,L(γ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

f1 0 − 1
γ

sinh(γL) 0

γ2f̂2 g2 cosh(γL) 0

f3 g3 0 1

γ2f̂4 g4 0 e−2α(γ2)L

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ O(e−ηL)

= −

∣∣∣∣∣∣∣∣∣∣
f1 0 − 1

γ
sinh(γL)

γ2f̂2 g2 cosh(γL)

γ2f̂4 g4 0

∣∣∣∣∣∣∣∣∣∣
+ e−2α(γ2)L

∣∣∣∣∣∣∣∣∣∣
f1 0 − 1

γ
sinh(γL)

γ2f̂2 g2 cosh(γL)

f3 g3 0

∣∣∣∣∣∣∣∣∣∣
= γ sinh(γL)(f̂2g4 − f̂4g2) + cosh(γL)f1g4

+ e−2α(γ2)L
(
−γ sinh(γL)(f̂2g3 − f3g2) + cosh(γL)f1g3

)
+ O(e−ηL).

As before, we write the terms preceding the O(e−ηL) term as

(a1 + a2e
−2α(γ2)L)γ sinh(γL) + (b1 + b2e

−2α(γ2)L) cosh(γL). (5.8)

Note that at γ = 0, (5.8) reduces to b1 + b2e
−2α(0)L, which is nonzero uniformly in L

for L sufficiently large, since b1 = f1g4 is nonzero by hypothesis. We now consider

γ ∈ Sγ as defined above, and setting y = γL we have

(b1 + b2e
−2α(γ2)L)(ey + e−y) > γ(a1 + a2e

−2α(γ2)L)γ(ey − e−y) (5.9)
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uniformly in L for L sufficiently large, provided that

|γ| < |b1|
2|a1|

=: δ̃2, (5.10)

where we could have obtained a looser bound by including the ratio of the exponen-

tials, and an addition of ε rather than the factor of 2 in the denominator would have

sufficed. Here we note b1 = f1g4 is nonzero by hypothesis, and we have assumed

a1 6= 0; if a1 = 0 then we in fact have the inequality (5.9) uniformly in L sufficiently

large for all γ.

Since the remaining term is O(e−ηL), we conclude that Deven,L(γ) is bounded

away from 0 uniformly in L > L∗ for γ ∈ Sγ ∩ Uδ̃2(0) and therefore for λ ∈ {λ :

Reλ ≥ 0} ∩ Uδ̂(0).

5.5.2 General localized solutions

Turning our attention to the general case, covering both symmetric and asymmetric

solutions, we will proceed in the spirit of Theorem 4.1 in Chapter 4. However, in

this case we will use the conjugation lemma to move into the coordinate system of

the wave train, taking advantage of the analytic splitting in γ coordinates.

We again remark that these results do not require reversibility; however, the pres-

ence of a reverser makes the assumptions enforcing existence of a simple eigenvalue

of the back completely analogous to the assumption for the front, whereas in the

absence of reversibility, the assumptions on the front and back would differ in form.

Theorem 5.2. Under the hypotheses in Section 3.3, along with Hypotheses 4.3.7,

5.3.1, 5.5.1 and 5.5.2, there exists an L∗ > 0 such that the following holds uniformly
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in L > L∗: there exists a δ̂ > 0 such that

vx = [fu(u`,L(x)) + λB]v (5.11)

has a nontrivial bounded solution at λ = 0 given by v(x) = ∂xu`,L(x), and has no

other nontrivial bounded solutions for λ ∈ Uδ̂(0) ∩ {λ : Reλ ≥ 0}.

Proof. We first fix η̃ such that η > η̃ > 0 and apply the conjugation lemma at x0

for the front and −x0 for the back, where x0 is chosen without loss of generality to

be the same for the front and back, and such that if Pf (x, λ) and Pb(x, λ) are the

transformations for the front and back respectively, then |Pf (x0, λ) − I| � 1 and

|Pb(−x0, λ)− I| � 1.

For convenience in the following, we let L̃ be the original L corresponding to half

the solution length, and define L = L̃ − x0. We then define solutions to (5.11) in

pieces as

v(x) =



v−` (x+ L), x ≤ −L

T1(x+ L, λ)v−p (x+ L), x ∈ [−L, 0]

T2(x− L, λ)v+
p (x− L), x ∈ [0, L]

v+
` (x− L), x ≥ L,

(5.12)

along with the matching conditions

T1(L, λ)v−p (L) = T2(−L, λ)v+
p (−L) (5.13)

v−p (0) = T−1
1 (0, λ)v−` (0) (5.14)

v+
p (0) = T−1

2 (0, λ)v+
` (0), (5.15)

where v−` (x), v−p (x), v+
p (x), v+

` (x) are defined for x ∈ (−∞, 0], [0, L], [−L, 0] and [0,∞),
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respectively, and where T1(x, λ) := Pf (x + x0, λ)S(x + x0, λ)V (λ) on x ≥ 0 and

T2(x, λ) := Pb(x−x0, λ)S(x−x0, λ)V (λ) on x ≤ 0 with Pf and Pb the transformations

from the conjugation lemma applied to the front and back, respectively. We note

that since P−1
b (−L̃, λ)Pf (L̃, λ) = I+O(e−η̃L̃) and S−1(−L̃, λ)S(L̃, λ) = I+O(e−ηL̃),

we have that

T−1
2 (−L, λ)T1(L, λ) = I + O(e−η̃L). (5.16)

We let ac− ∈ Ec
p(γ), au− ∈ Eu

p (γ) and as− ∈ Es
p(γ), and define ac+, au+ and as+

analogously. We further let bu− ∈ Eu
f,−(x0, γ) and bs+ ∈ Es

b,+(−x̃0, γ).

We then have the expressions

v−` (x) = Φu
`,−(x, 0;λ)T1(0, λ)bu− (5.17)

v−p (x) = Φc
p(x, L; γ)ac− + Φs

p(x, 0; γ)as− + Φu
p(x, L; γ)au− (5.18)

v+
p (x) = Φc

p(x,−L; γ)ac+ + Φs
p(x,−L; γ)as+ + Φu

p(x, 0; γ)au+ (5.19)

v+
` (x) = Φs

`,+(x, 0;λ)T2(0, λ)bs+ (5.20)

where Φs,u
` (x, y;λ) are evolution operators for (5.11) and Φc,s,u

p (x, y; γ) are evolution

operators for (4.3).

We begin with the first matching condition

T1(L, λ)v−p (L) = T2(−L, λ)v+
p (−L)

T−1
2 (−L, λ)T1(L, λ)

(
ac− + O(e−ηL)as− + au−

)
= ac+ + as+ + O(e−ηL)au+ (5.21)
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so that invoking (5.16) and comparing subspaces, we have

ac− = ac+ + O(e−η̃L)a

O(e−ηL)as− = as+ + O(e−η̃L)a

au− = O(e−ηL)au+ + O(e−η̃L)a, (5.22)

where a := (ac−, a
s
−, a

u
+).

Turning to the second and third matching conditions, we note that

Rg(T−1
1 (0, λ)P u

`,−(0, γ)T1(0, λ)) = Eu
f,−(x0, γ) + O(e−ηL) (5.23)

and similarly

Rg(T−1
2 (0, λ)P s

`,+(0, γ)T2(0, λ)) = Eu
b,+(−x0, γ) + O(e−ηL). (5.24)

Thus we can write

T−1
1 (0, λ)v−` (0) = b−1 f

− + b−2 g
− + O(e−ηL)b− (5.25)

and

T−1
2 (0, λ)v+

` (0) = b+
1 f

+ + b+
2 g

+ + O(e−ηL)b+, (5.26)

where f−, g− are as in Hypothesis 5.5.1, and f+, g+ are as in Hypothesis 5.5.2.
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The second matching condition can then be written as

0 = v−p (0)− T−1
1 (0, λ)v−` (0)

= Φc
p(0, L; γ)ac− + as− + Φu

p(0, L; γ)au− + O(e−η̃L)a− b−1 f− − b−2 g− + O(e−ηL)b−

=

 cosh(γL) − 1
γ

sinh(γL)

−γ sinh(γL) cosh(γL)


 ac1

ac2

+ as− + O(e−2ηL)au+

− b−1 f− − b−2 g− + O(e−ηL)b− + O(e−η̃L)a (5.27)

Similarly, the third matching condition can be written as

0 = v+
p (0)− T−1

2 (0, λ)v+
` (0)

= Φc
p(0,−L; γ)ac+ + Φs

p(0,−L; γ)as+ + au+ + O(e−η̃L)a− b+
1 f

+ − b+
2 g

+ + O(e−ηL)b+

=

 cosh(γL) 1
γ

sinh(γL)

γ sinh(γL) cosh(γL)


 ac1

ac2

+ O(e−2ηL)as− + au+

− b+
1 f

+ − b+
2 g

+ + O(e−ηL)b+ + O(e−η̃L)a (5.28)

Thus defining b := (b−, a, b+) = (b−1 , b
−
2 , a

c
1, a

c
2, a

s
−, a

u
+, b

+
1 , b

+
2 ), (5.27) and (5.28)
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together show that we have a solution for b 6= 0 if and only if

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f−1 0 cosh(γL) − 1
γ

sinh(γL) 0 0 0 0

γ2f−2 g−2 −γ sinh(γL) cosh(γL) 0 0 0 0

f−3 g−3 0 0 1 0 0 0

γ2f−4 g−4 0 0 0 O(e−2ηL) 0 0

0 0 cosh(γL) 1
γ

sinh(γL) 0 0 f+
1 0

0 0 γ sinh(γL) cosh(γL) 0 0 γ2f+
2 g+

2

0 0 0 0 O(e−2ηL) 0 γ2f+
3 g+

3

0 0 0 0 0 1 f+
4 g+

4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ O(e−η̃L)

(5.29)

We will not explicitly track the O(e−2ηL) terms in the following, but we will write

them separately from the O(e−η̃L) terms as they also include sinh and cosh terms;
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we will reintroduce these terms in the final analysis. Thus we have

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f−1 0 cosh(γL) − 1
γ

sinh(γL) 0 0

γ2f−2 g−2 −γ sinh(γL) cosh(γL) 0 0

γ2f−4 g−4 0 0 0 0

0 0 cosh(γL) 1
γ

sinh(γL) f+
1 0

0 0 γ sinh(γL) cosh(γL) γ2f+
2 g+

2

0 0 0 0 γ2f+
3 g+

3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ O(e−2ηL) + O(e−η̃L)

= −f−1 g−4

∣∣∣∣∣∣∣∣∣∣∣∣∣

−γ sinh(γL) cosh(γL) 0 0

cosh(γL) 1
γ

sinh(γL) f+
1 0

γ sinh(γL) cosh(γL) γ2f+
2 g+

2

0 0 γ2f+
3 g+

3

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ γ2(f−2 g
−
4 − f−4 g−2 )

∣∣∣∣∣∣∣∣∣∣∣∣∣

cosh(γL) − 1
γ

sinh(γL) 0 0

cosh(γL) 1
γ

sinh(γL) f+
1 0

γ sinh(γL) cosh(γL) γ2f+
2 g+

2

0 0 γ2f+
3 g+

3

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ O(e−2ηL) + O(e−η̃L)

= f−1 g
−
4 f

+
1 g

+
3

∣∣∣∣∣∣∣
−γ sinh(γL) cosh(γL)

γ sinh(γL) cosh(γL)

∣∣∣∣∣∣∣+ γ2f−1 g
−
4 (f+

3 g
+
2 − f+

2 g
+
3 )

∣∣∣∣∣∣∣
−γ sinh(γL) cosh(γL)

cosh(γL) 1
γ

sinh(γL)

∣∣∣∣∣∣∣
− γ2(f−2 g

−
4 − f−4 g−2 )f+

1 g
+
3

∣∣∣∣∣∣∣
cosh(γL) − 1

γ
sinh(γL)

γ sinh(γL) cosh(γL)

∣∣∣∣∣∣∣
+ γ4(f−2 g

−
4 − f−4 g−2 )(f+

2 g
+
3 − f+

3 g
+
2 )

∣∣∣∣∣∣∣
cosh(γL) − 1

γ
sinh(γL)

cosh(γL) 1
γ

sinh(γL)

∣∣∣∣∣∣∣+ O(e−2ηL) + O(e−η̃L)

= −γ sinh(2γL)f−1 g
−
4 f

+
1 g

+
3 − γ2 cosh(2γL)

(
f−1 g

−
4 (f+

3 g
+
2 − f+

2 g
+
3 ) + (f−2 g

−
4 − f−4 g−2 )f+

1 g
+
3

)
+ γ3 sinh(2γL)(f−2 g

−
4 − f−4 g−2 )(f+

2 g
+
3 − f+

3 g
+
2 ) + O(e−2ηL) + O(e−η̃L) (5.30)
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Note that all of the above terms are analytic in γ2 = λ. We now have an

expression which is almost precisely the same as that analyzed in Theorem 5.1. In

particular, we have a leading term of the form

γ2

(
(a1 + O(e−2ηL))

sinh(γL)

γ
+ (b1 + O(e−2ηL)) cosh(γL)

)
. (5.31)

The arguments for γ ∈ Uδ̃(0) ∩ Sγ \ {0} with Sγ = {γ = r(1 + di) : r, d ∈ R, r ≥

0, |d| ≤ 2} then follow exactly as in Theorem 5.1 for the odd boundary condition,

and we conclude that we have a simple root in λ for λ ∈ Uδ̂(0) ∩ {λ : Reλ ≥ 0}. As

before we know that this root must lie at λ = 0.

5.6 The behavior of the saddle node eigenvalue

Returning to the Evans function before we made any assumptions on f or g, we have

Df (γ) = f4g2 − γf1g4 + γf4g1 (6.1)

We now reintroduce the µ independence, but we note that the appropriate way to

do this is to allow dependence on ϕ, as the snaking phenomenon reflects the fact

that solutions will not be unique in µ, and the saddle node of course corresponds to

a turning back in µ. Recall that we assumed in Hypothesis 3.3.2 that z : S1 → J̊ is

a smooth function. We further observe that since we are presently interested in the

behavior of saddle nodes for the front, z(ϕ) = µ is an exact relationship, and there

is no exponential correction necessary.

Thus we now assume that the vectors f and g, and consequently their compo-

nents, depend analytically on γ2, and smoothly on ϕ. We take ϕ = 0 to correspond
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to a particular saddle node; our aim in the following is to understand what scenarios

lead to the saddle node eigenvalue moving from Reλ > 0 to Reλ < 0, corresponding

to movement from γ ∈ R to γ ∈ iR. We note that to complete this analysis we need

to show parameter-dependent versions of the lemmas proved in Section 5.2, but we

do not anticipate difficulties in the extensions.

We first note that there are generically four ways to enforce the existence of a

translation eigenvalue at 0 for all ϕ near 0:

(i) f2 = f4 = 0

(ii) f2 = g2 = 0

(iii) f4 = g4 = 0

(iv) f4g2 − f2g4 = 0 (and f2, f4, g2, g4 6= 0)

where in all cases we list the values of individual components at (0, ϕ), for all ϕ

near 0. The first case is the one we assumed in the preceding analysis, and it is

the only one that requires the participation of only one of the two vectors (the case

g2 = g4 = 0 is of course equivalent since the designations f and g were arbitrary).

We then have the following leading order expansions for Df in γ near 0 in each

of the above cases:

(i) Df (γ, ϕ) = −γf1g4

(ii) Df (γ, ϕ) = γ(f4g1 − f1g4)

(iii) Df (γ, ϕ) = γ2((∂λf4)g2 − f2(∂λg4))
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(iv) Df (γ, ϕ) = γ(f4g1 − f1g4)

where again all terms are evaluated at (0, ϕ), and in (iii) we assume that the terms

of next lowest order are nonzero. Thus we see cases (i), (ii) and (iv) all correspond

to simple roots, whereas . Note that in (iii) we will still have higher order terms in

odd powers of γ so that (iii) is analytic only in λ. Moreover, while (ii) and (iv) agree

to first order, they will differ in their second order terms, as the latter will include

(∂λf4)g2 − f2(∂λ)g4.

We now focus our attention on the case (i) as the most relevant to our situation,

and detail the impacts of additional assumptions at ϕ = 0. We assume in all cases

that f2(0, ϕ) = f4(0, ϕ) = 0 and ∂λf2(0, ϕ), ∂λf4(0, ϕ) 6= 0 for all ϕ near zero, plus

the following, where in all cases we assume the next lowest order term is nonzero:

(a) g4(0, 0) = 0

Then we have

Df (γ, ϕ) = −γ(ϕf1∂ϕg4 − γ∂λf4g2 + O(γ2 + ϕ2)),

where here and in all following expressions, coefficients are evaluated at (0,0).

Thus near (γ, ϕ) = (0, 0) we have roots at γ = 0 and

γ = ϕ

(
f1(∂ϕg4)

(∂λf4)g2

)
+ O(ϕ2).

(b) f1(0, 0) = 0

Df (γ, ϕ) = −γ
(
ϕ(∂ϕf1)g4 − γ

(
(∂λf4)g2 − (∂λf2)g4

)
+ O(γ2 + ϕ2)

)
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so that we have roots at γ = 0 and

γ = ϕ

(
(∂ϕf1)g4

(∂λf4)g2 − (∂λf2)g4

)
+ O(ϕ2)

(c) g4(0, 0) = 0 and g2(0, 0) = 0

Df (γ, ϕ) = −γ
(
ϕf1(∂ϕg4)− γ2

(
(∂λf4)g1 − f1(∂λg4)

)
− ϕγ

(
(∂λf4)(∂ϕf2)− (∂λf2)(∂ϕg4)

)
+ O(ϕ2 + ϕγ2 + γ3)

)

so that we have roots at γ = 0 and

γ = ±
√
ϕ

(
f1(∂ϕg4)

(∂λf4)g1 − f1(∂λg4)

)
+ O(ϕ)

(d) f1(0, 0) = 0 and (∂λf4)g2 − (∂λf2)g4 = 0 (but g2, g4 6= 0)

Df (γ, ϕ) = −γ
(
ϕ(∂ϕf1)g4 − γ2

(
(∂λf4)g1 − (∂λf1)g4

)
+ O(ϕ2 + ϕγ2 + γ3)

)

so that we have roots at γ = 0 and

γ = ±
√
ϕ

(
(∂ϕf1)g4

(∂λf4)g1 − (∂λf1)g4

)
+ O(ϕ)

(e) We can also arrange to have roots at γ = 0 and γ = O(ϕ2), e.g., via g4(0, 0) =

∂ϕg4(0, 0) = 0.

