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Rheology and ordering transitions of non-Brownian suspensions in a confined shear flow:
Effects of external torques
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We investigate the effect of an external torque, applied in the vorticity direction, to particles in a sheared
non-Brownian suspension confined by rigid walls. At volume fractions of ¢=0.48—0.52 such suspension flows
undergo an ordering transition, developing a hexagonal structure of particle strings in the velocity gradient-
vorticity plane. The hexagonal structure is disturbed by negative torques, leading to an increase in the shear
viscosity. Positive torque has a favorable effect on the ordered state. However, if the magnitude of the positive
torque exceeds a certain threshold, the hexagonal order begins to be weakened. Due to the significant changes
in suspension microstructures, rtheological parameters such as the shear and vortex viscosities exhibit nonlinear
responses to the external torques. On the other hand, at lower volume fractions ¢=0.40, where ordered
structures are not developed, suspension microstructure is not sensitive to an external torque and the apparent

viscosity is a linear function of the torque.
DOI: 10.1103/PhysRevE.81.062501

Manipulating rheological properties of suspension flows
by imposing electric or magnetic fields is of current interest
due to its relevance to a wide range of technological appli-
cations [1]. In electrorheological (ER) or magnetorheological
(MR) fluids, a dramatic increase in the apparent viscosity is
observed when particles are assembled into well-organized
large-scale structures, such as chains or stripes, by applied
fields [2]. Tt is also known that the apparent viscosity can be
reduced by applying an external torque on the particles in
ferrofluids [3]. In ER fluids, such a decrease in apparent vis-
cosity can be achieved by a dc electrorotation of suspended
particles (Quincke rotation) [4]. If a dc electric field is ap-
plied in the velocity-gradient direction on suspensions under
a steady shear, the particles experience an electric torque in
the vorticity direction, which makes the particles act as a
colloidal motor [5,6]. Lemaire et al. [6] suggested a simple
model to predict the apparent viscosity of sheared suspen-
sions under Quincke rotation. However, the detailed micro-
structure and rheological behavior of sheared suspensions
under an external torque are not fully understood.

Rheological properties of suspension flows, such as the
apparent viscosity and the normal stress differences, are
closely related to the microstructure of the suspension. For
example, in suspensions of non-Brownian particles under a
steady shear, irreversible effects introduced by small rough-
ness elements on the particle surface, residual Brownian
force, and/or surface charge result in an anisotropic micro-
structure, which is responsible for the non-Newtonian rheol-
ogy [7]. In recent studies of the colloidal [8] and non-
Brownian suspensions [9,10] under a steady shear, an
ordering transition is observed at high volume fractions (¢
=(.50). This nonequilibrium phase transition of non-
Brownian particles is different from the thermodynamic
phase transition of colloidal particles in that the process is
driven mostly by the shear-induced hydrodynamic interac-
tions between particles. As the suspension undergoes the or-
dering transition, the apparent viscosity decreases signifi-
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cantly. Particularly, Yeo and Maxey [10] showed that the
ordering transition, and hence, the changes in the apparent
viscosity are complex functions of the ratio of the channel
height to the particle radius and the volume fraction.

In this Brief Report, we show a possibility of manipulat-
ing the ordering transition of non-Brownian suspensions in a
Couette flow by applying external torques in the vorticity
direction to the particles. At high volume fractions ¢=0.48,
where the ordering transition occurs, the suspension can be
more ordered or disordered depending on the sign of the
external torque. Applying negative torque can hinder the or-
dering transition, which is then accompanied by an increase
in the shear viscosity. As a consequence, contrary to previous
results at low volume fractions (¢p=0.20) [6], the shear
stress of the suspension is not reduced dramatically by nega-
tive torques. On the other hand, a positive torque has a fa-
vorable effect on the hexagonal order. However, above a cer-
tain threshold, the order begins to be weakened by the
positive torque. At moderate volume fractions ¢=0.4, the
shear and vortex viscosities are neither sensitive to the sign
nor the magnitude of torque.

The hydrodynamic interactions between particles are
computed by the force-coupling method (FCM). In FCM, the
long-range multibody interaction is fully resolved by solving
the Stokes equations with regularized low-order multipoles
[11]. FCM has been successfully applied for the analysis of
MR flows [12]. Recently, a new modification of FCM to
solve long-range multibody and viscous lubrication interac-
tions simultaneously is presented [13] and used for concen-
trated suspensions in wall-bounded flows [10,14].

