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Chapter 1

Navier-Stokes solver

1.1 Navier-Stokes equations in Fourier series

The Navier-Stokes equations in the rotational form are

ou; oP
: = — Hz 2 i ]_]_
5 oz, + H; + vV<u,, (1.1)
(9’&,‘
=0, 1.2
e (1.2)
where
p 1
P = L4 Zuus
P + 2u]uj,
Hi = Giijjwk.

The pressure Poisson equation can be obtained by taking the divergence of equa-
tion (1.1),

OH,;
2p =7 1.
v o, (1.3)

Expanding equations (1.1, 1.3) in Fourier series gives

dii;

—k?P = ik;H;, (1.5)
where ~ denotes a Fourier coefficient, k; is a wavenumber in i-direction, and k% =
k% + k2 + k3. To eliminate the pressure in the Navier-Stokes equations, substituting
equation (1.5) into equation (1.4) yields,

di; 1



Table 1.1: Time stepping coefficients for RK3

an b = i(ai +bisa)

15t 8/15 0 0
2nd 5/12 -17/60 8/15
3rd 3/4  -5/12 2/3

To treat the viscous terms analytically, one can multiply equation (1.6) by an expo-
nential function,

F(t) = e’*"t, (1.7)

Then, the resulting equation reads

du; . d N ~
f(t)d—l;—l—ui% = {_%kiijj‘i‘Hi] x f(t), (1.8)
and thus
daizft(t) _ [_%kikjﬁlj +FIZ} x f(t). (1.9)

To solve equation (1.9) numerically, applying a 3"%-order 3-step Runge-Kutta
scheme (RK3) to the nonlinear terms gives,

A = [andt NI, + ap] ek en—ens)dt g gy NI ek (ensmensi)dt (1 10)

7
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(1.11)
where
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and a,, b,, and ¢, denote the Runge-Kutta coefficients (Table 1.1). In the limit
of infinite Reynolds number the RK3 method approaches the CFL number limit

V3 [1].



1.2 External forcing

The Navier-Stokes equations with an external forcing to maintain stationary turbu-
lence are

dﬂz . - a 2 A o
E = —ZkiP + Hz — vk U; + fi, (113)
in which ﬁ denotes an external forcing. To ensure the divergence-free condition, f, is
defined to be the projection of a vector b onto the plane normal to the wavenumber
vector k,

fi=bi— _i(kjbj)- (1-14)
Following the study by Eswaran & Pope [2], a three-dimensional complex vector bis

non-zero in the range 0 < k£ < k¢, in which &y is the maximum forcing wavenumber,
and composed of six independent Uhlenbeck-Ornstien processes,

~ [vol U0o2
b= |U03| +i |U04] . (1.15)
UO5 Uo6

Each stochastic process, UO1 — U6, is chosen so as to satisfy the Langevin equation
with a time scale T/ and standard deviation o [3], that is

1/2
2 2
dUO = —U—?dt+ 25 aw, (1.16)
TL TL

in which W, denotes a Wiener process such that,
dW; ~ N (0, dt). (1.17)
An analytical solution to equation (1.16) is given by [4, 5]

t 1/2
UO(t) = UO(0)e /7L + ¢ t/71 / es/T1 (20;/T{) dw.,. (1.18)
0

Equation (1.18) can be solved discretely by applying It6 integral [4]. For each sub-
step of RK3, equation (1.18) reads [6]

1/2
Uo™t — e*(an+bn)dt/T£ [UO" + (QUf,/TIf) dW"] , (1.19)

in which discretized Wiener process is

dW™ ~ N(0, (ap + by)dt). (1.20)



Table 1.2: Simulation parameters

N v kg ef Tg

643 0.0158 /2 0.01306 0.6369
128% 0.006416 +/2 0.01581 0.6369

Eswaran & Pope [2] suggested an empirical relation between a desired Reynolds
number and the forcing parameters:

Reyo — 50 (1.21)

B (77T/€0)5/6N12w/9’

in which Ng is the number of forced modes, nr denotes the predicted Kolmogorov
lengthscale, and kg is the smallest wavenumber. For two values of k¢, V2 and 2v/2,
the corresponding values of Ny are 18 and 92, respectively. Once, 7y is determined
for the desired Re,, the rest forcing parameters are obtained by the following set of
equations,

o= (Ve (1.22)
€ — s .
r 1+ TL(Np)1/3/8

e = 03T, (1.24)

in which €}, is the predicted dissipation rate and /3 is a constant.