Cases (a) and (b), in which we have a root at γ = O(ϕ), would in some sense seem

the most generic, as they require the fewest assumptions. We note that in both these

cases the single O(ϕ) root moves from Re γ > 0 to Re γ < 0 as ϕ moves from positive

to negative, thus becoming a resonance pole.
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Figure 5.4: Numerical illustration of the scaling µ ∝ λ2 of the saddle node eigenvalue along
a branch of asymmetric stripes and spots solutions in the planar cubic-quintic Swift–Hohenberg
equation. Left : λ plotted as a function of the cumulative change in µ. Right : λ2 plotted as a function
of the cumulative change in µ. This particular point corresponds to point 3 in Figure 4.6; we observe
the same scaling at all saddle node crossings for both symmetric and asymmetric branches.

Case (c), which requires two assumptions, i.e., that g4(0, 0) = 0 and g2(0, 0) = 0,

in fact corresponds to only one additional assumption in the case that we have a

conservative system; since f2 and g2 correspond to the direction of changing energy,

we must in fact have f2(0, ϕ) = g2(0, ϕ) = 0. This is also consistent what we

see numerically for the Swift–Hohenberg equation: as ϕ decreases through zero, the

saddle node eigenvalue with Re γ > 0 meets a resonance pole with Re γ < 0 and both

move onto the imaginary γ axis. The scaling given here is also consistent with the

µ ∝ λ2 seen numerically (ϕ2 ∝ µ near the saddle node implies that for scenario (c),

γ ∝ µ1/4, or λ2 ∝ µ). See Figure 5.4 for numerical confirmation along an asymmetric

branch in the planar Swift–Hohenberg equation.

Some simplification of the expression for the root in case (c) is possible: using

the linear independence of f and g, we may set g1 = 0 using f1 6= 0 and subtracting

(g1/f1)f from g. Since we assumed f2(0, ϕ) = f4(0, ϕ) = 0, we will not destroy the

zeros at g2(0, 0) and g4(0, 0) by this procedure, so that we do not need any additional
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assumptions on our redefined g to obtain the simplified expression

γ = ±i
√
ϕ

(
∂ϕg4

∂λg4

)
+ O(ϕ). (6.2)

Case (d) supports the same behavior of the saddle nodes, but it does not appear

to fit with the assumption that f corresponds to the translation eigenfunction. The

scenario described in (e) corresponds to a situation in which all solutions are unstable,

as roots exist for λ in the right half plane for all ϕ.

Another situation in which we observe similar behavior of the roots is case (ii)

above, i.e., f2(0, ϕ) = g2(0, ϕ) = 0, which we again note corresponds to a conservative

system, with the additional assumptions f4(0, 0) = g4(0, 0) = 0. In this instance we

have

Df (γ, ϕ) = γ
(
ϕ
(
(∂ϕf4)g1 − f1(∂ϕg4)

)
− γ2

(
f1(∂λg4)− (∂λf4)g1

)
+ O(ϕγ + ϕ2)

)

leading to nonzero roots at

γ = ±
√
ϕ

(
(∂ϕf4)g1 − f1(∂ϕg4)

f1(∂λg4)− (∂λf4)g1

)
+ O(ϕ).

Using the same procedure as above, this too simplifies to the form (6.2).

We finally note that we have not yet taken into account all the properties of the

extended Evans function which arise when operating in γ while some components

making up the Evans function are analytic in λ. In the nonlinear Schrödinger equa-

tion studied in [31, 32], all solutions comprising the extended Evans functions formed

there were analytic only in γ.
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In particular, we first consider why a simple root of the Evans function away

from zero at γ∗ should be accompanied by a second root at −γ∗ (both for the same

ϕ∗). We write down the Evans function explicitly as

Df (γ∗) = f4g2 − f2g4 + γ∗(f4g1 − f1g4),

where fi = fi(γ∗), and similarly for g. If we suppose that f corresponds to the

translation eigenfunction so that the fi are generically nonzero away from γ = 0, the

root must be enforced by g, and we then require (note γ∗ is nonzero by assumption,

so all four leading order terms in the above must vanish)

(i) gi(γ∗) = 0, i = 1, 2, 4

(ii) d
dγ
gi(γ∗) 6= 0, i = 1, 2, 4

Note that for γ∗ near 0, if we are in the setting above we may assume that f1 6= 0,

so that the assumption g1 = 0 is . In any event, under the above assumptions we

have Df (γ∗) = 0 and for γ sufficiently near γ∗, we have

Df (γ) = (γ − γ∗)(f4g
′
2 − f2g

′
4) + γ(γ − γ∗)(f4g

′
1 − f1g

′
4) (6.3)

where all fi, g
′
i are evaluated at γ∗, and ′ = d

dγ
. This root is indeed simple, as shown

by the calculation

(γ − γ∗)a+ γ(γ − γ∗)b− γ∗(γ − γ∗)b+ γ∗(γ − γ∗)b = (γ − γ∗)(a+ γ∗b) + (γ − γ∗)2b

Moreover, since g is analytic in λ, i.e., we have g(γ) = ĝ(γ2), where ĝ is an analytic

function in γ, we also have gi(−γ∗) = 0, i = 1, 2, 4 by the above, so that we also

have a simple root at D(γ∗). Thus any roots away from zero will always come in
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pairs, and if one is such that Re γ > 0, then the other will have Re γ < 0, so that we

have an eigenvalue, resonance pole pair. Of course this also means that if one lies in

iR then the other does as well, and they will always lie on top of each other in the

γ2 = λ plane.

In conclusion, the numerical effects seen in Figure 4.3, as well as previously

in [8, Figure 10] and [3, Figure 14], for example, are consistent with the situation

described here by case (i)(c), both in general form and in particular scaling. However,

this analysis still leaves unanswered questions, for example regarding the precise role

of the translation eigenvalue, and the impact of perturbations breaking translation

symmetry. We will continue to explore this phenomenon numerically and analytically

in future work.



Chapter Six

Predicting the Effects of

Perturbations
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6.1 Introduction

As we have seen, one characteristic common to many snaking systems is spatial

reversibility. Often, such systems are also variational, and some are invariant under

an additional Z2 symmetry corresponding, for example, to symmetry in the midplane

of a fluid system. Here we are interested in how the structure of snaking diagrams

changes when reversibility, variational structure, or Z2 symmetries, if present, are

broken, either individually or jointly, by adding perturbative terms to the governing

equation. The effects of breaking reversibility were recently explored analytically in

[7, 37, 59], while numerical studies of perturbations that break variational structure

and Z2 symmetry were carried out recently in [26]. Generally speaking, breaking

reversibility or symmetry leads to a rearrangement of bifurcation branches, while

breaking the variational structure leads to patterns that drift with nonzero speed.

In this Chapter, we show that perturbative terms breaking symmetry or varia-

tional structure affect solution profiles and overall bifurcation structure in ways which

are fully predictable analytically. By evaluating scalar products involving only solu-

tions of the unperturbed system and perturbative terms evaluated at unperturbed

solutions, we are able to predict which of many topologically distinct bifurcation

diagrams will emerge upon introduction of perturbative terms, as well as the drift

speeds of asymmetric solutions where appropriate. We confirm these predictions

numerically for various perturbations to the cubic-quintic Swift–Hohenberg system

both on the line and in the plane:

ut = −(1 + ∆)2u− µu+ νu3 − u5. (1.1)

Though we use the Swift–Hohenberg equation to demonstrate our results numeri-
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Figure 6.1: Left: Schematic of the bifurcation diagram for the unperturbed system (1.2) with
ε = 0, with illustrative solution profiles. The dashed dark blue snaking branch consists of two
branches of even parity solutions, while the dotted orange branch consists of two branches of odd
parity solutions. Solid green cross-connecting branches consist of four sets of asymmetric solutions.
Right: Schematic of the bifurcation diagram for a perturbed system as in (1.2) with ε 6= 0. Snaking
branches for even symmetric patterns with central maximum and minimum are shown in dark and
light blue dashed, respectively. Asymmetric branches are in solid black and green. Dashed vertical
lines indicate the saddle node locations from the unperturbed system.

cally, we emphasize that our results are not specific to the Swift–Hohenberg setting.

The effect of perturbative terms added to (1.1) posed on the real line was recently

explored numerically by Houghton and Knobloch [26]. In particular, Houghton and

Knobloch examined1 the variational system

ut = −(1 + ∂2
x)

2u− µu+ νu3 − u5 + εu2 (1.2)

as well as the non-variational system

ut = −(1 + ∂2
x)

2u− µu+ νu3 − u5 + ε(∂xu)2 (1.3)

1We remark that Houghton and Knobloch used the bifurcation parameter r := −µ instead of
µ: hence, their bifurcation diagrams are flipped in comparison to ours; in our description of their
results, we use µ as the parameter.
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for 0 < ε� 1. For 0 < ε� 1, the systems no longer respect the symmetry u 7→ −u,

and Figure 6.1 provides a schematic comparison of the bifurcation diagrams for (1.2)

with ε = 0 and ε 6= 0. Houghton and Knobloch observed that the even solutions

persist along unbroken snaking branches; however, in contrast to the ε = 0 case, the

two snaking branches for the even symmetric solutions with, respectively, a central

maximum and a central minimum no longer lie on top of each other due to the broken

Z2 symmetry. Alternate saddle nodes on the left and right are now offset to the

inside and outside of the original branches, so that the resulting bifurcation diagram

possesses four snaking limits. Meanwhile the odd solutions are destroyed, and two

types of asymmetric solution branches are formed, termed S and Z branches in

accordance with their shapes. The Z branches start and end on the same symmetric

branch, whereas the S branches connect the two symmetric solution branches to each

other.

As outlined above, our goal is to explain the effects of breaking variational struc-

ture and Z2 symmetry rigorously and to predict branch rearrangement and drift

speeds of patterns using solutions of the unperturbed system only. We refer also to

Chapter 2 for a general framework and preview of the results in this chapter. The

chapter is organized as follows: in Section 6.2, we detail predictions on the evolution

of bifurcation diagrams upon the introduction of perturbative symmetry breaking

terms. In Section 6.3, we derive conditions that allow us to predict bifurcation di-

agrams and drift speeds upon adding perturbative terms to the underlying system;

these conditions rely on evaluation of the perturbative terms along solutions of the

unperturbed system. Specifically, in Section 6.3.1, we detail the effects of perturba-

tive terms breaking variational structure; in Section 6.3.2, we show how to use our

earlier results to make predictions for specific perturbations breaking Z2 symmetry;

and in Section 6.3.3, we show how our methods may be employed to anticipate which
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of two types of bifurcation diagram emerges upon the introduction of nonreversible

terms, where the two types have been identified previously in [37, 59]. Finally, in

Section 6.4, we provide numerical studies supporting our analytical results using the

1D and 2D Swift–Hohenberg equations.

Remark 6.1.1. A comment on notation: in this chapter we work primarily with the

PDE rather than ODE formulation; as such, we chose to employ the variable u for

the PDE and U for the ODE, in contrast to our convention elsewhere.

6.2 Predicting results of breaking Z2 symmetry

6.2.1 Dynamical reformulation of the problem

Our goal now is to start with a system that respects the Z2 symmetry κ for all

µ, and to describe what happens under forced symmetry breaking. To illustrate

our approach, we start with the case where z(L) possesses one maximum and one

minimum for each period π, where the π-periodicity is enforced by the presence

of a Z2 symmetry κ. We will be interested in perturbative terms breaking the κ

symmetry when a second parameter ε is switched on, i.e., when ε 6= 0.

In Figure 6.2a we provide two equivalent renderings of the solution branches

of localized structures in a system possessing κ symmetry and with z(L) having a

single maximum per period. We illustrate the branches of even and odd symmetric

structures (R- and κR-symmetric, respectively) as well as the asymmetric solution

branches. The left panel shows the phase ϕ along the x-axis, and the half-pulse

length L along the y-axis, while the center panel shows the solutions in the (µ, L)
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Figure 6.2: Different renderings of the bifurcation diagram for a system characterized by z pos-
sessing exactly one maximum and one minimum per period. (a) Left: The solution set of the
bifurcation equations z(L − ϕ) = z(L + ϕ) is shown in the (ϕ,L)-plane. Center: The bifurcation
diagram in the (µ,L)-plane, using the relation µ = z(L+ ϕ). R-symmetric solution branches with
ϕ = 0, π are shown in dashed blue, κR-symmetric with ϕ = π

2 ,
3π
2 in dotted orange, and asymmetric

in solid green. Light dotted lines indicate correspondence of a and a+ π with minima. (b) Right:
Reformulation of the left panel as a Hamiltonian system; see the text for full details.
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plane via the function µ = z(L+ ϕ) for solutions (L, ϕ) of

Z(L, ϕ) := z(L+ ϕ)− z(L− ϕ) = 0.

This is analogous to our usual bifurcation diagram, with length L being equivalent

to the L2 norm. The formulation in the left panel will provide a natural way to

understand the effects of symmetry breaking perturbations, while the center panel

provides the link to familiar bifurcation diagrams. We see that, before perturbation,

the R-symmetric solutions at ϕ = 0 and ϕ = π coincide in the (µ, L) plane, as do

the κR-symmetric solutions at ϕ = π
2

and ϕ = 3π
2

(latter not shown). We also note

that, due to the π-periodicity of z, all information is actually contained in a single

quadrant of the left panel, but we show the larger diagram here for easier comparison

with the diagram after symmetry breaking.

We now drop the assumption that z has only one maximum per period. We

argued formally in Section 2.2 that it suffices to solve

Z(L, ϕ) := z(L+ ϕ)− z(L− ϕ) = 0 (2.1)

for (L, ϕ) in order to find symmetric and asymmetric solution branches. Indeed,

it was shown in [4] that the bifurcation equations for symmetric and asymmetric

solutions are given by (2.1) with an additional error term of order O(e−KL) for some

K > 0: in particular, regular zeros of (2.1) persist as solutions to the full bifurcation

equations for all sufficiently large L. The analysis in [4] applies to reversible PDEs

with or without variational structure on cylinders provided the spatial dynamical

system associated with the steady-state equation falls under the class considered in

[51].
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Our goal here is to study the effect of perturbative terms breaking the κ sym-

metry. It will be useful to consider the system presented in the left panel of Fig-

ure 6.2a as a dynamical system in its own right, a technique employed in [4]. We let

S̄1 := [0, π]/ ∼, set Q := S̄1 × [0, π
2
], and define

Λ := {(L, ϕ) ∈ Q : Z(L, ϕ) = 0}, Λbif := {(L, ϕ) ∈ ∂Q : z′(L+ ϕ) = 0}.

We introduce the planar Hamiltonian vector field

 Ls

ϕs

 = F (L, ϕ) :=

 0 1

−1 0

∇Z(L, ϕ) (2.2)

whose zero energy level is precisely equal to the set Λ. We note that

∇Z(L, ϕ) =

 1 −1

1 1


 z′(L+ ϕ)

z′(L− ϕ)

 .

Hence we have ∇Z(L, ϕ) = 0 if and only if z′(L+ϕ) = z′(L−ϕ) = 0. Assuming

nondegeneracy of the maxima and minima of z, i.e., assuming z(L1) = z(L2) and

z′(L1) = z′(L2) = 0 imply L1 = L2 mod π, we conclude that ∇Z(L, ϕ) = 0 for

(L, ϕ) ∈ Λ if and only if ϕ ∈ {0, π
2
}. Thus all equilibria of (2.2) in Λ lie in Λbif .

Furthermore, assuming z′(L) = 0 implies z′′(L) 6= 0, all equilibria in Λ are hyperbolic

saddles, since at these points we have

DF (L, ϕ0) = 2

 z′′(L+ ϕ0) 0

0 −z′′(L+ ϕ0)

 , ϕ0 ∈
{

0,
π

2

}
.

So by Poincaré–Bendixson, Λ\Λbif must be a 1D manifold consisting of the hetero-
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clinic orbits that start and end at Λbif , and finitely many periodic orbits. Thus each

element (L∗, 0) and (L∗,
π
2
) of Λbif is a generic pitchfork bifurcation point, which

gives rise to a unique global branch of solutions of (2.1) in Q. These branches do not

cross, and they begin and end in Λbif . In Figure 6.2b we reproduce the left panel of

Figure 6.2a with arrows indicating the flow of (2.2) within the zero energy level set Λ

of the Hamiltonian system just described, as well as plus and minus signs indicating

the sign of the energy Z(L, ϕ).

We are now ready to consider a perturbation which breaks the κ symmetry,

but preserves the other characteristics of our system, meaning in particular that

the reversibility is unaffected so that we retain the 2π-periodicity of z. Such a

symmetry breaking perturbation will, however, typically break the π-periodicity of

z and therefore break up the κR-symmetric branch. On the level of the vector field

interpretation, this manifests itself as the fact that the saddle equilibria persist, but

generically move outside the zero-level set of Z.

Lemma 6.2.1. Suppose z(L) is π-periodic, satisfying (a) z(L1) = z(L2) and z′(L1) =

z′(L2) only if L1 = L2 mod π and (b) z′(L) = 0 implies z′′(L) 6= 0. Let (L0, ϕ0)

be a hyperbolic equilibrium of (2.2) satisfying (2.1). Assume z̃(L, ε) := z(L) +

εz1(L) + O(ε2), with z̃(L, ε), and therefore z1(L), 2π-periodic in L. Further define

Z̃(L, ϕ, ε) := z̃(L+ ϕ, ε)− z̃(L− ϕ, ε), and consider

 Ls

ϕs

 = F̃ (L, ϕ, ε) :=

 0 1

−1 0

∇Z̃(L, ϕ, ε). (2.3)

Then there exists an ε0 > 0 such that the following hold:

(i) If ϕ0 ∈ {0, π}, then for all |ε| < ε0 there exists a unique L̃0(ε) close to L0 such

that (L̃0(ε), ϕ0, ε) is a hyperbolic equilibrium of (2.3), and Z̃(L̃0(ε), ϕ0, ε) = 0.
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Furthermore, the function ε 7→ L̃0(ε) is smooth.