We focus on the volume fractions around which an order-
ing transition of non-Brownian suspensions occurs, ¢
=0.48-0.52 [10]. The computational domain is H,XH,
X H,=30a X 20a X 20a, in which a is the particle radius and
H,, H,, and H, denote the lengths of the domain in the ve-
locity (x), velocity-gradient (y), and vorticity (z) directions,
respectively. Periodic boundary conditions are used in the
horizontal directions (x and z). The computational domain is
bounded by two parallel walls located at y=0 and H,. The
lower wall is fixed and the upper wall is moving in the x
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FIG. 1. (Color online) Snapshots (end view) for [(a) and (b)]
¢=0.48 and [(c) and (d)] ¢=0.52. For visualization, the particle
radius is reduced to 1/2 of the actual size.

direction with velocity V,,,=vH,, where 7y is the nominal
shear rate. The external torque is varied between -3=T"
=3, in which T is the torque normalized by the fluid vis-
cosity ug and §, T*=T/8muyya’. In Couette flow, the sus-
pended particles rotate in the clockwise (negative) direction.
When a negative torque is applied, the particles rotate faster
and a positive torque retards the rotation. To model irrevers-
ible forces, an elastic contact force is used when the shortest
distance between two particle surfaces (ae€) is smaller than
0.01a [14]. The magnitude of the contact force is set to keep
the minimum separation distance ae,,;,=0.002 in all simu-
lations.

Initial random configurations for the simulations are gen-
erated by a molecular dynamics procedure. First, the simula-
tions with zero torque are allowed to evolve until the suspen-
sion reaches a stationary state. Then, an external torque is
applied to the suspension. It usually takes about 7y=100 to
reach a new stationary state after a torque is applied.

Figure 1 shows illustrative examples of the effects of an
external torque on ordering transitions. For H,/a=20, an or-
dering transition begins around ¢=0.48 [10]. At ¢=0.48, the
suspension is in a mixed disordered-ordered state whereby a
hexagonal order exists near the wall with a disordered state
in the core of the channel [Fig. 1(a)]. The suspension has a
fully hexagonal order across the whole channel when ¢
=0.52 [Fig. 1(c)]. When the positive torque 7%=2 is applied
to the suspension in a mixed state (¢$=0.48), the hexagonal
order near the wall is more pronounced [Fig. 1(b)]. On the
other hand, at ¢=0.52, the hexagonal order in the core of the
channel is disturbed after the particles are subjected to the
negative torque 7°=-2 [Fig. 1(d)].

To investigate the hexagonal order quantitatively,
Kulkarni and Morris [8] suggested a hexagonal order param-
eter Cg,
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FIG. 2. (Color online) The order parameter Cg as a function of
the nondimensional torque T*.
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in which ¢ denotes the azimuthal angle measured from the
positive vorticity (z) direction and g(¢) is the pair-
distribution function in y-z plane averaged over the radial
interval 2a<r<2.la. C¢=1 for a perfect hexagonal order in
y-z plane and C¢=0 if the suspension microstructure is iso-
tropic. Cy for different ¢ is shown in Fig. 2 as a function of
T*. It is clearly seen that the hexagonal order is always weak-
ened by the negative torque. On the other hand, the effect of
positive torque on the suspension is not straightforward.
When a positive torque is applied, Cg increases at first and
then starts decreasing slowly after a threshold 7., T,
seems to depend on the order state at 7°=0. Both for ¢
=0.50 and 0.52, T, is observed around 7*=1, while T,
for ¢=0.48 is found at larger T*, T"=2.

The shear stress of suspension flows at low Reynolds
number in the presence of particle torques is [14,15]

=1+ (0’_:,) + 3T, (2)

in which (-) denotes an average over the whole suspension,
and 7 and cr;:y are, respectively, the shear stress and x-y
component of the symmetric part of the particle stress tensor
normalized by wgy. The sum of the first two terms on the
right-hand side of Eq. (2) corresponds to the effective shear
viscosity; u,/pmo=1+(0oy,). In suspensions under steady
shear, normal relative motions between particles, which may
occur during tumbling of a particle doublet by the shear flow,
generate stresslets proportional to the inverse of the gap be-
tween particles (~1/€), which is a major contributor to u,
[16]. However, once the hexagonal order is developed, most
particle interactions are tangential relative motions between
particle strings, whose contribution to u,(~log €) is much
smaller than that from the normal motion. As a consequence,
in the previous studies on suspensions under a steady shear,
the decrease in u, is observed if a hexagonal order is present
in suspensions [8—10].