1.3 Results

The direct numerical simulations using 64% and 128 grid points are performed.
The stochastic forcing suggested by Eswaran & Pope [2] is employed to maintain
stationary turbulent flows. The forcing parameters for each simulations are shown
table 1.2.

Turbulence field generated by random Gaussian numbers was used as an initial
condition. Figure 1.1 shows the evolution of turbulent quantities with time for 643
simulation. The definitions of dissipation rate (e) is

= - . 1.25
Although it is inadequate to assert that the turbulent field is stationary only based
on the time histories of dissipation rate and turbulent intensities, it seems that the




d““2t5““50

Figure 1.1: Temporal evolution of (a) dissipation rate and (b) turbulent intensities
from an initial field generated by Gaussian random numbers.

memory of initial condition is lost quickly and, soon after the short period of initial
transient state, turbulent field rapidly moves toward isotropic and stationary state.
The simulation was performed for sufficiently long time - in this case, about 20
times longer than the initial transition - and then, the turbulent field was saved as
an initial condition.

The Eulerian statistics for 64* and 1283 cases are shown in table 1.3. The Taylor
microscale in isotropic turbulence can be obtained by the following relationship,

(€) = 150(u?) /)2 (1.26)

Yeung & Pope [7] suggested that it is desirable to maintain the ratio of the smallest
scale of motion to the grid size larger than 0.5. In other words,

kmaan > 1.5, (1.27)

in which, k.., is the maximum resolved Fourier mode and 7 is the Kolmogorov
lengthscale (= (v%/€)'/4). The computational grids in 64° and 128% simulations are
a little coarser than the recommended grid size. This can be adjusted by varying
forcing parameters. Figure 1.2 displays one-dimensional energy spectra. The small
increase of energy at high wavenumbers is a consequence of aliasing error and can be
eliminated by enhancing grid resolution. However, because the error is very small

Table 1.3: Eulerian statistics

N Rey  (u?) 172 (€) n kmazn

64> 58  1.347 0.942 0.0452 1.36
1283 92 1.342 0.853 0.0236 1.44
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Figure 1.2: One-dimensional energy spectra for (a) 64 and (b) 128% simulations.

and appears only at the highest wavenumber, there seems no need to adjust the grid
resolutions. In figure 1.2, it is shown that the energy spectra at low wavenumbers
show the Kolmogorov’s -5/3 scaling. It is also shown that the inertial range becomes
widened with increasing Reynolds number. The transverse energy spectra, Eos(k1)
and Fjs3(k;), fall on a curve, indicating that the velocity field is isotropic.



Chapter 2

Algorithm for tracking particles

2.1 Derivation of 3-dimensional 4-point Hermite
interpolation

Typically, locations of particles do not coincide with the locations of computational
grid where the flow quantities, such as velocities, pressures, and accelerations, are
evaluated. Therefore, it is essential to obtain the fluid quantities at the position of
a particle by employing an accurate interpolation scheme. Undoubtedly, the direct
summation of phase-shifted Fourier coefficients, known as a spectral interpolation,
is the most exact method [8]. Considering its unpractically high computational
cost, however, it seems not feasible to employ the spectral interpolation to obtain
Lagrangian statistics. Recently, Choi et al. [9] showed that a 4th-order Hermite in-
terpolation combined with the Chebyshev polynomials in one-direction outperforms
other tested interpolations schemes, such as linear, 6th-order Lagrange polynomial,
and 2-point Hermite interpolations, with reasonable computation time. Therefore,
in this work, the 4-point Hermite interpolation in 3-dimension is adopted to obtain
flow quantities in the location of a particle.
The 4-point Hermite interpolation in z-direction is given by

4
u(z,m,n) = Zu(l, m,n)H; +

=1

ou(l,m,n)

2.1
o Gla ( )

in which H; and G, denote basis functions of Hermite interpolation. Extension of



equation (2.1) to 2-dimension is

4
u(z,y,n) = Zu(m,m,n)Hm—%iGm

ou(l,m,n)

4
—i—2 Zu(l,m, n)H, + G| G,

4 4
= ZZu(l,m,n)Hle-i-MGle

Oz
m=1 =1
ou(l, m,n) 0*u(l,m,n)
-+ ay Hle + 8378:(; Gle

Similarly, the 3-dimensional 4-point Hermite interpolation reads,

ou(z,y,n)

u(z,y,2) = Zu(x,y,n)Hn—l— P

Gn

4 4 8 (l )
= SN ull,mn) HHyHy + 22 G H H,

n=1m=1 [=1

ou(l,m,n)
oy G + 0z

0?u(l,m,n)
0xdy CiGmHn + 0x0z men

0?u(l,m,n) Pu(l,m,n)

