Uniform Distributions on Integer Matrices
The Problem

- How many ways can I fill in a matrix with specified row and column sums?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>?</td>
<td>?</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>?</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>?</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>?</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A Quick Example

<table>
<thead>
<tr>
<th>?</th>
<th>?</th>
<th>?</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>?</td>
<td>?</td>
<td>2</td>
</tr>
<tr>
<td>?</td>
<td>?</td>
<td>?</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>2</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Who Cares?

- Theoretical motivation:
 - Computer scientists are interested in optimal algorithms for enumeration – this is a test bed

- Practical applications:
 - Anything that’s a network or might be made to look like one
The Social Network

- I have a bunch of friends and you have a bunch of friends and our friends have a bunch of friends and so on

- This can be represented as a binary matrix
The Social Network

- Suppose we see some patterns (structures) in this matrix

- Question:
 - Are the structures simply a result of the fact that some people have more friends than others?
 - Or is something else going on?
The Social Network

Solution:

- Fix the row and column sums (how many friends people have)
- Sample uniformly from the matrices satisfying these sums
- See whether the structures of interest are likely to occur by chance
Darwin’s Finches

- Biologists are also interested in these sorts of matrices
- Though no longer obviously network problems
- For example: Darwin observed some species of finches distributed across a series of islands
Darwin’s Finches

- Question:
 - Is the distribution of finches explained by the fact that some islands are bigger and can support more species than others and some finches are more common than others?
 - Or are competitive dynamics at work?
Darwin’s Finches

Solution:

- Test by uniformly sampling with fixed number of species per island (column sums) and fixed number of islands on which a species is found (row sums)

- Can test how likely observed combinations of species are to occur by chance
Computational Challenge

- A small example...

- How many 8x8 matrices with row & column sums = 8 do you think are there?
Computational Challenge

- Answer:
 - 1,046,591,482,728,408,076,517,376
 - (a.k.a. 1 septillion plus)
As many as that is, this is whittled down from more than 40^{64} possibilities

Which is $> 10^{100}$ or about 10 times the age of the universe

Even though our algorithm doesn’t actually require us to sort though all these possibilities, we do have to handle the fact that many many (sub)problems lead to the same place

… parallel sort & removal of duplicates = lots of headaches
Strategies: Pros & Cons

- Level-by-level vs. depth first + hashing
 - rank synchronization

- Storage: distributed vs. master-worker model

- Sorting:
 - Merge sort
 - Radix sort

- Pre-computing coefficients?
Our Algorithm

- Serial algorithm

 - multimaps, new maps, and more

 - Class to hold “Problems”

- Not the most interesting from a parallel computing standpoint, but several days of coding…
Our Algorithm

- Parallel step by step
 - Rank 0 gets initial problem, calculates random matrix used in load balancing for sort, and broadcasts
 - For each row, each rank goes through:
 - Step 0. Calculate new maps for my problems
 - Step 1. Package the new problems
 - Step 2. Send and receive all the info (6 all to all calls)
 - Step 3a. Unpack the received data from all ranks
 - Step 3b. Merge sort & deduplicate problems received
 - Step 4. Convert to array which stores final answer (portion of DAG) for this row
 - Print final DAG & total solutions to file
Did we get the right answer?

- Multiple checks of the final answer …
 - Against small problems we could compute by hand
 - Against serial code written by Jeff Miller in Python

- And lots of printouts & testing individual function performance

* Though note answers are floating point … if we really wanted correct down to the last decimal place would need some sort of arbitrary precision implementation
Strong Scaling

9x9 matrix with sums=12

log data per second

log processors
Weak Scaling (?)

9x9 matrix with sums=9 to 14
Future Directions

- Improve parallel sort
 - Better randomization & load balancing

- Improve serial algorithm
 - Can we do a better job of anticipating duplicates?

- Deal with really big numbers (arbitrary precision arithmetic)

- Start using for real sampling problems!