(ii) If ϕ0 ∈ {π2 , 3π
2
}, then for all |ε| < ε0 there exists a unique (L̃0, ϕ̃0)(ε) close to

(L0, ϕ0) such that ((L̃0, ϕ̃0)(ε), ε) is a hyperbolic equilibrium of (2.3). Further-

more, the function ε 7→ (L̃0, ϕ̃0)(ε) is smooth, and if z1(L0 +ϕ0) 6= z1(L0−ϕ0),

then Z̃((L̃0, ϕ̃0)(ε), ε) 6= 0.

Proof. Given F̃ as defined in (2.3), we can write F̃ explicitly as

F̃ (L, ϕ, ε) =

 z̃(L+ ϕ, ε) + z̃(L− ϕ, ε)

−z̃(L+ ϕ, ε) + z̃(L− ϕ, ε)


=

 z′(L+ ϕ) + εz′1(L+ ϕ) + z′(L− ϕ) + εz′1(L− ϕ) + O(ε2)

−z′(L+ ϕ)− εz′1(L+ ϕ) + z′(L− ϕ) + εz′1(L− ϕ) + O(ε2)

 .

Whether we are in case (i) where ϕ0 ∈ {0, π}, or case (ii) where ϕ0 ∈ {π2 , 3π
2
},

the π-periodicity of z implies z′′(L0 + ϕ0) = z′′(L0 − ϕ0) so that

DF̃ (L0, ϕ0, 0) =

 2z′′(L+ ϕ0) 0 z′1(L0 + ϕ0) + z′1(L0 − ϕ0)

0 −2z′′(L0 + ϕ0) −z′1(L0 + ϕ0) + z′1(L0 − ϕ0)

 .

(2.4)

Since we have assumed z′′(L0 + ϕ0) 6= 0, this implies that there exists a ε0 > 0

such that for all |ε| < ε0, there exists a unique (L̃0, ϕ̃0)(ε) close to (L0, ϕ0) such that

((L̃0, ϕ̃0)(ε), ε) is a hyperbolic equilibrium of (2.3), and the map ε 7→ (L̃0, ϕ̃0)(ε) is

smooth.
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In particular, we can solve for (L̃0, ϕ̃0)(ε) as:

F̃ (L, ϕ, ε) = F̃ (L0, ϕ0, 0) +DF̃ (L0, ϕ0, 0)


L− L0

ϕ− ϕ0

ε

+ O(ε2) =

 0

0



so 2z′′(L0 + ϕ0)(L− L0) + (z′1(L0 + ϕ0) + z′1(L0 − ϕ0))ε

−2z′′(L0 + ϕ0)(ϕ− ϕ0) + (−z′1(L0 + ϕ0) + z′1(L0 − ϕ0))ε

+ O(ε2) =

 0

0


yielding

L− L0 = ε

(−z′1(L0 + ϕ0)− z′1(L0 − ϕ0)

2z′′(L0 + ϕ0))

)
+ O(ε2)

ϕ− ϕ0 = ε

(−z′1(L0 + ϕ0) + z′1(L0 − ϕ0)

2z′′(L0 + ϕ0))

)
+ O(ε2)

or

(L̃0, ϕ̃0)(ε) =(L0, ϕ0) +
ε

2z′′(L0 + ϕ0)
(−z′1(L0 + ϕ0)− z′1(L0 − ϕ0),−z′1(L0 + ϕ0) + z′1(L0 − ϕ0))

+ O(ε2).

In case (i) where ϕ0 ∈ {0, π}, the 2π-periodicity of z1(L) yields

(L̃0, ϕ̃0)(ε) = (L0, ϕ0) +
ε

2z′′(L0 + ϕ0)
(−2z′1(L0 + ϕ0), 0) + O(ε2).

In fact, for ϕ0 ∈ {0, π}, the 2π-periodicity of z̃(L, ε) in L implies that

F̃ (L, ϕ0, ε) = 2

 z̃′(L+ ϕ0)

0

 .
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So the unique (L̃0, ϕ̃0)(ε) near (L0, ϕ0) satisfying F̃ ((L̃0, ϕ̃0)(ε), ε) = 0 must be of

the form (L̃0(ε), ϕ0) where L̃0(ε) satisfies z′(L̃0(ε) + ϕ0) + εz′1(L̃0(ε) + ϕ0) = 0.

This then implies

Z̃(L̃0(ε), ϕ0, ε) = z(L̃0(ε)+ϕ0)+εz1(L̃0(ε)+ϕ0)−z(L̃0(ε)−ϕ0)+εz1(L̃0(ε)−ϕ0) = 0

as z̃ is 2π-periodic. Thus we have shown (i).

In case (ii) where ϕ0 ∈ {π2 , 3π
2
} we have

Z̃((L̃0, ϕ̃0)(ε), ε) = z

(
L0 + ϕ0 −

εz′1(L0 + ϕ0)

z′′(L0 + ϕ0)

)
+ εz1

(
L0 + ϕ0 −

εz′1(L0 + ϕ0)

z′′(L0 + ϕ0)

)
− z

(
L0 − ϕ0 −

εz′1(L0 − ϕ0)

z′′(L0 + ϕ0)

)
− εz1

(
L0 − ϕ0 −

εz′1(L0 − ϕ0)

z′′(L0 + ϕ0)

)
+ O(ε2). (2.5)

We expand

z

(
L0 + ϕ0 −

εz′1(L0 + ϕ0)

z′′(L0 + ϕ0)

)
= z(L0 +ϕ0) + 2z′(L0 +ϕ0)

(−εz′1(L0 + ϕ0)

z′′(L0 + ϕ0)

)
+ O(ε2)

and similarly for z
(
L0 − ϕ0 − εz′1(L0−ϕ0)

z′′(L0+ϕ0)

)
.

We also recall that z′(L0 +ϕ0) = z′(L0−ϕ0) = 0, and z(L0 +ϕ0)−z(L0−ϕ0) = 0.

Thus we rewrite (2.5) as

Z̃((L̃0, ϕ̃0)(ε), ε) = εz1(L0 + ϕ0)− εz1(L0 − ϕ0) + O(ε2)

so that Z̃((L̃0, ϕ̃0)(ε), ε) 6= 0 as long as z1(L0 + ϕ0) 6= z1(L0 − ϕ0). This completes
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the proof of (ii).

The key point of the above is that saddle equilibria corresponding to pitchfork

bifurcations from the κR-symmetric branches generically do not remain in the zero-

level set of Z once the κ symmetry is broken, so that the κR-symmetric branches

are themselves broken in a manner consistent with the Hamiltonian vector field

formulation described above.

6.2.2 Implications for particular forms of z

Systems such that z has a single maximum per period

Returning to the case where z has only one maximum and minimum per period, in

Figure 6.3 we illustrate one possible result of κ symmetry breaking in such a system.

In particular, using notation from the figure and Lemma 6.2.1, we have illustrated

the case where z1(A) > z1(A+π) and z1(a) > z1(a+π). This means that the saddle

equilibrium near (π
2
, A+ π

2
) will now lie in the region where Z̃ < 0, since

z1

((
A+

π

2

)
+
π

2

)
= z1(A+ π) < z1(A) = z1

((
A+

π

2

)
− π

2

)
.

Similarly, the equilibrium near (a− π
2
, π

2
) will lie in the region where Z̃ > 0, since

z1

((
a− π

2

)
+
π

2

)
= z1(a) > z1(a+ π) = z1(a− π) = z1

((
a− π

2

)
− π

2

)
.

Note that the 2π-periodicity of z1 implies that the sign of Z̃ for the saddle equi-

libria with L ∈ [0, π) fixes the sign of Z̃ for the saddle equilibria with L ∈ [π, 2π);

specifically, the sign will be opposite.
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Figure 6.3: Bifurcation diagram for a system as in Figure 6.2a after κ symmetry breaking. On
the left is the interpretation of the branches as zero energy solutions of a Hamiltonian system, as
in Figure 6.2b; in the center is the same diagram without the vector field interpretation; and on
the right the branches are shown in the (µ = z(L+ ϕ), L) plane. The R-symmetric branches, now
appearing as two branches in the right-hand figure are shown in dashed dark and light blue for
ϕ = 0 and π, respectively. The remains of the κR symmetric branch, which now form sections
of asymmetric branches, are shown in dotted orange. The portions of the asymmetric solution
branches that were already asymmetric branches in the unperturbed case are shown in solid green
and solid black to facilitate comparison of the diagrams.

Technically there are four possible generic bifurcation diagrams, one for each of

the four possible combinations of the sign of Z̃ at saddle equilibria near (π
2
, A+ π

2
) and

(π
2
, a− π

2
). However, as is clear from the preceding discussion, the sign combinations

(+,+) and (−,−) are equivalent under translation by π in L, which amounts to

swapping our definition of the ϕ = 0 and ϕ = π branches. This equivalence also holds

for the sign combinations (+,−) and (−,+). Furthermore, these two sets of “same

sign” and “opposite sign” bifurcation diagrams are in fact qualitatively equivalent as

both result in a series of alternating cross-connecting and self-connecting asymmetric

branches, each with two saddle nodes. In terms of the familiar bifurcation diagram

in the (µ, L) plane, self-connecting branches will appear as ‘S’ shaped curves and
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cross-connecting as ‘Z’ shaped curves for perturbations such that the sign of Z̃ is

the same [(+,+) or (−,−)] for saddle equilibria with L ∈ [0, π) near ϕ = π/2. The

opposite is true for perturbations such that the sign of Z̃ is (+,−) or (−,+). As

we will see below, when z has two or more maxima, different symmetry breaking

perturbations may result in distinct bifurcation diagrams, which are not reducible

via reflections or translations.

We note that these results are applicable to localized roll solutions of the one-

dimensional Swift–Hohenberg model

ut = −(1 + ∂2
x)

2u− µu+ νu3 − u5, x ∈ R (2.6)

with the addition of perturbative terms, regardless of whether these terms preserve

the variational structure. Indeed, we observe that these findings are entirely consis-

tent with the numerical results of Houghton and Knobloch, including the breaking

up of the odd parity branches, broadening of the snaking region, and appearance of

S and Z asymmetric branches.

Systems such that z has at least two maxima per period

We now turn to the somewhat more complicated situation where z(L) possesses two

maxima and minima per period π; of course the periodicity implies that maxima

and minima must occur in pairs.

Figure 6.4 shows a rendering of the resulting bifurcation structure for such a

z. Again the left and center panels show the phase ϕ along the x-axis the pulse

length L along the y-axis, while the right-hand figure shows the analogous plot to
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Figure 6.4: Bifurcation structure of a system characterized by π-periodic z possessing two distinct
maxima per period. Again, we illustrate the solution branches in the (ϕ,L) plane, both with
and without the vector field interpretation, as well as in the (µ = z(L + ϕ), L) plane, where
the actual bifurcation branches will be exponentially close in L to the ones shown. As before,
R-symmetric solution branches are shown in dashed blue, and κR-symmetric in dotted orange.
Particular asymmetric solution branches are shown in solid purple and green. For clarity, not all
asymmetric solution branches are shown in the right-most rendering; branches not shown on the
right are rendered in thin dotted gray in the center illustration. The light dashed horizontal lines
show the correspondence between the hyperbolic equilibria at A, a, B, b, etc. and the maxima and
minima on the right.

a typical bifurcation diagram. Once more, prior to perturbation, the R-symmetric

solutions at 0 and π coincide in the (µ = z(L+ϕ), L) plane, as do the κR-symmetric

solutions at π
2

and 3π
2

. Again to enable later comparisons, we show the right and

center diagrams for (ϕ,L) ∈ [0, π]× [0, 2π] even though all information is contained

in the [0, π
2
]× [0, π] quadrant.

We note that this form of z is observed for the planar stripe and spot patterns

seen in the cubic-quintic Swift–Hohenberg posed on a cylinder, i.e.,

ut = −(1 + ∂2
x + ∂2

y)
2u− µu+ νu3 − u5, (x, y) ∈ S1 × R (2.7)
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Figure 6.5: Bifurcation structure of the system illustrated in Figure 6.4, after the addition of
a κ symmetry breaking perturbative term causing the sign of Z to be the same at adjacent local
extrema. Again for clarity, only a selection of asymmetric solution branches are shown in the
right-most figure. The coloring and line styles from Figure 6.4 have been preserved to show the
portions of each solution branch arising from the original branches in the unperturbed case. Note
that although all branch segments bifurcating from the κR-symmetric branch remain dotted orange
in the center figure, not all segments are shown on the right.

where S1 = R/2LxZ for some Lx > 0, and that the branches in Figure 6.4 are indeed

consistent with the full bifurcation structure of the almost-planar stripe and spot

patterns in the cubic-quintic Swift–Hohenberg model, as reported in [3] and also

verified in Section 6.4 below.

Upon introduction of a perturbative term breaking the κ symmetry, we again

expect that the κR-symmetric branches will break up, with the saddle equilibria

generically moving outside the zero-level set of Z̃ due to the loss of π-periodicity

of z, i.e., due to the fact that generically z1(L0 + ϕ0) 6= z1(L0 − ϕ0). However, in

contrast to the single maximum system discussed above, here we find that we obtain

qualitatively different bifurcation diagrams depending on whether the new sign of Z̃
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at adjacent saddle equilibria matches or differs.

In particular, there are now sixteen possible generic bifurcation diagrams, one

for each of the possible combinations for the sign of Z̃ at saddle equilibria near

(π
2
, B − π

2
), (π

2
, b − π

2
), (π

2
, A + π

2
) and (π

2
, a + π

2
), where the labels correspond to

those used in Figure 6.4. Once again the 2π-periodicity of z1 implies that the saddle

equilibria with L ∈ [π, 2π) will have Z̃ of the opposite sign as the corresponding

saddle equilibria with L ∈ [0, π).

Noting that B and b are local (rather than global) extrema of the function z,

the biggest qualitative difference in possible bifurcation diagrams is between those in

which the saddle equilibria near (π
2
, B− π

2
) and (π

2
, b− π

2
) have Z̃ with the same sign,

versus those in which the sign of Z̃ is different. In the former case, the bifurcation

diagram for the perturbed system will possess isolas formed from the reorganization

of asymmetric and κR-symmetric branches, whereas in the latter the bifurcation

diagram will have self-connecting asymmetric branches with many saddle nodes, but

no isolas.

This distinction holds regardless of the sign of Z̃ at the remaining saddle equilib-

ria, i.e., those corresponding to global maxima and minima. Differences in the sign of

Z̃ for the saddle equilibria near (π
2
, A+ π

2
) and (π

2
, a+ π

2
) affect the number of saddle

nodes in each asymmetric branch, but do not affect the formation of isolas. We note

that, by inspection of the Hamiltonian vector field formulation, the exact number

of saddle nodes on any given bifurcation branch can be determined by counting the

number of tangencies to one of the vectors (±1,±1) in the (ϕ,L) plane.

In Figure 6.5, we illustrate the form the bifurcation diagram should take under

a perturbation such that z1 at adjacent local extrema B and b satisfies z1(B) >
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Figure 6.6: Symmetry breaking with the opposite relative movement of adjacent local extrema
from that displayed in Figure 6.5. Note that for clarity we no longer show a cross-connecting
asymmetric solution, but focus instead on one of the self-connecting asymmetric branch with 14
saddle nodes.

z1(B + π) and z1(b) > z1(b + π). This means that the saddle equilibrium near

(π
2
, B − π

2
) will now lie in the region where Z̃ > 0, since

z1

((
B − π

2

)
+
π

2

)
= z1(B) > z1(B + π) = z1(B − π) = z1

((
B − π

2

)
− π

2

)
.

The equilibrium near (π
2
, b− π

2
) will also lie in the region where Z̃ > 0, since

z1

((
b− π

2

)
+
π

2

)
= z1(b) > z1(b+ π) = z1(b− π) = z1

((
b− π

2

)
− π

2

)
.

Again we observe that whether z1(B) > z1(B + π) and z1(b) > z1(b + π) or the

opposite inequalities hold is immaterial as long as they are both in the same direction.

Identifying these two cases amounts to reversing our conventions for defining ϕ = 0
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and ϕ = π. In Section 6.4, we demonstrate the formation of isolas numerically for

the Swift–Hohenberg model, with symmetry-breaking perturbation εu2.

In contrast, in the case where the perturbation causes one local extremum to

move up and the other to move down relative to those at distance π, we do not

expect isolas, but rather anticipate a complicated asymmetric branch possessing 14

saddle nodes, as shown in Figure 6.6. In particular, we illustrate the case where

z1(B) < z1(B + π) and z1(b) > z1(b + π), along with z1(A) > z1(A + π) and

z1(a) < z1(a + π). As seen in Section 6.4, this type of behavior is observed in the

Swift–Hohenberg model with the perturbative term εu4.

This sort of analysis can be continued for z possessing more than two maxima

per period. We reiterate that in order for symmetry breaking to produce isolas, a

minimum of two maxima (and minima) are required prior to the introduction of

symmetry breaking terms.

6.3 Full a priori characterization of perturbed bi-

furcation diagrams

We now derive conditions that allow us to predict bifurcation diagrams and drift

speeds upon adding perturbative terms to the underlying system; these conditions

rely on evaluation of the perturbative terms along solutions of the unperturbed sys-

tem. We begin by examining the effects of breaking variational structure, then revisit

perturbations breaking Z2 symmetry, and finally look at perturbations breaking re-

versibility.
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6.3.1 Breaking variational structure

We begin by considering the drift speed c, which will generically be nonzero for the

asymmetric branches of the perturbed system in the case where the perturbation

G(u) is nonvariational:

Lemma 6.3.1. Assume that u(x−ct) is a localized solution of ut = −∇E(u)+G(u),

where we assume that

E(u) =

∫
R
L(u(x), ux(x), uxx(x))dx

and

[G(u)](x) = g(u, ux, uxx, uxxx). (3.1)

Then c = − 1
||ux||2

L2
〈ux, G(u)〉L2.

