Due April 11, 2011

Solve a stochastic diffusion equation $\frac{\partial u}{\partial t} = \mu(\omega) \frac{\partial^2 u}{\partial x^2}$ where u is some wave which diffuses over time "t" in space "x", 0 <= x <= L, 0 <= t <= T. The diffusivity coefficient is a stochastic parameter and it is always positive.

You may use <u>any</u> (stable) discretization method, implicit or explicit and boundary conditions (Newman, Dirichlet or periodic).

The stochastic parameter "omega" can be randomly chosen (Monte-Carlo simulations) or it can obtain values of the roots of polynomial function (more efficient approach).

We are interested in the mean solution $\overline{u}(t,x)$ and standard deviation which are obtained from $u(t,x,\omega)$:

$$\begin{split} \overline{u}(t,x) &= \sum_k u(t,x,\omega_k) w_k \\ std(u) &= \sum_k [u(t,x,\omega_k) - \overline{u}(t,x)]^2 w_k \end{split}$$

Requirements:

- 1. Code must be
- a) parallel
- b) employ two level of parallelism the domain should be split in the direction of a stochastic variable "omega" and space variable "x".
- c) you may use MPI or OpenMP (or hybrid) program to obtain solution for each stochastic variable "omega_k". Here you may reuse the solver you have written for the HW2. You may also use GPUs for solution of deterministic equation.
- 2. Test for accuracy of the deterministic solver is required.
- 3. Test and report the performance of your code.
- 4. In your report you should include a pseudo code showing the different steps of the solver, you can use block diagrams or other techniques to describe on the top level what and how your code is working.
- 5. Explain the design of IO.
- 6. you may work in pairs.