The shear viscosity is shown in Fig. 3(a). In general, w, is
a decreasing function of 7. At ¢=0.40, where the suspen-
sion is in a disordered state, u, is much less sensitive to the
external torque. There is only less than 10% difference be-
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FIG. 3. (Color online) The (a) shear and (b) apparent viscosities
as functions of the nondimensional torque.

tween u, for T"=-2 and 2. At ¢»=0.48, in which the ordered
region is confined near the wall, the changes in u, by nega-
tive T* is not significant similar to ¢=0.40. A dramatic in-
crease in u, is observed at ¢=0.50 when negative 7" is
applied. As the hexagonal order is disturbed by negative 77,
a disordered region emerges in the channel core, which in
turn results in the increase in u,. On contrary, the decrease in
M, by positive T° is most pronounced for ¢=0.48; u, is
decreased about 15% by changing 7" from 0 to 2. However,
when a positive torque is applied on the already ordered
suspensions (¢=0.52), the changes in w, are not noticeable.
Local minima of u, are observed for ¢=0.50 and 0.52,
which correspond to the maxima of Cy in Fig. 2.

Although the shear viscosity is an important parameter in
studying suspension rheology, it is not easy to obtain g, di-
rectly in the experiments of sheared suspensions under an
external torque. Here, we show the apparent viscosity, which
can be obtained by measuring the shear stress on the top
wall. The apparent viscosity of suspension ), is defined by
a simple constitutive equation, T=p,,,Y, OF  fhgp,= My
+3uopT". The definition of u,,, implies that, if suspension
microstructure or i, is not altered by an external torque, i,
can be increased or decreased by changing 7™ and it may be
possible to observe even a “negative viscosity” [6]. The the-
oretical prediction of the “negative ER effect” by [6] as-
sumes that u, is a function of ¢ only, i.e., the microstructural
change is negligible. The result for ¢=0.40 indicates that the
assumption in [6] is indeed valid at lower volume fractions
(¢=0.40). However, once a ordering transition occurs,
becomes a function of both ¢ and T* and the previous analy-
sis is no longer applicable in this regime. If suspensions are
in a ordered state, the magnitude of negative T* needed to
observe the negative ER effect would be much higher than
that predicted by the analytical model [6].
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FIG. 4. (Color online) Variations in the vortex viscosity u, as a
function of volume fraction for different values of the nondimen-
sional torque in a confined shear flow. Also shown are results of
Monte Carlo simulations for randomly seeded suspensions in a ho-
mogeneous uniform shear flow, compared to prior results [19].

The apparent viscosity is shown in Fig. 3(b). As u, is only
weakly dependent on T* at ¢=0.40, w,,, is seen to be a
linear function of 7*. A notable change in u,,, is observed
when ¢=0.50. For ¢»=0.50, the contribution from negative
T" to p,p, is somehow balanced by the increase in u,. As a
result, w,,, remains almost unchanged regardless of the
magnitude of negative T* in the range of the present study.
For ¢=0.52, it is observed that, after a threshold 7% =-2,
Mapp Degins to decrease.

One of the important rheological parameters in ER or MR
fluids is the vortex viscosity u,, which is a measure of the
hydrodynamic resistance to an applied external torque. The
vortex viscosity u, is defined as [17,18]

Py 34T

mo 2AQ)F+1 3

in which (Q),) is the averaged angular velocity of the par-
ticles in the vorticity direction. In an infinite domain, Mar-
chioro er al. [19] calculated w, by a Monte Carlo procedure
for a wide range of ¢. For a comparison, u, computed by
FCM in a triperiodic domain is shown in Fig. 4 together with
the numerical fitting curve by [19]. w, in the present simu-
lation is estimated from an ensemble average of 100 random
configurations for each ¢. The agreement with [19] is excel-
lent. Due to the absence of any microstructure, wu, obtained
by the Monte Carlo approach does not depend on the sign or
magnitude of 7.