+

The basis functions of 4-point Hermite interpolation are given by [9]

Hi(&) = (11€" — 52€% + 59¢€° + 50&* — 124€° + 56¢2) /108,

Hy(€) = (2767 — 81£5 — 545 + 270¢* + 27¢% — 297€2) /108 + 1,
Hs(€) = (—27€7 +108£% — 27¢5 — 270¢* 4 108> + 216€2) /108,
Hy(€) = (—1167 +256° 4 226° — 506" — 11€° + 25¢%) /108,

Gi(§) = (367 —15€° +21€° + 3¢* — 24€° + 12€%)h/108,

Go(€) = (2767 — 108€° + 54€° + 216¢* — 189¢° — 108¢%)h/108 + h¢,
G3(€) (2767 — 81€° — 27¢5 + 189¢* — 108£%)h/108,

Gi(§) = (367 —66° —66° + 126" + 3% — 6£)h/108,

(2.2)

(2.3)

(2.4)

where £ = (z — z3)/h, £ = (y — y2)/h, or € = (2 — 2z3)/h and h is the grid spacing

in each direction.



2.2 Tracking scheme for a fluid particle

2.2.1 Equation of motion

The trace of a particle is obtained by integrating the equation of motion of the
particle. The equation of motion for a fluid particle is

dX (t, X,)

L =V (t, Xo), (2.5)

where X is the location of a fluid particle at time ¢, whose initial position is X,
and V is the velocity of a fluid particle at time ¢. Since a fluid particle exactly
follows the motion of fluid, equation (2.5) can be numerically integrated easily once
the fluid velocity at X is obtained by using the interpolation scheme shown in the
previous section.

In accordance with the Navier-Stokes solver, equation (2.5) is integrated employ-
ing RK3 scheme. The discretized equation is

XM = XT 4 a,dtV® + bdtV . (2.6)

Because V; should be evaluated for each fluid particles, computational cost of equa-
tion (2.6) is very high. To reduce the computational cost, the 4th-order central
difference scheme is used to calculate the derivatives in the interpolation scheme.

(a 12
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Figure 2.1: (a) Sample particle trajectories obtained by Hermite and Lagrange in-
terpolations on x — y plane and (b) time histories of u;.
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Figure 2.2: (a) Mean-square dispersion and (b) Lagrangian velocity auto-correlation
function for Re, = 58.

2.2.2 Results

To verify the interpolation scheme, a particle trajectory obtained employing the
Hermite interpolation is compared to that using 6th-order Lagrange interpolation [8].
Figure 2.1 shows sample trajectories and time histories of u;. In early time, both
Hermite and Lagrange interpolation gives almost the same result. The trajectories
start to deviate from each other when the fluid particle shows a rotational motion
in late time. This deviation is an anticipated result because of the low accuracy of
the Lagrange interpolation [9].

The mean-square dispersion and Lagrangian auto-correlation function are de-
fined as

ox = ((X(to+7)—X(t))?), (2.7)
_ (o(to +1)(t0))
pL(t) = ) (2.8)

in which 7 denotes time lag. 0% and the Lagrangian velocity auto-correlation for
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64 simulation are shown in figure 2.2. It is shown that the early-time dispersion is
proportional to #2, as predicted by Taylor’s theory [7, 9]. The integral timescale (77)
can be obtained by integrating the Lagrangian velocity auto-correlation (figure 2.2
b). In this simulation, the ratio of integral timescale to the Kolmogorov timescale
(1, = (v/€)'/?) is about 6.95, which is in good agreement with the previous results
by Yeung & Pope [7].

2.3 Tracking scheme for a heavy particle

2.3.1 Equation of motion

Equation of motion for a heavy particle in turbulence, omitting high-order terms, is
given by [10]

dv; Du; 1 d
My~ = (my —my)g; + My Ty (Vi — wi) — 6map(Vi — u;), (2.9)

in which m,, is the mass of a particle, M is the mass of fluid displaced by the particle,
g; is the gravitational acceleration, and a represent the radius of a particle. The
terms on the right hand side of equation (2.9) represent the force due to buoyancy,
fluid acceleration, inertia of added mass, and Stokes drag, respectively. Dividing
equation (2.9) by m, and rearranging yields,

dvi

(A+2) o

(Vi — ui), (2.10)

Du;  1du; 12
:2(1—)\)gi—}—2)\( u+ du)— map

Dt ' 2dt my

where A = pr/p, and p, and p; are, respectively, the density of a particle and fluid.
From the fact that

Pp > Pfs
4 3
mp = STapp,

a simplified equation of motion for a heavy particle is

av; 1
= ;(ui - Vi) + g (2.11)

Here, 7 (= 2p,a®/9u) is a characteristic timescale of a particle, namely the particle
response time [11]. Note that equation (2.11) holds only when the particle Reynolds
number based on the relative velocity between ambient fluid and a particle is signif-
icantly smaller than 1 [12, 13, 14].