Proof. The function u(x) satisfies −∇E(u) + cux + G(u) = 0. Taking the scalar

product with ux we get

0 =−
∫
R

(
Lu + Lux

∂

∂x
+ Luxx

∂2

∂x2

)
uxdx+ c||ux||2L2

+

∫
R
ux(x)g(u(x), ux(x), uxx(x), uxxx(x))dx

=−
∫
R

d

dx
L(u(x), ux(x), uxx(x))dx+ c||ux||2L2

+

∫
R
ux(x)g(u(x), ux(x), uxx(x), uxxx(x))dx

=c||ux||2L2 +

∫
R
ux(x)g(u(x), ux(x), uxx(x), uxxx(x))dx,

where we have used the fact that u is localized to conclude that
∫

d
dx
L(u(x), ux(x), uxx(x)) =

0. Hence, c = − 1
||ux||2

L2
〈ux, G(u)〉L2 .
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Thus, given a perturbation εG(u), the speed cε along a perturbed branch uε will

be

cε = − 1

||uεx||2L2

〈uεx, εG(uε)〉L2 .

Evaluating this directly requires knowledge of the perturbed solution profiles. How-

ever, for ε small, we can predict the speeds of the perturbed solutions using only the

original (unperturbed) solution profiles since

dc

dε

∣∣∣∣
ε=0

= − 1

||u0
x||2L2

〈
u0
x, G(u0)

〉
L2 , (3.2)

where the right-hand side is computed for the unperturbed solutions. We now record

a few consequences of this expression.

First, we reiterate that any solution which respects a reverser (either R or κR)

must necessarily be stationary. However, as we will see explicitly in Section 6.4,

once the reverser κR is broken, a solution may be very close to respecting this (now

nonexistent) reverser, and yet have a relatively large drift.

Second, we observe that drift speeds approach zero for reversible perturbations

that break the variational structure as we proceed up the bifurcation diagram: if

we decompose the inner products into contributions from the tails and the periodic

orbits, we can write

||u0
x||2L2 ≈ 2C1 +N

∫ 2π

0

u0
x(x)2dx,

where N is the number of oscillations and C1 arises from the integral over the tails

and is independent of N; similarly

〈
u0
x, G(u0)

〉
L2 ≈ 2C2 +N

∫ 2π

0

u0
x(x)g(u0(x), u0

x(x), u0
xx(x), u0

xxx(x))dx,
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where again C2 arises from the tails. Thus

dc

dε
≈
∫ 2π

0
u0
x(x)g(u0(x), u0

x(x), u0
xx(x), u0

xxx(x))dx∫ 2π

0
u0
x(x)2dx

+ O

(
1

N

)
.

However, along the wavetrains,
∫ 2π

0
u0
x(x)g(u0(x), u0

x(x), u0
xx(x), u0

xxx(x))dx will in

fact be zero, as wave trains and the perturbation g are reversible, and we conclude

that dc/dε indeed decays with rate at least 1/N .

Finally, we remark that additional insight into the drift speed may be gained by

approaching the problem via the spatial Hamiltonian, and verifying that we arrive

at the same formula for the speed c. We do this for the one-dimensional Swift–

Hohenberg equation, as we have an explicit expression for its Hamiltonian H. The

main point we take away from the computation is that the speed is selected to

guarantee spatial energy balance across the pattern. We start by writing

ut = −(1 + ∂2
x)

2u− µu+ cux + νu3 − u5 + εG(u).

We define U = (U0, U1, U2, U3) = (u, u′, u′′, u′′′) so that the vector field is given by

Ux = F (U) + (c(U1) + εg(U0, U1, U2, U3)) · (0 0 0 1)ᵀ

with

F (U) =



0 1 0 0

0 0 1 0

0 0 0 1

−(1 + µ) 0 −2 0





U0

U1

U2

U3


+



0

0

0

νU3
0 − U5

0


.
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The spatial Hamiltonian is given by

H(U) = U1U3 −
U2

2

2
+ U2

1 +
(1 + µ)U2

0

2
− νU4

0

4
+
U6

0

6
.

In order to balance the Hamiltonian across a localized pattern U(x), we should

have

0 = H(U(+∞))−H(U(−∞))

=

∫
R

d

dx
H(U(x))dx

=

∫
R
∇H(U(x)) · Ux(x)dx

=

∫
R
∇H(U(x)) · (F (U(x)) + [c(U1(x)) + εg(U0(x), U1(x), U2(x), U3(x))] · (0 0 0 1)ᵀ)dx

=

∫
R



(1 + µ)U0(x)− νU0(x)3 + U0(x)5

2U1(x) + U3(x)

−U2(x)

U1(x)



ᵀ

×

×


F (U(x)) + [c(U1(x)) + εg(U0(x), U1(x), U2(x), U3(x))] ·



0

0

0

1




dx

= ε

∫
R
U1(x)g(U0(x), U1(x), U2(x), U3(x))dx+ c

∫
R
U1(x)2dx,

where we use the fact that ∇H(U(x)) · F (U(x)) = 0. Our final expression is, of

course, the same expression we arrived at originally in Lemma 6.3.1. Thus we have

the alternative interpretation that the speed is determined by the need to balance

the spatial energy across the pattern.
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6.3.2 Breaking Z2 symmetry

The analysis in Section 6.2 rigorously predicts the results of symmetry breaking and

allows us to categorize all possible scenarios resulting from different forms of z̃. It

does not, however, immediately provide a means to predict the particular reorga-

nization resulting from a given perturbative term. In the following, we provide a

method for predicting the full bifurcation diagram induced by a particular pertur-

bation without the need for any computations on the perturbed system. For clarity

we carry out our analysis for the Swift–Hohenberg model equation in one dimension,

but it should be clear how to adapt this to more general settings.

We define

F (u, µ, c, ε) := −(1 + ∂2
x)

2u− µu+ cux + bu3 − u5 + εG(u) (3.3)

where the perturbative term G(u) is of the form given in (3.1), e.g., u2 or u2
x, and

we have added the cux term to account for the fact that localized solutions may now

drift so we may need to view them in a moving frame. We can then parameterize a

solution branch for the unperturbed system as (u0(s), µ0(s)), where s is, for instance,

arc length along the branch, so that

F (u0(s), µ0(s), 0, 0) = 0

for all s. We denote the tangent vector to this solution branch by

(u0
s, µ

0
s) :=

d

ds
(u0, µ0)(s).

For ε nonzero, the persistingR-symmetric branch will be given by (uε(s), µε(s), cε(s)),
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which satisfies

F (uε(s), µε(s), cε(s), ε) = 0.

Differentiating this with respect to ε and evaluating at ε = 0, we obtain

Fuu
0
ε + Fµµ

0
ε + Fcc

0
ε + Fε = 0, (3.4)

where the derivatives of F are evaluated along (u0, µ0, c0). Whether the perturbation

G(u) is variational or not, as shown in Lemma 6.2.1, the only information we need

to complete the full bifurcation diagram of the perturbed system is local information

on z1 at L0 + ϕ0 and L0 − ϕ0. Thus we are only interested in what we will refer to

as the “splitting distances,” i.e., the difference between the values of µ at the saddle

nodes of the unperturbed and perturbedR-symmetric branches, which persist for any

perturbation preserving the reverser R. Consequently, we only require computations

along the R-symmetric branch, which continues to have c = 0 for ε 6= 0 as long as

the reverser R persists. Defining L = −(1 + ∂2
x)

2 − µ + 3bu2 − 5u4 for a particular

solution (u, µ) = (u0, µ0), we see that

 Lu
0
ε − u0µ0

ε +G(u0) = 0

〈u0
ε, u

0
s〉L2 + µ0

εµ
0
s = 0.

(3.5)

Conversely, the system  Lũ− u
0µ̃+G(u0) = 0

〈ũ, µ0
s〉L2 + µ̃µ0

s = 0
(3.6)

has generically a unique solution, which is therefore (ũ, µ̃) = (u0
ε, µ

0
ε). Thus the offset

along the solution branch will be given by µ0
εε + O(ε2). We can find µ0

ε anywhere

along the solution branch by solving the linear system (3.6).

Alternatively, we note that, at a saddle node, we have µ0
s = 0 so that Lu0

s = 0;
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since L is self-adjoint in L2, applying 〈u0
s, ·〉L2 to the first equation in (3.5) yields

−
〈
u0
s, u

0µ0
ε

〉
L2 +

〈
u0
s, G(u0)

〉
L2 = 0

or

µ0
ε =
〈u0

s, G(u0)〉L2

〈u0
s, u

0〉L2

, Lu0
s = 0. (3.7)

Thus we need only to calculate a solution (u0, µ0) and its associated eigenfunction

u0
s to compute the offset at a saddle node. While the method of directly solving the

linear system (3.6) is somewhat more robust numerically, the latter method given by

(3.7) provides helpful insight, particularly in the one-dimensional case, and we refer

to Section 6.4 for computations.

We emphasize that, whichever method we use, this calculation allows us to de-

scribe the full bifurcation diagram without the need for any computations on the

perturbed system. The quantity µ0
ε corresponds to z1 as defined in Lemma 6.2.1,

which in turn determines which class of bifurcation diagram the perturbed system

will exhibit. For example, in the case of a system with two left and two right saddle

nodes per period π, we have seen that the formation of isolas depends on the relative

signs of the difference in offsets for the inner saddle nodes at distance π. Indicating

these nodes by B,B + π, b, b + π as in Section 6.2.2, isolas will be formed if the

quantity

δZ2 = (z1(B)− z1(B + π))(z1(b)− z1(b+ π))

is greater than zero, but not if δZ2 is less than zero.

Finally, while we know that for any perturbation G(u) preserving Z2 symmetry,

the function z1 must remain π-periodic and therefore δZ2 will be zero, it is instructive

to understand heuristically why this quantity is zero for such a perturbation. Noting
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that the eigenfunctions are exponentially localized at the interfaces, and that at

the interfaces solutions at distance π are related by κ symmetry, we see that for

perturbations such that G(κu) = κG(u), we will have z1(L) = z1(L + π) for any

L corresponding to a saddle node. Thus we will have δZ2 = 0 for a perturbation

respecting κ symmetry so that the bifurcation diagram is topologically preserved.

6.3.3 Breaking reversibility

As mentioned in section 2.2, front solutions uf (x) and back solutions ub(x) in re-

versible systems are pairwise related via ub(x) = uf (−x). In other words, the func-

tion µ = z(L) that connects interface length and parameter is the same for the front

uf (x) and the back ub(x) = uf (−x). This is no longer the case when perturbations

of amplitude ε are added to the system that break the reversibility. Both fronts

and backs will persist but they will, in general, no longer be related by reflection

symmetry: in particular, the existence region of fronts and backs are described by

functions zf,b(L, ε) = z(L)+εwf,b(L)+O(ε2), respectively, where generally wf 6≡ wb.

We assume that z(L) has precisely one minimum at L = Lm and one maximum at

L = LM , both therefore corresponding to saddle-nodes in the unperturbed bifurca-

tion diagram. As shown in [37, 59], there are two qualitatively different bifurcation

diagrams for ε 6= 0 that depend on whether the quantity

δrev = (wf (LM)− wb(LM))(wf (Lm)− wb(Lm))

is positive or negative. In both references, explicit perturbations, found by trial and

error, were presented that yield either inequality. Here, we demonstrate that we

can predict the sign of this quality a priori, using numerical computations of the

unperturbed system only.
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For the sake of clarity, we focus once more on the one-dimensional quadratic-cubic

Swift–Hohenberg equation given by

ut = −(1 + ∂2
x)

2u− µu+ bu2 − u3 + εg(u, ux, uxx, uxxx),

where we added a perturbation g that breaks the reversibility operation x 7→ −x.

We can now determine the offset µ′ = dµ/ε(0) = wf (LM,m) as before separately at

the left and right saddle-node bifurcations via

wf (LM,m) =

〈
vf , g(uf (·), u′f (·), u′′f (·), u′′′f (·))

〉
L2

〈vf , uf〉L2

,

where uf is the unperturbed front solution at the left or right saddle-node, while

vf is the associated eigenfunction of the linearization of the unperturbed Swift–

Hohenberg equation at ε = 0. A similar expression holds for wb(LM,m). Noting that

the unperturbed front uf and back ub as well as the eigenfunctions vf and vb are

related by symmetry, it is easy to show that we have

wf (LM,m)− wb(LM,m) =〈
vf , [g(uf (·), u′f (·), u′′f (·), u′′′f (·))− g(uf (·),−u′f (·), u′′f (·),−u′′′f (·))]

〉
L2

〈vf , uf〉L2

, (3.8)

again with the convention that uf and vf are calculated at the folds corresponding

to L = LM,m.

Equation (3.8) can now be evaluated by computing uf and vf numerically. Recall

that symmetric localized patterns of length 2L arise by gluing a front and a back

together. Hence, computing half of a localized pattern on a sufficiently large domain

gives an accurate approximation of the front up to terms that are exponentially small

in L.
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6.4 Numerical confirmation of predictions

We now present several numerical studies supporting our analytical results. We

examine perturbations breaking Z2 symmetry, variational structure, and reversibility

using the Swift–Hohenberg equations posed on both the line and the plane.

6.4.1 1D Swift–Hohenberg

In this section we illustrate how our analysis can be used to understand previously

published work, and present new results. In Sections 6.4.1 and 6.4.1 we consider the

family of equations

ut = −(1 + ∂2
x)

2u− µu+ νu3 − u5 + εG(u) (4.1)

posed on the real line, while in Section 6.4.1 we consider

ut = −(1 + ∂2
x)

2u− µu+ νu2 − u3 + εG(u) (4.2)

again posed on the real line, with a particular form for G(u) introduced in [37].

Breaking Z2 symmetry

The bifurcation diagram for (4.1) with G(u) = u2 was published in [26], and we have

already seen how our analysis allows us to understand the form of the diagram. In

addition to allowing us to predict the topological form of the bifurcation diagram

given any perturbation, our approach has the added benefit of allowing us to under-
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Figure 6.7: Four successive saddle nodes, i.e., one full 2π-period along the snaking R-symmetric
branch, for the one-dimensional Swift–Hohenberg equation without perturbation. Solution u(x) in
solid blue, saddle node eigenfunction v(x) in solid orange, G(u) = u2 in dashed green and G(u) = u4

in dotted purple.

stand particular features, such as the numerically observed unequal splitting on the

left and right sides of snaking bifurcation diagrams, i.e., the fact that saddle nodes

shift more on one side of the snaking diagram than on the other side upon introduc-

tion of symmetry breaking perturbative terms. Houghton and Knobloch noted this

in their numerical study of symmetry-breaking in the one-dimensional cubic-quintic

Swift–Hohenberg model, and we can see this in the numerically computed bifurca-

tion diagrams shown in Figures 6.12a and 6.12b (or in Table 6.1) in Section 6.4.2,

which exhibit greater displacement of the outer saddle nodes on the left compared

to those on the right.

In Figure 6.7 we show four successive saddle nodes for the one-dimensional cubic-

quintic Swift–Hohenberg equation prior to perturbation. We see that the solution

u(x) at successive left-hand saddle nodes is related by u 7→ −u symmetry, and

similarly on the right. We also graph the saddle node eigenfunction v(x) and the

perturbative terms u2(x) and u4(x). Recalling that the offset will be determined
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Figure 6.8: The same four successive saddle nodes as in Figure 6.7, but now showing the pointwise
product of the eigenfunction v(x) with u(x), u2(x), and u4(x). The function (uv)(x) is shown in
solid blue, (u2v)(x) in dashed green and (u4v)(x) in dotted purple.

by the ratio of the inner product 〈v,G(u)〉L2 to 〈v, u〉L2 , in Figure 6.8 we show the

pointwise products of v(x) with u(x), u2(x), and u4(x). We observe that at the left

saddle node, the peaks of (u2v)(x) and (u4v)(x) are approximately the same size,

leading to a small value for 〈v,G(u)〉L2 , which results in a smaller offset. On the other

hand, for the saddle nodes on the right, u2 and u4 both exhibit a dominant peak,

so that 〈v,G(u)〉L2 is of similar order to 〈v, u〉L2 , resulting in a larger offset. The

difference between the signs of the offsets for G(u) = u2 and G(u) = u4 is somewhat

more subtle, though as we have noted already, in the one-dimensional case all offsets

lead to qualitatively similar bifurcation diagrams.

Breaking variational structure

We next illustrate how our results can be used to understand the effects of the

perturbation εu2
x, which breaks both the Z2 symmetry and the variational structure
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Figure 6.9: Left: Bifurcation diagram for the one-dimensional cubic-quintic Swift–Hohenberg
equation, with ε = 0; the R-symmetric branch is shown in dashed blue, κR-symmetric branch in
dotted orange, and four asymmetric branches in solid green. Saddle nodes are labeled (a) - (h)
for comparison with right panel as well as left and right panels in Figure 6.10. Right: dc

dε for the
perturbation G(u) = u2x, computed along the unperturbed branches shown at left: R-symmetric
in dashed blue at 0; κR-symmetric in dotted light and dark orange for the two profiles that drift
in opposite directions; and asymmetric branches in solid green and purple for the two sets of two
profiles that drift in opposite directions. Labels (a) - (h) correspond to the saddle nodes indicated
at left.
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unperturbed κR-symmetric branch. Dashed green: computed value of dc
dε along two successive

unperturbed asymmetric branches. Labels (a) - (d) correspond to the saddle nodes indicated in
Figure 6.9.
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of (4.1). The bifurcation diagram for this equation was also studied in [26].