In Fig. 4, the vortex viscosity estimated by dynamic simu-
lations of the confined steady shear flow is presented. At ¢
=0.4, it is observed that w, obtained in the dynamic simula-
tions is larger than that by the Monte Carlo approach in an
infinite domain. In the previous boundary element computa-
tion of confined sheared suspensions, the vortex viscosity of
confined suspensions was slightly lower than that of the in-
finite domain [18]. Hence, the increase in the vortex viscos-
ity seen in the present dynamic simulations may be due to
the formation of hydroclusters [20]. At ¢=0.40, w, is not
sensitive to the signs and magnitudes of 7. On the other
hand, a bifurcation of w, is observed when ¢=0.48, where
the hexagonal order is present in the suspension. In general,
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W, for negative T* is always larger than that for positive 7™
At ¢=0.48, u, for positive T* is a decreasing function of T~
for T*=2, as the suspension becomes more ordered, while
the effect of the negative torque, disturbing the order struc-
ture, is not noticeable. It seems that, because the suspension
is already in a disordered state except near the wall, u, is
less sensitive to the magnitude of torque for negative 7*. On
the contrary, ¢=0.50, u, does not change significantly when
" >0.

The changes in the ordered state correspond to the
changes in the angular velocities of the suspended particles.
In a homogeneous suspension, the additional hydrodynamic
force from neighboring particles due to the external torques
tend to be canceled out. In a wall-bounded sheared suspen-
sions, however, the symmetry in the suspension microstruc-
ture is broken and the response of the suspension to an ex-
ternal torque now depends on the sign of the torque. The
particle-wall resistance relation for the hydrodynamic torque
in a shear flow is given by [14,21]

YQPIy=T" +3YNV, = V))lday-Y'=T" + Ty,  (4)

where QD is the retarded angular velocity Q? =0.+0.5%,Y ¢
YA, and Y are the resistance functions, which depend on the
distance from the wall, V, is the translational velocity in the
velocity direction, and V7 is the background velocity by the
imposed shear rate. When a particle is close to the wall, both
Y€ and TG are positive, which indicates that the suspended
particles near the wall rotate more slowly than the bulk when
T*=0. Similarly, for negative T%, |T*+T| <|T*| and the par-
ticles near the wall rotates slower than those in the core of
the channel. On the other hand, if a positive torque is ap-
plied, |T"+T|>|T"|, indicating |QP| for the particles near
the wall becomes larger than that in the core. The asymmet-
ric response to the sign of 7% may be explained by these
wall-induced hydrodynamic interactions. As the dynamics of
the wall layer is decoupled from that in the core before an
ordering transition occurs, the wall effects are localized near
the wall and the bulk dynamics does not change noticeably.
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However, near the ordering transition, a long-range correla-
tion develops and the wall-induced hydrodynamic interac-
tions may alter the overall suspension dynamics.

In summary, we find that ordering transitions in sheared
non-Brownian suspensions confined by two parallel walls
can be altered by applying an external torque in the vorticity
direction on the particles. It is observed that negative torque
always weakens the order structure, which in turn results in
the increase in the shear viscosity. The dramatic decrease in
the shear stress by the negative torque, which has been seen
in lower volume fractions [6], is not observed once the hex-
agonal structure is present in suspensions. The hexagonal
order is more pronounced with a positive torque. However,
above a threshold, the order structure begins to be disturbed.
Due to the changes in the order structure, the rheological
parameters exhibit nonlinear responses to the applied torque.
Here, we focus only on the suspensions in the channel whose
height is H,/a=20. However, as shown in [10], due to the
complex interplay between the shear induced hydrodynamic
interaction and the confinement effects, ordering transitions
and rheological parameters show a complex behavior
strongly dependent both on H,/a and ¢. Further investiga-
tions for a wide range of H,, ¢, and T" are required to fully
understand order structures and the effects of external
torques in confined suspensions.

In this Brief Report, we have not specified a way to im-
pose an external torque on the particles. The external torque
may be achieved by applying magnetic or electric fields as
seen in ferrofluid or ER fluid. However, in concentrated sus-
pensions, electric or magnetic coupling between particles
may be important, which is not considered in the present
Brief Report. The effect of electric or magnetic coupling be-
tween particles is a subject of further investigation.
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