APMA2821, HW 4

Due May 6.

Task 1.

Write functions to perform the following operation:

- 1. Z[i] = Y[i]\*Y[i]\*W[i] for i = 0,...N-1
- 2. Y[i] = A\*X[i]+Y[i] for i = 0,...N-1
- 3. s = sum(X[i]\*Y[i]\*W[i]) over i, for i = 0,...N-1

Optimize these functions for best performance on BlueGene/P.

Make sure you use proper alignment, minimize load and store operations as much as you can. Create these functions using a) naïve implementation; b) intrinsic; c) appropriate "#pragma" directives .

Measure and compare performance of these functions. Use N = O(10) to O(10000).

## Task 2.

Write a parallel program (with MPI), to perform the following:

- a) Read a 2D array from a disc such that each MPI-rank will store only a portion of the 2D array using standard block partitioning. Work with general 2D arrays of size NxN, with N from 5 to 10,000.
- b) Perform transformation of the 2D array from standard block distribution to 2D block cycled distributed 2D array. Use block-size in the range of 1 to 256.

Task 3. (extra)

Using the results of Task 2 compute inverse of a non-singular matrix A of size NxN with ScaLapack.

You may work in pairs.