In Figure 6.9 on the left we show a partial bifurcation diagram for (4.1), and

on the right of Figure 6.9 we show the predicted values of ∂c
∂ε

with the perturbative

term εG(u) = εu2
x for the same set of branches. The latter are computed from the

unperturbed solution profiles using (3.2). The R-symmetric branch consisting of two

solutions will not move: though the variational structure is broken, the reverser R

remains upon introduction of ε. Conversely, the solutions along the κR-symmetric

branch will begin to move since this reverser will no longer exist. We note that these

observations are automatically encoded in the formula (3.2), and do not require any

special enforcement. We also observe that the drift speeds are predicted to be largest

low on the bifurcation diagram, and will decrease moving up along the bifurcation

diagram, as noted in Section 6.3.1. With the exception of isolated solutions with

zero predicted drift speed, we also further observe that at each point along the κR

symmetric-branch, one solution will begin to drift with positive speed and the other

with equal and opposite speed (i.e., one will drift left and the other right.) This is

actually particular to the perturbation: the solutions are related by κ : u 7→ −u, and

in this case G(κu) = G(u). This also explains the alternating positive and negative

signs of the drift speeds along the κR solution branch: the fronts at distance π

(successive saddle nodes on the same side assuming one maximum per period π) are

related by κ symmetry, and thus must have opposite signs. Turning to the four sets

of asymmetric solutions along each of the asymmetric branches, two are predicted

to move with positive speed (green branches) and two with negative speed of equal

magnitude (purple branches), again due to their relationships via symmetry. These

speeds decrease moving up the bifurcation diagram, but we note that branches come

in pairs, with the speeds along the first approximately mirroring the speeds along

the next one up. Of course, on each asymmetric branch, the solutions near the R
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branch will have drift speed near zero, while the solutions near a κR branch will

match the speed of the branch to which they connect.

In Figure 6.10, we first show the perturbed bifurcation diagram with ε = .01,

and then compare the predictions for ∂c
∂ε

from the right panel of Figure 6.9 with

the drift speeds computed by direct numerical continuation. For clarity, we show the

comparison for a single asymmetric branch: the drift speed c along the branch divided

by ε = 0.01 is shown in solid green, while the predicted values of ∂c
∂ε

computed along

the relevant κR-symmetric and asymmetric branches are shown in dotted orange and

dashed green, respectively. We further note that there is no relationship between

distance from κR symmetry and drift speed: while solutions along the portion of

the asymmetric branch derived from the κR-symmetric branch will remain close

to possessing κR symmetry, they will have relatively large drift speeds. See also

Figure 6.13 for plots of the distance from κR along asymmetric branches in the

planar Swift–Hohenberg system.

Breaking reversibility

Snaking systems without reversibility have been studied both in perturbative [37]

and nonperturbative [59] regimes. Here we demonstrate that the methods described

in Section 6.3.3 can be used to predict whether snaking or isolas will be observed.

As a particular application, the system

ut = −(1 + ∂2
x)

2u− µu+ νu2 − u3 + ε(τ(3uxu
2
xx + u2

xuxxx) + (1− τ)(3uxuxx)) (4.3)
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was considered in [37]2 with ν = 2 and ε = 0.3. It was noted there that the term

3uxu
2
xx + u2

xuxxx alone leads to isolas, and 3uxuxx alone to snaking. By repeatedly

computing the full bifurcation diagram for many values of τ (with ν = 2 and ε = 0.3

fixed), it was determined in [37] that a transition between snaking and isolas occurs

for τ ≈ 0.1. Here we use our methods to predict the value of τ at which the switch

from snaking to isolas occurs based only on the unperturbed bifurcation diagram,

assuming that ε is small so that we are in a perturbative setting. We take the further

step of computing this transition for a range of values of ν. Using Auto07p, we

computed the unperturbed bifurcation diagram for ν = 1.6, and then continued

two successive saddle nodes in µ and ν to allow computation of the transition point

across a range of ν values. We then used the two saddle node solutions as described

in Section 6.3.3 to predict the value of τ at which the transition from snaking to isolas

should occur for a range of values of ν. This curve is plotted in the center panel of

Figure 6.11. We also directly computed the bifurcation diagrams for selected values

of ν and τ to confirm that they match our predictions. We note that the value of τ

we compute for ν = 2 is larger than that found in [37]; however, the value of ε used

there is outside the perturbative regime.

6.4.2 Planar Swift–Hohenberg

In this section we will be interested in planar stripe and spot patterns of the cubic-

quintic Swift–Hohenberg equation:

ut = −(1 + ∂2
x + ∂2

y)
2u− µu+ νu3 − u5, (x, y) ∈ S1 × R (4.4)

2We use a minus sign in front of the µu term in contrast to [37] so that the region of interest is
µ > 0 rather than µ < 0. We also use ε instead of λ for consistency with the rest of our paper.
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Figure 6.11: Center panel: Value of τ at which transition from snaking to isolas occurs as a
function of ν, as predicted from the unperturbed bifurcation diagram. Side panels: Bifurcation
diagrams for (4.3) with ε = 0.01 and values of ν and τ as indicated above each plot and by x’s in
the center panel, confirming predictions.

where S1 = R/2LxZ for some Lx > 0.

We begin by observing that these patterns have the bifurcation structure dia-

grammed in Figure 6.4 of Section 6.2 above; see Figure 3.3 in Section 3.4. We are

not certain why the stripe and spot patterns possess a function z with two maxima

and minima per period π; we believe these patterns arise in a transverse pitchfork

bifurcation which may be related to secondary snaking, but have left this line of

investigation for future work.

Breaking Z2 symmetry

As noted in Section 6.3.2, computations made only on an unperturbed snaking sys-

tem allow us to predict the bifurcation diagram resulting from any particular pertur-

bative term. Furthermore, having performed these calculations once, the marginal

cost of analyzing the result of any number of alternative perturbations is minimal.

In Table 6.1 we show the results of solving for µ0
ε using the linear system (3.6):
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G(u) = u2 G(u) = u4

µ at saddle node observed offset calculated offset observed offset calculated offset
0.7084 -0.4472 -0.4322 -0.2996 -0.2833
0.6156 -0.0426 -0.0470 0.1667 0.1612
0.7218 -0.4713 -0.4668 -0.3581 -0.3585
0.6294 0.1231 0.1235 -0.2331 -0.2237
0.7084 0.4361 0.4269 0.2669 0.2883
0.6156 0.0611 0.0514 -0.1508 -0.1590
0.7218 0.4833 0.4669 0.3581 0.3575
0.6294 -0.1352 -0.1228 0.2083 0.2241

Table 6.1: Observed and calculated offsets over 8 saddle nodes, i.e., a full 2π period of the
function z, for the planar stripe and spot pattern of (4.4), with additional perturbative term εG(u)
as indicated. The values of ε used in the continuation were ε = −0.0108 for G(u) = u2, and
ε = 0.01008 for G(u) = u4.

the calculated offset is the value of µ0
ε, computed by solving the linear system (3.6)

at a saved solution (u, µ) near each saddle node in the original ε = 0 bifurcation

diagram. The observed offset is the difference between the original µ at the saddle

node and that seen in numerical continuation for the perturbed system, divided by

the ε used in the continuation. We note that finer meshes (e.g., 16 Fourier modes

instead of 8) and more accurate calculation of the saddle node locations lead to

somewhat higher accuracy, but since there is already some difference in the absolute

value of the offsets at successive saddle nodes at distance π, e.g., between the second

and sixth saddle nodes in Table 1, there are nonlinear effects which would necessitate

the inclusion of higher order derivatives in ε for a complete match. Nonetheless, we

see that the agreement is quite good.

For the purposes of predicting the form of the bifurcation structure, we only

need the sign of the offset at the saddle nodes. In particular, to decide whether

our perturbed bifurcation diagram will feature isolas, the question is simply whether

adjacent inner saddle nodes are offset in the same direction. Thus we see that with
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(a) Left: Partial bifurcation diagram for (4.5) with ε = −0.01, showing one of two R-symmetric
branches in dashed blue, an isola in solid purple, and a cross-connecting asymmetric branch in
solid green. The cross-connecting asymmetric branch extends beyond the R-symmetric branch as
it terminates at the otherR-symmetric branch with phase ϕ = π (not shown.) Right: Reproduction
of the predicted bifurcation diagram from Figure 6.5.
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(b) Left: Partial bifurcation diagram for (4.6) with ε = −0.01, showing one of two R-symmetric
branches in dashed blue, and a self-connecting asymmetric branch in solid green. Right: Repro-
duction of the predicted bifurcation diagram from Figure 6.6.

Figure 6.12: Comparison of numerically computed bifurcation diagrams for (4.5) and (4.6) with
predicted bifurcation diagrams according to the analysis in Section 6.2. Vertical lines indicate the
correspondence between the extrema (saddle nodes) of the R-symmetric branch and the saddle
nodes of the asymmetric branches, including the isola.
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the perturbative term εu2, i.e.,

ut = −(1 + ∆)2u− µu+ νu3 − u5 + εu2, (4.5)

adjacent inner saddle nodes at µ = 0.7084 and µ = 0.6156 are offset in the same

direction, and thus the perturbed bifurcation diagram will be of the form depicted

in Figure 6.5 of Section 6.2. By direct numerical continuation, we find that we do

indeed observe the predicted isolas bifurcating where we expect them, as shown in

Figure 6.12a, as well as Figure 6.13, left panel. We can also calculate the distance

from κR symmetry for each solution lying along the branch; doing this for the

isola, we note that the middle portion is indeed almost perfectly κR symmetric, as

expected; see Figure 6.13, center and right panels.

On the other hand, our calculated offsets from Table 6.1 show that the pertur-

bative term εu4 causes adjacent saddle equilibria to move in opposite directions,

or equivalently that one local extremum moves up while the other to moves down

relative to the local extrema at distance π. Consequently this bifurcation diagram

corresponds to the schematic displayed in Figure 6.6. In Figure 6.12b we show the

results of numerical continuation on the planar stripe and spot patterns with per-

turbative term εu4, i.e.,

ut = −(1 + ∆)2u− µu+ νu3 − u5 + εu4 (4.6)

and see that bifurcation diagram has the anticipated form.
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Figure 6.13: Left: For comparison purposes, the isola for (4.5) with ε = −0.01 is shown in solid
purple, along with the original (ε = 0) κR-symmetric branch in dotted orange, and the original
(ε = 0) self-connecting asymmetric branch in dashed gray. Center: Another view of the isola,
demonstrating that the symmetries are consistent with construction by combining a portion of
the κR symmetric solution branch with an asymmetric solution branch. The distance from κR-
symmetry is computed as the L2 norm of the difference between a given solution profile and the
profile obtained by flipping across the y-axis, shifting by π in the x-direction, and multiplying by
−1. Due to the approximate translation invariance of the solutions, this difference is minimized
over translations in y. Right: A view of the cross-connecting branch found above, also consistent
with construction via combination of κR-symmetric and asymmetric branches.
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Figure 6.14: Comparison of predicted and observed speeds for stripe and spot solutions to (4.7).
The left panel corresponds to a self-connecting asymmetric branch, while the right panel corresponds
to a cross-connecting asymmetric branch. Dashed lines indicate predicted speeds calculated from
the unperturbed solution branches via (3.2), and solid lines indicate speeds observed via numerical
continuation with ε = 0.01. Purple and green correspond to solutions on either side of the pitchfork
bifurcations.
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Figure 6.15: Computed speed (solid purple) via numerical continuation along a newly formed
isola, and predicted speeds from the appropriate original asymmetric branch (dashed grey) and
relevant portion of the κR-symmetric branch (dotted orange), for the system (4.8) with ε = 0.01.

Breaking variational structure

Turning to perturbations which break the variational structure, we first consider the

perturbed system

ut = −(1 + ∆)2u− µu+ νu3 − u5 + εuu2
x, (4.7)

which breaks the variational structure of (4.4) without breaking the additional κ

symmetry. We therefore expect no changes to the topological structure of the bifur-

cation diagram of localized stripe and spot solutions as a result of the perturbative

term, and indeed see none (not shown.) However, we expect that the asymmetric

solutions will begin to drift. In Figure 6.14 we plot the predicted and observed drift

speeds for solutions along self-connecting and cross-connecting asymmetric branches;

in each case we see excellent agreement.
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We next consider the perturbed system

ut = −(1 + ∆)2u− µu+ νu3 − u5 + εu2
x, (4.8)

which breaks both the variational structure of (4.4) as well as the additional κ

symmetry. Using (3.7) computed along the R-symmetric branch of stripe and spot

solutions, we find that the perturbation u2
x will lead to the formation of isolas, and

in Figure 6.15 we compare the drift speed observed via numerical continuation along

such an isola with the speeds predicted by evaluating (3.2) along the appropriate

sections of the unperturbed κR-symmetric and asymmetric branches. There is of

course some difference in the speeds due to the (anticipated) branch reorganization

at the outer limits of the isola, but we again see that the agreement is quite good.



Chapter Seven

Conclusion
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In the preceding, we have rigorously shown that both symmetric and asymmetric

solutions may be constructed by combining front and back solutions, and that the

resulting localized solutions are exponentially close in the length L of the patterned

region to the underlying fronts and backs. We have also illustrated this construction

numerically.

We then used this formulation to demonstrate that in the right half plane, eigen-

values of the localized solution are exponentially close in L to those of the front and

back, and are added with multiplicity. Consequently, if the underlying front and

back have no eigenvalues in the open right half plane, the only possible scenario

leading to eigenvalues of the localized solution in the open right half plane would be

the creation of a pair eigenvalues near the origin, assuming that the front and back

each have simple translation eigenvalues. This is the situation for monotone pulses,

but we show it does not occur here.

To address this last point, we constructed an extended Evans function of the front,

necessitated by the fact that the essential spectrum of the periodic solution extends

up to the imaginary axis. We then demonstrated that there is a single eigenvalue of

the localized solution in the closed right half plane near λ = 0, which consequently

sits at λ = 0 due to translation invariance, and no additional eigenvalues are created

for the localized solution near 0. In summary, we have shown that if the front and

back have no eigenvalues in the open right half plane, then neither do the localized

solutions.

Finally, we have predicted on analytical grounds the evolution of localized snaking

solutions and bifurcation branches in the presence of perturbative terms, and pro-

vided a new approach to the a priori prediction of the effects of perturbative terms,

including predicting the drift speeds of one and two-dimensional patterns in the pres-
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ence of perturbations breaking variational structure. We have used this method, or

collection of related methods, in a number of numerical demonstrations.

One interesting line of inquiry raised in the preceding concerns the appearance

of numerically computed spectra, in which eigenvalues persist upon entering the

essential spectrum of the wave trains, as was seen in [3, 8], and here in Figures 4.3, for

example. As noted previously, this behavior is unexpected in the context of [31, 32].

We have provided an initial explanation of this phenomenon, which is consistent

both qualitatively and quantitatively with the observed numerical behavior, and we

believe that the framework provided in Chapter 5 is the appropriate one in which

to address this phenomenon. However, our current understanding does yet not seem

sufficient to predict how systems will behave upon perturbation, for example, or to

categorize which systems generically do or do not support this type of behavior.

Moving beyond the present work, localized hexagon patches (see, for example,

[41] and Figure 1.9) and other fully localized structures in two or higher dimensions

remain challenging phenomena where even the bifurcation structures remain poorly

understood. There is numerical and theoretical support for the role of Bravais-Miller

indices of interfaces between patterned and homogeneous states in determining the

snaking limits of the bifurcation diagrams; see again [41], as well as [39], the latter

of which employs an asymptotics beyond all orders approach. Nonetheless, rigorous

analysis of fully localized structures in multiple dimensions seems to require a wholly

new mathematical approach, and it is not yet clear what such an approach would be,

though very recent advances replacing spatial dynamics techniques with Fredholm

operator operator analysis, e.g., [22], may enable progress in this direction. At the

same time, advances in computing power should make the numerical computation

of bifurcation diagrams for fully localized structures less onerous, which may lead to

new insights.



Appendix A

Foundational Theorems,

Definitions and Formulae
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A.1 Exponential dichotomies

Definition 1.1.1. Consider the system

ux = A(x, λ)u, (1.1)

with (u, λ) ∈ Cn×C, x ∈ R and A(·, λ) ∈ C0(R,Cn×n). We denote the evolution op-

erator associated with (1.1) by Φ(x, y;λ). For a fixed λ = λ∗, and I = R+,R−, or R

we say that (1.1) has an exponential dichotomy on I if the following holds: there

exist constants C > 0 and αs < 0 < αu and projections P (x) defined and continuous

for x ∈ I such that

• With Φs(x, y;λ∗) := P (x)Φ(x, y;λ∗),

|Φs(x, y;λ∗)| ≤ Ceα
s|x−y|, x ≥ y, x, y ∈ I. (1.2)

• With Φu(x, y;λ∗) := (id− P (x))Φ(x, y, λ∗),

|Φu(x, y;λ∗)| ≤ Ce−α
u|x−y|, x ≤ y, x, y ∈ I. (1.3)

• The projections commute with the evolution operators, i.e., Φ(x, y)P (y) =

P (x)Φ(x, y), so that

Φs(x, y)u0 ∈ Rg(P (x)), x ≥ y, x, y ∈ I (1.4)

Φu(x, y)u0 ∈ N(P (x)), x ≤ y, x, y ∈ I. (1.5)

The existence of exponential dichotomies are a useful tool in both existence and

stability results. As such, we consider exponential dichotomies with dependence
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either: (1) on a general system parameter, e.g., µ rather than λ, in which case we

assume some smoothness of A in the parameter(s) but generally not analyticity; or

(2) on a parameter λ arising from a stability problem, in which case we enforce

analyticity of A in λ.

Remark 1.1.2. If (1.1) has an exponential dichotomy on I with λ = λ∗, and A

is analytic in λ, the projections and evolution operators in Definition 1.1.1 may be

chosen to depend analytically on λ ∈ Uδ(λ∗) for some δ > 0.

Remark 1.1.3. We may in fact weaken the condition αs < 0 < αu in Definition

1.1.1 to αs < αu, corresponding to the existence of a spectral gap not necessarily at

0. Depending on the context, we may write the associated dichotomies as Φcs(x, y)

and Φu(x, y) when considering a gap at η > 0, or as Φs(x, y) and Φcu(x, y) for a gap

at η < 0.

We will also make use of the roughness theorem for exponential dichotomies:

Theorem 1.1. ([11]) Let I = R+ or R−. Suppose that for λ = λ∗, (1.1) has

an exponential dichotomy on I with constants C, αs, αu. There are positive con-

stants δ∗ and K such that the following is true. If B(·) ∈ C0(I,Cn×n) such that

supx∈I,|x|≥L |B(x)| < δ/K for some δ < δ∗ and L ≥ 0, then there exists a C̃ > 0 such

that

ux = (A(x, λ∗) +B(x))u, (1.6)

has an exponential dichotomy on I with constants C̃, αs + δ, αu − δ. Moreover, the

projections P (x) and evolution operators Φs(x, y) and Φu(x, y) associated with (1.6)

are δ-close to those associated with (1.1) for all x, y ∈ I with |x|, |y| ≥ L. If I = R,

the above holds with L = 0.
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A.2 Variation of constants with exponential di-

chotomies

In working with systems for which we have exponential dichotomies, we will fre-

quently use the following strategy, or variations thereof.

First suppose we have a system

ux = A(x)u (2.1)

with associated evolution operator Φ(x, y). Then the solution of the initial value

problem

ux = A(x)u+ g(x, u), u(x0) = u0 (2.2)

is given by:

u(x) = Φ(x, x0)u0 +

∫ x

x0

Φ(x, s)g(s, u(s))ds. (2.3)

We refer to this result as the variation of constants formula.

Now suppose the system (2.1) has exponential dichotomies Φs(x, y) and Φu(x, y)

on I, and we are interested in finding a general solution to

ux = A(x)u+ g(x, u) (2.4)

for x ∈ [x1, x2] ⊂ I. Then by the variation of constants formula we have

u(x) = Φ(x, x1)u(x1) +

∫ x

x1

Φ(x, s)g(s, u(s))ds. (2.5)
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Applying P s(x) to this yields

P s(x)u(x) = Φs(x, x1)u(x1) +

∫ x

x1

Φs(x, s)g(s, u(s))ds. (2.6)

Similarly, we have

u(x) = Φ(x, x2)u(x2) +

∫ x

x2

Φ(x, s)g(s, u(s))ds (2.7)

so that

P s(x)u(x) = Φs(x, x1)u(x2) +

∫ x

x1

Φs(x, s)g(s, u(s))ds. (2.8)

Since P s(x) + P u(x) = id, we can combine these expressions to get

u(x) = Φs(x, x1)u(x1) +

∫ x

x1

Φs(x, s)g(s, u(s))ds+ Φu(x, x2)u(x2) +

∫ x

x2

Φu(x, s)g(s, u(s))ds

(2.9)

or, letting a, b be arbitrary elements with a ∈ RgP s(x1) and b ∈ RgP u(x2),

u(x) = Φs(x, x1)a+

∫ x

x1

Φs(x, s)g(s, u(s))ds+ Φu(x, x2)b+

∫ x

x2

Φu(x, s)g(s, u(s))ds

(2.10)

We note that we can and will apply this in a parameter dependent fashion, as well

as in situations where we have a spectral gap rather than hyperbolic matrices, as in

Remark 1.1.3 above.
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In the following we relate spectral properties of the operator L, arising from the

linearization of a PDE about a traveling wave, to exponential dichotomies of the

corresponding ODE, and to Fredholm properties of the corresponding operator T (λ).

We note that this material—and much more—is covered in [56] along with examples

and extensive references. The recent book [29] also provides an excellent reference.

B.1 Setting the stage: PDE and ODE formula-

tions

We consider PDEs of the form

Ut = A(∂x)U +N (U, µ), x ∈ R, U ∈ X , µ ∈ R (1.1)

where A(·) is a vector-valued polynomial, X is a Banach space of functions U(x) so

that A(∂x) : X → X is closed and densely defined, and N : X × R → X is some

nonlinearity defined for each µ via pointwise evaluation of U and possibly derivatives

of U .

We note that temporally stationary solutions U(x, t) = U(x) of (1.1) correspond

to solutions of the first-order ODE

ux = f(u, µ), (1.2)

where u = (U,Ux, . . . )
T ∈ Rn and n is the order of the polynomial A, for an appro-

priately defined f . See Section 2.1 for an example. We can of course generalize this

to treat traveling wave solutions, i.e., solutions U(x, t) = Q(x − ct) by introducing
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the variable ξ = x− ct, but we will focus on stationary solutions in the following.

Now given a particular (possibly parameter-dependent) stationary solutionQ(x, µ)

of the PDE (1.1), we have the associated linear operator

LU := A(∂x)U + ∂UN (Q(x, µ), µ)U (1.3)

and associated eigenvalue problem

λU = LU. (1.4)

We then have the associated first order system

ux = [fu(q(x, µ), µ) + λB(x)]u =: [Â(x) + λB(x)]u =: A(x, λ)u (1.5)

where u(x) = (U,Ux, . . . )
T ∈ Cn and q(x, µ) = (Q,Qx, . . . )

T ∈ Rn. We assume Â(·)

and B(·) are in C∞(R,Rn×n)

The relationship between the spectrum of L defined in (1.3) and the system (1.5)

is the focus of the following.
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B.2 The operator family T (λ), Fredholm proper-

ties and exponential dichotomies

We now define the family of linear operators

T (λ) : D → H

u 7→ du

dx
− A(·;λ)u (2.1)

with λ ∈ C and either D = C1
unif (R,Cn),H = C0

unif (R, Cn) or D = H1(R,Cn),H =

L2(R,Cn).

Definition 2.2.1. The spectrum Σ of T consists of all λ such that T (λ) is not

invertible. The resolvent set of T is the complement of Σ in C. We will sometimes

denote the resolvent set by ρ(T ).

Before defining the point spectrum and essential spectrum of T , we recall the

definition of Fredholm operators:

Definition 2.2.2. An operator L : X → Y is a Fredholm operator if Rg(L) is

closed in Y and both dim N(L) and codim Rg(L) are finite. The Fredholm index of

a Fredholm operator is a measure of the solvability of Lx = y, and is defined as

dim N(L)− codim Rg(L).

We then define the point spectrum and essential spectrum of T :

Definition 2.2.3. The point spectrum Σpt of T consists of all λ ∈ Σ such that T (λ)

is Fredholm with index zero. Elements of Σpt are also referred to as eigenvalues. The

essential spectrum of T is the complement of the point spectrum: Σess = Σ \ Σpt.
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We note that the above definition differs slightly from the definition of the point

spectrum as all isolated eigenvalues with finite multiplicity. The latter is equivalent

to the set of λ such that T (λ) is Fredholm with index 0, has nontrivial null space,

and is invertible for all λ̃ in a small neighborhood of λ, whereas this last requirement

is not part of our definition. The set of λ such that T (λ) has Fredholm index 0 is

open, and taking any connected component C of this set, we have that either all T (λ)

is invertible for all but a discrete set of elements of C, or that T (λ) has nontrivial

null space and so is not invertible for all λ in C. Generically, and in all cases we will

study, we expect that the first of these possibilities occurs.

We now define the multiplicity of λ ∈ Σpt for T . We first suppose λ is such that

N((T (λ)) = span{u1}. In this case λ has multiplicity ` if there exist uj ∈ D with

j = 2, . . . , ` such that

d

dx
uj = (Â(x) + λB(x))uj(x) +B(x)uj−1(x)

but there does not exist a solution u ∈ D of the equation

d

dx
u = (Â(x) + λB(x))u(x) +B(x)u`(x).

The multiplicity of a general λ ∈ Σpt is then defined as the sum of the multiplic-

ities of the elements spanning N(T (λ)).

In the case of a reaction diffusion system, it can be shown that the Fredholm

properties and Fredholm indices of T and L − λ as defined in (1.3) are the same.

Moreover for any λ in the spectrum of L and T , the Jordan-block structures of L−λ

and T (λ) are the same, which justifies the above definition of multiplicity.
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We now have the following theorem due to Palmer [48, 49]:

Theorem 2.1. For any fixed λ in C, the following hold:

(i) λ ∈ ρ(T ), the resolvent set of T , if and only if (1.5) has an exponential

dichotomy on R.

(ii) λ ∈ Σpt, the point spectrum of T , if and only if (1.5) has an exponential

dichotomies on R+ and R− with the same Morse index i+(λ) = i−(λ).

(iii) λ ∈ Σess, the essential spectrum of T , if and only if either (1.5) does not have

an exponential dichotomy on R+ and R−, or it does but the Morse indices i+(λ)

and i−(λ) differ.

We note in particular that T is Fredholm if and only if (1.5) has exponential

dichotomies on R+ and R−. We also have from [48, 49] that the Fredholm index

of the operator T is given by the difference in the Morse indices of the exponential

dichotomies on R+ and R−.

B.3 Locating the essential spectrum

The essential spectrum is usually easier to locate than the point spectrum; for sta-

tionary solutions which are asymptotically constant or periodic, locating the essential

spectrum involves solving linear dispersion relations. Note that when we refer to the

essential spectrum of a particular solution type in the following, we mean of the op-

erator T (λ) corresponding to the eigenvalue problem involving linearization about

such a solution, as in (1.5).
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Starting with the constant coefficient system corresponding to a homogenous rest

state,

ux = A(λ)u

we have that λ ∈ Σess if and only if A(λ) is not hyperbolic, i.e, Σess = {λ ∈ C :

spec(A(λ)) ∩ iR 6= ∅} This is of course equivalent to the condition

d(λ, k) := det[A(λ)− ik] = 0

for k ∈ R, and d(λ, k) is called the linear dispersion relation.

Turning to periodic solutions, where

ux = Aper(x, λ)u

we have that Σess = {λ ∈ C : spec(R(λ)) ∩ iR 6= ∅}, where R(λ) is the Floquet

matrix associated to Aper(x, λ). Thus the dispersion relation for periodic systems is

defined in a similar manner to homogeneous rest states, with the constant coefficient

matrix replaced by the Floquet matrix associated to the periodic system.

Other solutions types for which the essential spectrum is easily computable are

those for which the corresponding operator T (λ) is a relatively compact perturbation

of the operators for one of the above two cases. In particular, for a front connecting

two, possibly distinct, homogeneous rest states, we have

ux = A(x, λ)u

where

lim
x→−∞

A(x, λ) = A−(λ), lim
x→∞

A(x, λ) = A+(λ).
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In this case we will have λ ∈ Σess if and only if either at least one of A±(λ) is not

hyperbolic, or if both A±(λ) are hyperbolic but their Morse indices differ.

The essential spectrum for fonts connecting periodic solutions to each other or

periodic solutions to homogeneous rest states is located analogously. We again refer

to [56] for additional details.

B.4 Locating the point spectrum: the Evans func-

tion

The Evans function was first introduced in [18, 19], and developed in a fully rigorous

way in the context of reaction-diffusion systems in [1]. Essentially, it is a tool to locate

point spectrum: its roots correspond to values of λ for which there are nontrivial

intersections of the spaces of solutions which decay in backward and forward time,

respectively. In other words, a zero of the Evans function indicates a bounded

solution of the associated eigenvalue problem.

In particular, from Theorem 2.1 we have that λ ∈ Σpt (again for T as in (2.1)) if

and only if

N(T (λ)) = RgP u
−(0;λ) ∩ RgP s

+(0;λ) 6= {0}

where P u
−(x;λ) and P s

+(x;λ) are projections associated with the exponential di-

chotomies of (1.5) on R+ and R−, respectively.

We now fix Ω to be a connected component of C \Σess and note that the Morse

index dim RgP u
−(λ) = dimNP s

+(λ) is constant for λ ∈ Ω. Supposing this constant

to be k, we have dim RgP u
−(λ) + dim RgP s

+(λ) = k + (n− k) = n for any λ ∈ Ω.
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Definition 2.4.1. Let [u1(λ), . . . , uk(λ)] and [uk+1(λ), . . . , un(λ)] be analytic bases

of RgP u
−(0;λ) and RgP s

+(0;λ) respectively. Then the Evans function is defined as

D(λ) = det(u1(λ), . . . , un(λ)). (4.1)

It is possible to choose analytic bases by the results in [33]. The Evans function

is only unique up to the choice of basis vectors, but any two Evans function differ

only by a nonzero factor. The Evans function then has the following properties

[1, 18, 20, 50]:

Theorem 2.2. D(λ) has the following properties:

(i) D(λ) is analytic in λ ∈ Ω.

(ii) D(λ) = 0 if and only if λ ∈ Σpt of T .

(iii) The order of λ∗ as a zero of D(λ) is equal to the algebraic multiplicity of λ∗ as

an eigenvalue of T .



Appendix C

Further Analysis: Simple

Eigenvalue of a Front
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Here we give the full set-up and proof for Theorem 4.2 given in Section 4.5.

C.1 Problem and system set-up

We will use the same set-up and hypotheses as in Section 4.3, but will make the

additional assumptions that at a particular λ = λ∗, we have a simple eigenvalue of

the front, and no eigenvalue for the back; we will make this precise momentarily.

We also distinguish the rates associated to the exponential dichotomy of the trivial

solution and that of the periodic solution, denoting the former by α > 0 (with

α = min{−αs, αu} in the absence of reversibility), and the latter by η > 0. We

assume that η < α, so that terms of the form O(e−ηL+e−αL) will reduce to O(e−ηL).

First recall that we are interested in

ux = f(u, µ) (1.1)

with u ∈ R2n and µ ∈ R, and the associated eigenvalue problem

v̇ = [fu(u`,L(x)) + λB(u`,L(x))] v, (1.2)

where the family uell,L(x) is as defined in Hypothesis 4.3.1. We further recall from
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this hypothesis that

u`,L(x) =



uf (x+ L) + w−f (x+ L;L), x ≤ −L

uf (x+ L) + w+
f (x+ L;L), x ∈ [−L, 0]

ub(x− L) + w−b (x− L;L), x ∈ [0, L]

ub(x− L) + w+
b (x− L;L), x ≥ L

(1.3)

and

∣∣w−f (x;L)
∣∣ ≤ Ce−η(L−x), x ≤ 0 (1.4)∣∣w+

f (x;L)
∣∣ ≤ Ce−ηL, x ∈ [0, L] (1.5)∣∣w−b (x;L)
∣∣ ≤ Ce−ηL, x ∈ [−L, 0] (1.6)∣∣w+

b (x;L)
∣∣ ≤ Ce−η(L+x), x ≥ 0. (1.7)

We now make the further assumption that λ∗ is a simple eigenvalue of

v̇ = [fu(uf (x, µ), µ) + λB(uf (x, µ), µ)] v (1.8)

with eigenfunction vf∗(x). That is, we suppose

Tvf∗(0)W
u
f (0, µ, λ∗) ∩ Tvf∗(0)W

s
f (0, µ, λ∗) = Cv̇f∗(0) (1.9)

where W u
f (0, µ, λ) and W s

f (0, µ, λ) denote the stable and unstable manifolds of (1.8).

Then

ẇ = − [fu(uf (x, µ), µ) + λ∗B(uf (x, µ), µ)]∗w (1.10)
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also has a unique bounded solution ψ∗(x) that satisfies

ψ∗(x) ⊥ Tvf∗(0)W
u
f (0, µ, λ∗) + Tvf∗(0)W

s
f (0, µ, λ∗). (1.11)

We decompose the space at vf∗(0) as

C2n = Cψ∗(0)⊕ Cv̇f (0)⊕ Y + ⊕ Y −,

where

Cv̇f (0)⊕ Y − = Tvf∗(0)W
u
f (0, µ, λ∗)

Cv̇f (0)⊕ Y + = Tvf∗(0)W
s
f (0, µ, λ∗).

Note that we have both |vf ∗ (x)| ≤ Ce−α|x| and |ψ∗(x)| ≤ Ce−α|x|.

Now returning to (1.2), and suppressing the µ dependence, we rewrite the eigen-

value problem as

v̇−f (x) =
[
fu(uf (x+ L) + w−f (x+ L)) + λB(uf (x+ L) + w−f (x+ L))

]
v−f (x), x ≤ −L

v̇+
f (x) =

[
fu(uf (x+ L) + w+

f (x+ L)) + λB(uf (x+ L) + w+
f (x+ L))

]
v+
f (x), −L ≤ x ≤ 0

v̇−b (x) =
[
fu(ub(x− L) + w−b (x− L)) + λB(ub(x− L) + w−b (x− L))

]
v−b (x), 0 ≤ x ≤ L

v̇+
b (x) =

[
fu(ub(x− L) + w+

b (x− L)) + λB(ub(x− L) + w+
b (x− L))

]
v+
b (x), L ≤ x

v̇−f (−L) = v̇+
f (−L)

v̇+
f (0) = v̇−b (0)

v̇−b (L) = v̇+
b (L). (1.12)
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We decompose v±f as

v±f (x) = dvf∗(x+ L) + w̃±f (x+ L) (1.13)

on x ∈ (−∞,−L] and [−L, 0], respectively, for some d ∈ C.

Now we further assume λ∗ is not an eigenvalue of

v̇ = [fu(ub(x, µ), µ) + λB(ub(x, µ), µ)] v (1.14)

so that the only solution vb∗(x) of (1.14) with λ = λ∗ satisfying |vb∗(x)| → 0 as

x → 0 is vb∗ ≡ 0. In other words, we have W s
b (0, µ, λ∗) ∩W u

b (0, µ, λ∗) = ∅ for the

stable and unstable manifolds of (1.14). We will then seek v±b (x) = w̃±b (x − L) on

x ∈ [0, L] and [L,∞), respectively.

Defining y = x + L, we see that in order for the decomposition (1.13) to satisfy

the first two equations in (1.12), we have

dv̇f (y) + ˙̃w±f (y) =
[
fu(uf (y) + w±f (y)) + λB(uf (y) + w±f (y))

] (
dvf∗(y) + w̃±f (y)

)
(1.15)

on y ≤ 0 and 0 ≤ y ≤ L respectively. Thus w̃±f (y) satisfy

˙̃w±f = [fu(uf (y)) + λ∗B(uf (y))] w̃±f

+
[(
fu(uf (y) + w−(y))− fu(uf (y))

)
+ (λ− λ∗)B(uf (y) + w−(y))

+λ∗
(
B(uf (y) + w−(y))−B(uf (y))

)] (
dvf∗ + w̃±f

)
(1.16)
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We rewrite this as

˙̃w±f = [fu(uf (y)) + λ∗B(uf (y))] w̃±f +
[
G±f (y) + (λ− λ∗)B±f,1(y) + λ∗B

±
f,2(y)

]
(dvf∗ + w̃±f ).

(1.17)

where we have defined

G±f (y) = fu(uf (y) + w±f (y))− fu(uf (y))

B±f,1(y) = B(uf (y) + w±f (y))

B±f,2(y) = B(uf (y) + w±f (y))−B(uf (y)).

We also have

˙̃w±b = [fu(ub(y)) + λ∗B(ub(y))] w̃±b +
[
G±b (y) + (λ− λ∗)B±b,1(y) + λ∗B

±
b,2(y)

]
w̃±b ,

(1.18)

with the analogous definitions for G±b (y), B±b,1(y), B±b,2(y).

In the following we investigate the system

(i) ˙̃w±f = [fu(uf (y)) + λ∗B(uf (y))] w̃±f +
[
G±f (y) + (λ− λ∗)B±f,1(y) + λ∗B

±
f,2(y)

]
(dvf∗ + w̃±f )

(ii) ˙̃w±b = [fu(ub(y)) + λ∗B(ub(y))] w̃±b +
[
G±b (y) + (λ− λ∗)B±b,1(y) + λ∗B

±
b,2(y)

]
w̃±b

(iii) w̃±f (0) ∈ Cψ∗(0)⊕ Y + ⊕ Y −

(iv) w̃+
f (0)− w̃−f (0) ∈ Cψ∗(0)

(v) w̃+
b (0) ∈ Es

b (0;λ∗)

(vi) w̃+
b (0)− w̃−b (0) = 0

(vii) w̃+
f (L)− w̃b(−L) = −dvf∗(L) (1.19)
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where a solution (w−f , w
+
f , w

−
b , w

+
b , d) of (1.19) solves (1.12) if and only if

ξf :=
〈
ψ∗(0), w+

f (0)− w−f (0)
〉

= 0. (1.20)

The first part of (1.19)(i) (i.e., (1.8)) has exponential dichotomies on R+ and R−,

which we denote by Φs,u
f,±(x, y;λ), while the first part of (1.19)(ii) (i.e., (1.14)) has

an exponential dichotomy on R, which we denote by Φs,u
b (x, y;λ).

We also note that by Hypothesis 4.3.2 and Hypothesis 4.3.6, we have that for λ

near λ∗,

∣∣Φu
f,+(L,L;λ)− Φu

γ(0, 0;λ)
∣∣ ≤ Ce−ηL∣∣Φs

b(−L,−L;λ)− Φs
γ(0, 0;λ)

∣∣ ≤ Ce−ηL (1.21)

with C, η > 0, where we recall Φs,u
γ (x, y;λ) is the exponential dichotomy associated to

the eigenvalue problem for the periodic solution γ(x). We also recall that projections

will be denoted as:

P s,u
γ (x;λ) := Φs,u

γ (x, x;λ)

P s,u
f,±(x;λ) := Φs,u

f,±(x, x;λ)

P s,u
b (x;λ) := Φs,u

b (x, x;λ). (1.22)

Now by the variation of constants formula we have the following fixed point



223

equation:

w̃−f (y) = Φu
f,−(y, 0;λ∗)b

−
f

+

∫ y

0

Φu
f,−(y, s;λ∗)

[
G−f (s) + (λ− λ∗)B−f,1(s) + λ∗B

−
f,2(s)

]
(dvf∗(s) + w̃−f (s))ds

+

∫ y

−∞
Φs
f,−(y, s;λ∗)

[
G−f (s) + (λ− λ∗)B−f,1(s) + λ∗B

−
f,2(s)

]
(dvf∗(s) + w̃−f (s))ds

w̃+
f (y) = Φu

f,+(y, L;λ∗)a
+
f

+

∫ y

L

Φu
f,+(y, s;λ∗)

[
G+
f (s) + (λ− λ∗)B+

f,1(s) + λ∗B
+
f,2(s)

]
(dvf∗(s) + w̃+

f (s))ds

+ Φs
f,+(y, 0;λ∗)b

+
f

+

∫ y

0

Φs
f,+(y, s;λ∗)

[
G+
f (s) + (λ− λ∗)B+

f,1(s) + λ∗B
+
f,2(s)

]
(dvf∗(s) + w̃+

f (s))ds

w̃−b (y) = Φu
b (y, 0;λ∗)b

−
b +

∫ y

0

Φu
b (y, s;λ∗)

[
G−b (s) + (λ− λ∗)B−b,1(s) + λ∗B

−
b,2(s)

]
w̃−b (s)ds

+ Φs
b(y,−L;λ∗)a

−
b +

∫ y

−L
Φs
b(y, s;λ∗)

[
G−b (s) + (λ− λ∗)B−b,1(s) + λ∗B

−
b,2(s)

]
w̃−b (s)ds

w̃+
b (y) = Φs

b(y, 0;λ∗)b
+
b +

∫ y

∞
Φu
b (y, s;λ∗)

[
G+
b (s) + (λ− λ∗)B+

b,1(s) + λ∗B
+
b,2(s)

]
w̃+
b (s)ds

+

∫ y

0

Φs
b(y, s;λ∗)

[
G+
b (s) + (λ− λ∗)B+

b,1(s) + λ∗B
+
b,2(s)

]
w̃+
b (s)ds (1.23)

where we have

b−f ∈ Rg Φu
f,−(0, 0;λ∗) = Cv̇f∗(0)⊕ Y −

b+
f ∈ Rg Φs

f,+(0, 0;λ∗) = Cv̇f∗(0)⊕ Y +

and we will return to a+
f , a

−
b , b

−
b , b

+
b momentarily. Since we have an exponential



224

dichotomy on all of R, we define

Gb(y) =


G−b (y) −L ≤ y ≤ 0

G+
b (y) 0 ≤ y

Bb,1 =


B−b,1(y) −L ≤ y ≤ 0

B+
b,1(y) 0 ≤ y

Bb,2 =


B−b,2(y) −L ≤ y ≤ 0

B+
b,2(y) 0 ≤ y

We write the fixed point equation in (1.23) as

w̃(y) = [F(a, b, d, λ, w̃)](y) (1.24)

with a = (a+
f , ab−) ∈ Va, b = ((b−f , b

+
f ), (b−b , b

+
b )) ∈ Vb, d ∈ C, λ ∈ Vλ, w̃ =

(w̃−f , w̃
+
f , w̃

−
b , w̃

+
b ) ∈ Vw̃, where

Va := Eu
γ (0;λ∗)⊕ Es

γ(0;λ∗)

Vb :=
(
(Cv̇f∗(0)⊕ Y −)⊕ (Cv̇f∗(0)⊕ Y +)

)
× (Eu

b (0;λ∗)⊕ Es
b (0;λ∗))

Vλ := Uδ(λ∗) ⊂ C

Vw̃ := C0((−∞, 0],C2n)× C0([0, L],C2n)× C0([−L, 0],C2n)× C0([0,∞),C2n)

where Es,u
b (0;λ∗) := Rg P s,u

b (0;λ∗) respectively, and we use the maximum norm over

the components in Vb.

We proceed in steps; the basic outline is as follows:
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(i) First, we show that we have a solution operator that solves (1.24) (which

corresponds to (1.19)(i), (ii)) for w̃ as a function of (λ, a, b, d). [Lemma 3.2.1]

(ii) Using this, we solve (1.19)(i), (ii), (vii) for (a, w̃) as a function of (λ, b, d).

[Lemma 3.3.1]

(iii) We then add the conditions (1.19)(iii)− (vi) to solve for (a, b, w̃) as a function

of (λ, d). [Lemma 3.4.1]

(iv) Finally we use λ and d to satisfy the jump condition

ξf :=
〈
ψ∗(0), w+

f (0)− w−f (0)
〉

= 0. (1.25)

For convenience we define λ̃ := λ − λ∗, and by a small abuse of notation, drop

the tilde.

C.2 Solving the fixed point equation for w̃

Lemma 3.2.1. There exists an L∗ such that for all L ≥ L∗, the following holds

uniformly in L. There exists an operator W̃1 : Vλ × Va × Vb × C→ Vw̃ such that

w̃ := W̃1(λ)(a, b, d) (2.1)

solves (1.24) for any (a, b, d) and λ. Moreover, any bounded solution of (1.24) is

given by (2.1). The operator W̃1 is analytic in λ, linear in (a, b, d), and satisfies the

estimate

‖W̃1(λ)(a, b, d)‖ ≤ C(|a|+ |b|+ (e−ηL∗ + |λ|)|d|) (2.2)
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Proof. We rewrite (1.24) as

(id− L1(λ))w̃ = L2(λ)(a, b, d) (2.3)

with

(L1(λ)w̃)−f (y) =

∫ y

0

Φu
f,−(y, s;λ∗)

[
G−f (s) + λB−f,1(s) + λ∗B

−
f,2(s)

]
w̃−f (s)ds

+

∫ y

−∞
Φs
f,−(y, s;λ∗)

[
G−f (s) + λB−f,1(s) + λ∗B

−
f,2(s)

]
w̃−f (s)ds

(L1(λ)w̃)+
f (y) =

∫ y

L

Φu
f,+(y, s;λ∗)

[
G+
f (s) + λB+

f,1(s) + λ∗B
+
f,2(s)

]
w̃+
f (s)ds

+

∫ y

0

Φs
f,+(y, s;λ∗)

[
G+
f (s) + λB+

f,1(s) + λ∗B
+
f,2(s)

]
w̃+
f (s)ds

(L1(λ)w̃)−b (y) =

∫ y

0

Φu
b (y, s;λ∗)

[
G−b (s) + λB−b,1(s) + λ∗B

−
b,2(s)

]
w̃b(s)ds

+

∫ y

−L
Φs
b(y, s;λ∗)

[
G−b (s) + λB−b,1(s) + λ∗B

−
b,2(s)

]
w̃b(s)ds

(L1(λ)w̃)+
b (y) =

∫ y

∞
Φu
b (y, s;λ∗)

[
G+
b (s) + λB+

b,1(s) + λ∗B
+
b,2(s)

]
w̃b(s)ds

+

∫ y

0

Φs
b(y, s;λ∗)

[
G+
b (s) + λB+

b,1(s) + λ∗B
+
b,2(s)

]
w̃b(s)ds (2.4)
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and

(L2(λ)(a, b, d))−f (y) = Φu
f,−(y, 0;λ∗)b

−
f

+

∫ y

0

Φu
f,−(y, s;λ∗)

[
G−f (s) + λB−f,1(s) + λ∗B

−
f,2(s)

]
dvf∗(s)ds

+

∫ y

−∞
Φs
f,−(y, s;λ∗)

[
G−f (s) + λB−f,1(s) + λ∗B

−
f,2(s)

]
dvf∗(s)ds

(L2(λ)(a, b, d))+
f (y) = Φu

f,+(y, L;λ∗)a
+
f

+

∫ y

L

Φu
f,+(y, s;λ∗)

[
G+
f (s) + λB+

f,1(s) + λ∗B
+
f,2(s)

]
dvf∗(s)ds

+ Φs
f,+(y, 0;λ∗)b

+
f

+

∫ y

0

Φs
f,+(y, s;λ∗)

[
G+
f (s) + λB+

f,1(s) + λ∗B
+
f,2(s)

]
dvf∗(s)ds

(L2(λ)(a, b, d))−b (y) = Φu
b (y, 0;λ∗)b

−
b + Φs

b(y,−L;λ∗)a
−
b

(L2(λ)(a, b, d))+
b (y) = Φs

b(y, 0;λ∗)b
+
b (2.5)

We then arrive at the estimates

‖L1(λ)w̃‖ ≤ C(e−ηL∗ + |λ|)‖w‖ ≤ Cδ‖w̃‖ (2.6)

‖L2(λ)(a, b, d)‖ ≤ C(|a|+ |b|+ (e−ηL∗ + |λ|)|d|) (2.7)

so that id− L1(λ) is invertible on Vw̃. The inverse is analytic in λ and we have the

solution

w = (id− L1(λ))−1L2(λ)(a, b, d) =: W̃1(λ)(a, b, d) (2.8)

which depends linearly on (a, b, d) ∈ Va × Vb × Vd and analytically on λ ∈ Vλ.
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C.3 Solving for (a, w̃)

We next consider (1.19)(vii):

w̃+
f (L)− w̃b(−L) = −dvf∗(L). (3.1)

Lemma 3.3.1. There exists an L∗ such that for all L ≥ L∗, the following holds

uniformly in L. There exist operators

A1 : Vλ × Vb × C → Va

W̃2 : Vλ × Vb × C → Vw̃

such that

(a, w̃) := (A1(λ)(b, d), W̃2(λ)(b, d)) (3.2)

solves (1.24) and (3.1) for any (b, d) and λ. In addition, any bounded solution of

these equations is given by (3.2). The operators A1 and W̃2 are analytic in λ and

linear in (b, d) and satisfy

|A1(λ)(b, d)| ≤ C((e−ηL∗ + e−αL∗ + |λ|)|b|+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|)

‖W̃2(λ)(b, d)‖ ≤ C((1 + e−ηL∗ + e−αL∗ + |λ|)|b|+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|)

uniformly in L ≥ L∗. Moreover, writing A1(λ)(b, d) = ((A1(λ)(b, d))+
f , A1(λ)(b, d)−b ),

we have

(A1(λ)(b, d))+
f = −P u

γ (0;λ∗)vf∗(L)d− (A2(λ)(b, d))+
f

(A1(λ)(b, d))−b = P s
γ (0;λ∗)vf∗(L)d+ (A2(λ)(b, d))−b
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where

|A2(λ)(b, d)| ≤ C((e−ηL∗ + e−αL∗ + |λ|)|b|+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)d).

Proof. Substituting from the fixed point equation into the left hand side, we have

−dvf∗(L) = Φu
f,+(L,L;λ∗)a

+
f − Φs

b(−L,−L;λ∗)a
−
b + Φs

f,+(L, 0;λ∗)b
+
f − Φu

b (−L, 0;λ∗)b
−
b

+

∫ L

0

Φs
f,+(L, s;λ∗)

[
G+
f (s) + λB+

f,1(s) + λ∗B
+
f,2(s)

]
(dvf∗(s) + w̃+

f (s))ds

+

∫ 0

−L
Φu
b (−L, s;λ∗) [Gb(s) + λBb,1(s) + λ∗Bb,2(s)] w̃b(s)ds.

Recalling that (a+
f , a

−
b ) ∈ Va := Eu

γ (0;λ∗) ⊕ Es
γ(0;λ∗), so that using the notation

introduced in (1.22), P u
γ (0, λ∗)a

+
f = a+

f and P s
γ (0, λ∗)a

−
b = a−b , we then have:

Φu
f,+(L,L;λ∗)a

+
f − Φs

b(−L,−L;λ∗)a
−
b

= P u
f,+(L, λ∗)a

+
f + P s

b (−L, λ∗)a−b − P u
γ (0, λ∗)a

+
f + a+

f + P s
γ (0;λ∗)a

−
b − a−b

= a+
f − a−b + (P u

f,+(L, λ∗)− P u
γ (0, λ∗))a

+
f + (P s

γ (0;λ∗)− P s
b (−L, λ∗))a−b .

Thus we have

−dvf∗(L) = a+
f − a−b + L3(λ)(a, b, d) (3.3)

or, explicitly,

L3(λ)(a, b, d) = (P u
f,+(L, λ∗)− P u

γ (0, λ∗))a
+
f + (P s

γ (0;λ∗)− P s
b (−L, λ∗))a−b

+Φs
f,+(L, 0;λ∗)b

+
f − Φu

b (−L, 0;λ∗)b
−
b

+

∫ L

0

Φs
f,+(L, s;λ∗)

[
G+
f (s) + λB+

f,1(s) + λ∗B
+
f,2(s)

]
(dvf∗(s) + w̃+

f (s))ds

+

∫ 0

−L
Φu
b (−L, s;λ∗) [Gb(s) + λBb,1(s) + λ∗Bb,2(s)] w̃b(s)ds.
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Sustituting W̃1(λ)(a, b, d) from Lemma 3.2.1 and (1.21), we have

|L3(λ)(a, b, d)| ≤ C(e−ηL|a|+ e−αL|b|+ (e−ηL + |λ|)(|d|+ ‖W1(λ)(a, b, d)‖)).

Moreover, by Lemma 3.2.1,

|L3(λ)(a, b, d)| ≤ C(e−ηL∗ |a|+ e−αL∗ |b|+ (e−ηL∗ + |λ|)(|d|+ |a|+ |b|+ (e−ηL∗ + |λ|)|d|)

≤ C((e−ηL∗ + |λ|)(|a|+ |d|) + (e−ηL∗ + e−αL∗ + |λ|)|b|)

≤ Cδ(|a|+ |b|+ |d|)

for L∗ sufficiently large, uniformly in L. Since Es
γ(0;λ∗)⊕Eu

γ (0;λ∗) = C2n, the map

J1, defined as

J1 : Va → C2n

(a+
f , a

−
b ) 7→ (a+

f − a−b ),

is a linear isomorphism. So for δ > 0 sufficiently small, we can invert the operator

a 7→ J1a+ L3(λ)(a, 0, 0). (3.4)

Thus, defining I1a := (a, 0, 0), we have

a = (J1 + L3(λ)I1)−1(−dvf∗(L)− L3(λ)(0, b, d)) =: A1(λ)(b, d). (3.5)

Moreover, defining

W̃2(λ)(b, d) := W̃1(λ)(A1(λ)(b, d), b, d), (3.6)
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then

(λ, a, b, d, w̃) = (λ,A1(λ)(b, d), b, d, W̃2(λ)(b, d))

solves (1.24) and (3.1). We also have

|A1(λ)(b, d)| ≤ C((e−ηL∗ + e−αL∗ + |λ|)|b|+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|)

and so

‖W̃2(λ)(b, d)‖ ≤ C(|A1(λ)(b, d)|+ |b|+ (e−ηL∗ + |λ|)|d|)

≤ C((1 + e−ηL∗ + e−αL∗ + |λ|)|b|+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|).

Finally, applying the complementary projections P s
γ (0;λ∗) and P u

γ (0;λ∗) to (3.3), we

have

a+
f = −P u

γ (0;λ∗)vf∗(L)d− P u
γ (0;λ∗)(L3(λ)(a, b, d))

a−b = P s
γ (0;λ∗)vf∗(L)d+ P s

γ (0;λ∗)(L3(λ)(a, b, d))

and then substituting a = A1(λ)(b, d) yields

A1(λ)(b, d)+
f = −P u

γ (0;λ∗)vf∗(L)d− P u
γ (0;λ∗)(L3(λ)(A1(λ)(b, d), b, d))

=: −P u
γ (0;λ∗)vf∗(L)d− (A2(λ)(b, d))+

f

A1(λ)(b, d)−b = P s
γ (0;λ∗)vf∗(L)d+ P s

γ (0;λ∗)(L3(λ)(A1(λ)(b, d), b, d))

=: P s
γ (0;λ∗)vf∗(L)d+ (A2(λ)(b, d))−b .
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So we have the estimate

|A2(λ)(b, d)| ≤ C(|vf∗(L∗)|d+ |L3(λ)(A1(λ)(b, d), b, d)|)

≤ C((e−ηL∗ + e−αL∗ + |λ|)|b|+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|)

as claimed.

C.4 Solving for (a, b, w̃)

We now look to satisfy the conditions involving w̃±f,b(0) given in (1.19)(iii)− (vi):

w̃−f (0) ∈ Cψ∗(0)⊕ Y + ⊕ Y −

w̃+
f (0) ∈ Cψ∗(0)⊕ Y + ⊕ Y −

w̃+
f (0)− w̃−f (0) ∈ Cψ∗(0)

w̃+
b (0) ∈ Es

b (0;λ∗)

w̃+
b (0)− w̃−b (0) = 0. (4.1)

Lemma 3.4.1. There exists an L∗ such that for all L ≥ L∗, the following holds

uniformly in L. There exist operators

A3 : Vλ × C → Va

B1 : Vλ × C → Vb

W̃3 : Vλ × C → Vw̃

such that

(a, b, w̃) := (A3(λ)d,B3(λ)d, W̃3(λ)d) (4.2)
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solves (1.24), (3.1) and (4.1) for any d and λ. Moreover, any bounded solution of

these equations is given by (4.2). The operators are analytic in λ and linear in d

and satisfy the estimates

|A3(λ)d| ≤ C(|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|

|B1(λ)d| ≤ C(|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|

‖W3(λ)d‖ ≤ C(|vf∗(L∗)|+ e−ηL∗ + |λ|)|d| (4.3)

uniformly in L > L∗. We also have that A3(λ)d = ((A3(λ)d)+
f , (A3(λ)d)−b ) can be

written as

(A3(λ)d)+
f = −P u

γ (0;λ∗)vf∗(L)d− (A4(λ)d)+
f

(A3(λ)d)−b = P s
γ (0;λ∗)vf∗(L)d+ (A4(λ)d)−b (4.4)

for A4 linear in d and analytic in λ satisfying

|A4(λ)d| ≤ C(|vf∗(L∗)|+ e−ηL∗ + |λ|)|d| (4.5)

Proof. From (1.24) we have

w̃−f (0) = b−f +

∫ 0

−∞
Φs
f,−(0, s;λ∗)

[
G−f (s) + λB−f,1(s) + λ∗B

−
f,2(s)

]
(dvf∗(s) + w̃−f (s))ds

w̃+
f (0) = b+

f + Φu
f,+(0, L;λ∗)a

+
f

+

∫ 0

L

Φu
f,+(0, s;λ∗)

[
G+
f (s) + λB+

f,1(s) + λ∗B
+
f,2(s)

]
(dvf∗(s) + w̃+

f (s))ds

w̃−b (0) = b−b + Φs
b(0,−L;λ∗)a

−
b +

∫ 0

−L
Φs
b(0, s;λ∗)

[
G−b (s) + λB−b,1(s) + λ∗B

−
b,2(s)

]
w̃−b (s)ds

w̃+
b (0) = b+

b +

∫ 0

∞
Φu
b (0, s;λ∗)

[
G+
b (s) + λB+

b,1(s) + λ∗B
+
b,2(s)

]
w̃+
b (s)ds (4.6)

with w̃ and a given by Lemma 3.3.1. By the definition of Vb, we can decompose
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bf = (b−f , b
+
f ) uniquely according to

b−f = x−f + y−f

b+
f = x+

f + y+
f

where x±f ∈ Cv̇f∗(0) and y±f ∈ Y ± respectively. In other words we have bf = xf + yf

where xf ∈ Cv̇f∗(0)× Cv̇f∗(0) and yf ∈ Y − × Y +. Recalling that

C2n = Cψ∗(0)⊕ Cv̇f∗(0)⊕ Y + ⊕ Y −, (4.7)

we have that the first three equations in (4.1) are equivalent to the system

P (Cv̇f∗(0),Cψ∗(0)⊕ Y + ⊕ Y −)w̃−f (0) = 0

P (Cv̇f∗(0),Cψ∗(0)⊕ Y + ⊕ Y −)w̃+
f (0) = 0

P (Y + ⊕ Y −,Cv̇f∗(0)⊕ Cψ∗(0))(w̃+
f (0)− w̃−f (0)) = 0 (4.8)

where P (X, Y ) denotes the projection onto X with kernel Y . Substituting from (4.6)
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into the above and using bf = x+ y gives

0 = x−f + P (Cv̇f∗(0),Cψ∗(0)⊕ Y + ⊕ Y −)

(∫ 0

−∞
Φs
f,−(0, s;λ∗)[

G−f (s) + λB−f,1(s) + λ∗B
−
f,2(s)

]
(dvf∗(s) + w̃−f (s))ds

)
0 = x+

f + P (Cv̇f∗(0),Cψ∗(0)⊕ Y + ⊕ Y −)

(
Φu
f,+(0, L;λ∗)a

+
f

+

∫ 0

L

Φu
f,+(0, s;λ∗)

[
G+
f (s) + λB+

f,1(s) + λ∗B
+
f,2(s)

]
(dvf∗(s) + w̃+

f (s))ds

)
0 = y+

f − y−f + P (Y + ⊕ Y −,Cv̇f∗(0)⊕ Cψ∗(0))

(
Φu
f,+(0, L;λ∗)a

+
f

+

∫ 0

L

Φu
f,+(0, s;λ∗)

[
G+
f (s) + λB+

f,1(s) + λ∗B
+
f,2(s)

]
(dvf∗(s) + w̃+

f (s))ds

−
∫ 0

−∞
Φs
f,−(0, s;λ∗)

[
G−f (s) + λB−f,1(s) + λ∗B

−
f,2(s)

]
(dvf∗(s) + w̃−f (s))ds

)
(4.9)

where again we have (af , w̃f ) from Lemma 3.3.1. We can then write this as


x−f

x+
f

y+
f − y−f

+ (L4(λ)(b, d))f = 0. (4.10)

where (L4)f : (λ, b, d)→ Cv̇f∗(0)× Cv̇f∗(0)× (Y + ⊕ Y −). From (1.21) and (3.3) we

have the estimate

|(L4(λ)(b, d))f | ≤ C(|A1(λ)(b, d)|+ (e−ηL∗ + |λ|)(|d|+ ‖W2(b, d)‖))

≤ C((e−ηL∗ + e−αL∗ + |λ|)|b|+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|+

+ (e−ηL∗ + |λ|)(|d|+ (1 + e−ηL∗ + e−αL∗ + |λ|)|b|+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|))

≤ C((e−ηL∗ + e−αL∗ + |λ|)|b|+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|)

≤ Cδ(|b|+ |d|) (4.11)
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for L∗ sufficiently large, uniformly in L. The map J2,f given by

J2,f : (Cv̇f∗(0)× Cv̇f∗(0))× (Y − × Y +) → Cv̇f∗(0)× Cv̇f∗(0)× (Y + ⊕ Y −)

((x−f , x
+
f ), (y−f , y

+
f )) 7→ (x−f , x

+
f , y

−
f − y+

f )

is a linear isomporphism by (4.7).

Turning now to bb, we have (b−b , b
+
b ) ∈ Eu

b (0;λ∗) ⊕ Es
b (0;λ∗). Using the same

notation as above, we require

P (Es
b (0, λ∗), E

u
b (0, λ∗))w̃

+
b (0) = 0

w̃+
b (0)− w̃−b (0) = 0, (4.12)

so substituting from (4.6) we have

0 = b+
b + P (Es

b (0, λ∗), E
u
b (0, λ∗))

(∫ 0

∞
Φu
b (0, s;λ∗)

[
G+
b (s) + λB+

b,1(s) + λ∗B
+
b,2(s)

]
w̃+
b (s)ds

)
0 = b+

b − b−b +

∫ 0

∞
Φu
b (0, s;λ∗)

[
G+
b (s) + λB+

b,1(s) + λ∗B
+
b,2(s)

]
w̃+
b (s)ds

− Φs
b(0,−L;λ∗)a

−
b −

∫ 0

−L
Φs
b(0, s;λ∗)

[
G−b (s) + λB−b,1(s) + λ∗B

−
b,2(s)

]
w̃−b (s)ds.

(4.13)

We write this as  b+
b

b+
b − b−b

+ (L4(λ)(b, d))b = 0. (4.14)



237

Then

|(L4(λ)(b, d))b| ≤ C(|A1(λ)(b, d)|+ (e−ηL∗ + |λ|)‖W̃2(λ)(b, d)‖)

≤ C((e−ηL∗ + e−αL∗ + |λ|)|b|+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|+

+(e−ηL∗ + |λ|)((1 + e−ηL∗ + e−αL∗ + |λ|)|b|+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|))

≤ C((e−ηL∗ + e−αL∗ + |λ|)|b|+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|)

≤ Cδ(|b|+ |d|) (4.15)

for L∗ sufficiently large, uniformly in L. So trivially combining the estimates we have

|(L4(λ)(b, d))| ≤ C((e−ηL∗ + e−αL∗ + |λ|)|b|+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|)

≤ Cδ(|b|+ |d|). (4.16)

The map J2,b given by

J2,b : Eu
b (0;λ∗)× Es

b (0;λ∗) → Es
b (0;λ∗)× C2n

(b−b , b
+
b ) 7→ (b+

b , b
+
b − b−b )

is a linear isomorphism since Eu
b (0;λ∗) ⊕ Es

b (0;λ∗) = C2n. Thus the map J2 :

(bf , bb) 7→ (J2,f (xf + yf ), J2,b(bb)) is also a linear isomorphism, and the operator

b 7→ J2(b) + L4(λ)(b, 0)

is invertible due to (4.16). Then defining I2b = (b, 0), we have the solution operator

b = −(J2 + L4(λ)I2)−1(L4(λ)(0, d)) =: B1(λ)d (4.17)
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Then from (4.16) we have

|B1(λ)d| ≤ C(|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|.

We now substitute b = B1(λ)d into A1 and W̃2 so that

A3(λ)d := A1(λ)(B1(λ)d, d)

W̃3(λ)d := W̃2(λ)(B1(λ)d, d)

and the estimates

|A3(λ)d| ≤ C((e−ηL∗ + e−αL∗ + |λ|)((|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|) + (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|)

≤ C(|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|

‖W̃3(λ)d‖ ≤ C((1 + e−ηL∗ + e−αL∗ + |λ|)
(

(|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|)

+ (|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|
)

≤ C(|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|

follow. Finally, we set

(A4(λ)d)+
f = (A2(λ)(B1(λ)d, d))+

f

(A4(λ)d)−b = (A2(λ)(B1(λ)d, d))−b

so that (4.4) and (4.5) follow.
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C.5 Satisfying the jump condition

Having completed the first three steps in our outline, we have that (λ, a, b, d, w̃) is a

bounded solution of eq:reform if and only if it has the form

(λ, a, b, d, w̃) = (λ,A3(λ)d,B1(λ)d, d, W̃3(λ)d),

where each of the operators is analytic in λ and linear in d. We conclude by examining

the jump condition ξf =
〈
ψ∗(0), w̃+

f (0)− w̃−f (0)
〉

= 0.

Lemma 3.5.1. Let (λ, a, b, d, w̃) be given by

(λ, a, b, d, w̃) = (λ,A3(λ)d,B1(λ)d, d, W̃3(λ)d). (5.1)

Then w+
f (0)− w̃−f (0) holds if and only if

ξf =
〈
ψ∗(0), w̃+

f (0)− w̃−f (0)
〉

= 0.

Moreover, ξf can be written as

ξf = −
〈
ψ∗(L), P u

γ (0;λ∗)vf∗(L)d
〉
− λd

∫ ∞
−∞

〈
ψ∗(s), B(uf (s))vf∗(s)

〉
ds+R(λ)d

(5.2)

for some function R : Vλ × C → C analytic in λ and linear in d admitting the

estimate

|R(λ)d| ≤ C
(
e−αL∗

(
sup
s≥L∗
|B(uf )(s)vf∗(s)|+|vf∗(L∗)|+e−ηL∗+|λ|

)
+e−ηL∗(1+|vf∗(0)|)

)
|d|

(5.3)

Proof. We have already shown the first statement. Throughout we choose (λ, a, b, d, w̃)



240

according to (5.1) so that ξf is analytic in λ and linear in d. Since
〈
ψ∗(0), b±f

〉
= 0,

we have

〈
ψ∗(0), w̃+

f (0)− w̃−f (0)
〉

=〈
ψ∗(0),Φu

f,+(0, L;λ∗)a
+
f

+

∫ 0

L

Φu
f,+(0, s;λ∗)

[
G+
f (s) + λB+

f,1(s) + λ∗B
+
f,2(s)

]
(dvf∗(s) + w̃+

f (s))ds

−
∫ 0

−∞
Φs
f,−(0, s;λ∗)

[
G−f (s) + λB−f,1(s) + λ∗B

−
f,2(s)

]
(dvf∗(s) + w̃−f (s))ds

〉
=
〈
ψ∗(L), a+

f

〉
−
∫ L

0

〈
ψ∗(s),

[
G+
f (s) + λB+

f,1(s) + λ∗B
+
f,2(s)

]
(dvf∗(s) + w̃+

f (s))
〉
ds

−
∫ 0

−∞

〈
ψ∗(s),

[
G−f (s) + λB−f,1(s) + λ∗B

−
f,2(s)

]
(dvf∗(s) + w̃−f (s))

〉
ds

. (5.4)

Then using Lemma 3.4.1 and

|ψ∗(x)| ≤ Ce−α|x| (5.5)

we have

〈
ψ∗(L), a+

f

〉
=
〈
ψ∗(L), (A3(λ)d)+

f

〉
= −

〈
ψ∗(L), P u

γ (0;λ∗)vf∗(L)d
〉
−
〈
ψ∗(L), (A4(λ)d)+

f

〉
= −

〈
ψ∗(L), P u

γ (0;λ∗)vf∗(L)d
〉

+ O(e−αL∗((|vf∗(L∗)|+ e−ηL∗ + |λ|)|d|))

(5.6)
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Again using (5.5) and the definition of B±f,1, we have

∫ L

0

〈
ψ∗(s), λB

+
f,1(s)dvf∗(s)

〉
ds+

∫ 0

−∞

〈
ψ∗(s), λB

−
f,1(s)dvf∗(s)

〉
ds

= λd

∫ ∞
−∞

〈
ψ∗(s), B(uf (s))vf∗(s)

〉
ds+ O

(
|d|(e−αL∗ sup

s≥L∗
|B(uf )(s)vf∗(s)|+ e−ηL∗)

)
.

(5.7)

We also have

∣∣∣∣∫ L

0

〈
ψ∗(s), (G

+
f (s) + λ∗B

+
f,2(s))dvf∗(s)

〉
ds+

∫ 0

−∞

〈
ψ∗(s), (G

−
f (s) + λ∗B

−
f,2(s))dvf∗(s)

〉
ds

∣∣∣∣
≤ C|d|

(∣∣∣∣ ∫ L

0

e−αs
∣∣∣G+

f (s) + λ∗B
+
f,2(s)

∣∣∣ |dvf∗(s)| ds∣∣∣∣+

∣∣∣∣ ∫ 0

−∞
eαs
∣∣∣G−f (s) + λ∗B

−
f,2(s)

∣∣∣ |dvf∗(s)| ds∣∣∣∣)
≤ C|d|

(
e−(α+2η)L∗|vf∗(L∗)|+ e−ηL∗|vf∗(0)|

)
. (5.8)

Now turing to the terms involving w̃±f , we have

∣∣∣∣ ∫ L

0

〈
ψ∗(s),

[
G+
f (s) + λB+

f,1(s) + λ∗B
+
f,2(s)

]
w̃+
f (s)

〉
ds

+

∫ 0

−∞

〈
ψ∗(s),

[
G−f (s) + λB−f,1(s) + λ∗B

−
f,2(s)

]
w̃−f (s)

〉
ds

∣∣∣∣
≤ ‖W̃3(λ)d‖

∣∣∣∣ ∫ L

0

e−αs
∣∣G+

f (s) + λB+
f,1(s) + λ∗B

+
f,2(s)

∣∣ ds
+

∫ 0

−∞
eαs
∣∣G−f (s) + λB−f,1(s) + λ∗B

−
f,2(s)

∣∣ ds∣∣∣∣
≤ C|d|

(
|vf∗(L∗)|+ e−ηL∗ + |λ|

) (
e−(α+2η)L∗ + e−ηL∗ + |λ|

)
. (5.9)

Thus combining (5.6)—(5.9) we arrive at (5.2) with remainder estimate given in

(5.3).
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