As the particle response time decreases, equation (2.11) becomes stiffer to solve
numerically [14]. To avoid this problem, the equation of motion in terms of relative
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Figure 2.3: Time history of mean-square relative velocities for Re) = 58.
velocity is solved instead of the particle velocity. The evolution of relative velocity
in the absence of gravity is given by

AW, et/ du;
— et/ T
dt dt’

(2.12)

in which W; is the relative velocity between a particle and fluid (= V; — u;). Dis-
cretizing equation (2.12) employing RK3 yields,

un+1 —un
AP — i 2.13
! (an + by)dt’ (2.13)

I/I/'ZH‘I — (I/I/’Zn _ anthg’n)e*(an‘f‘bn)dt/T _ bnth?anfle*(an+bn+an—l+bn—l)dt/T'
(2.14)
Ajlf denotes the changing rate of fluid velocity following the particle trajectory. For
a simple ideal flow - the fluid velocity is proportional to the location of a particle,

u; = aX; - it is found that equation (2.14) is numerically stable even when 7 is
about 100 times smaller than dt.

2.3.2 Results

To assess the particle-tracking scheme, an extreme case, 7, = dt/35, was simulated.
Figure 2.3 shows the mean-square relative velocity with time. The definition of

13
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Figure 2.4: Time histories of root-mean-square relative velocities for Re, = 58: (a)
T, =Ty, (b) 7 = 107,.
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Figure 2.5: Variations of fluid and particle velocities at the location of a particle:
(a) 7 =Ty, (b) 7, = 107y,

mean-square relative velocity is

Np

(W2(0) = D (ult, Xo) — Vilt, Xo))* (215)

P =1

in which N,, denotes the number of particles. Since the particle relaxation time is
very small, 1000 time smaller than 7,, the particle almost exactly follows the motion
of fluid element. Although it is not shown, the Lagrangian velocity auto-correlation
of the particle is also the same with that of fluid element. In this test, it is found that
calculating velocities of particles from the relative velocities is numerically stable and
gives reliable results even for very small relaxation time.

Figure 2.4 displays the root-mean-square (r.m.s.) relative velocity for two cases;
case 1 is 7, = 7, and case 2 is 7, = 107,. It is shown that the r.m.s. W; of case
2 is much larger than the other one. Nevertheless the initial conditions for the
two cases are the same, an initial sharp increase of relative velocity is observed for
case 2. Since the characteristics timescale of case 1 is comparable to the smallest
timescale for fluid, the particles follows the motion of fluid closely and, thus, the

14



initial transient state of the r.m.s. relative velocity seems not observed. Figure 2.5
shows the variations of u; and V; following the motion of particles. As mentioned,
the particle velocity follows the fluid velocity quickly for case 1, while there is a
serious time lag for a particle velocity to catch up the fluid velocity for case 2.

15



Chapter 3

Implementation

3.1 Naming conventions

Most variable names in the Iso_par is determined using the following rules.

1.

nx, ny, nz are the maximum wavenumbers and nzp, nyp, nzp represent the
3/2 times expanded grid points for de-aliasing.

. In the case of complex variables, the last character r and i denote real and

complex parts, respectively.

. The variables start with u, H, and om are storages for velocities, nonlinear

terms, and vorticities, respectively.

The last loop index represents the axis, that is ur(z,y, z, 1) is the real part of
the Fourier coefficient of velocity in x direction. However, the last loop indices
for the particle and fluid velocities indicate the Runge-Kutta substep.

. Digits in the middle of temporal variables indicate a two-dimensional plane

in which the variables are used. For example, u3r contains the real part of
velocity Fourier coefficient in z — z plane and om2r is the real part of vorticity
Fourier coefficient in z — y plane.

. loc and vel mean the storages for location and velocity of particles, respectively,

and the first character p_ and f_ are, respectively, the variables for inertial
and fluid particles.

alpha, eta, beta represent the wavenumbers in z,y, z directions, respectively

. Variables starting with pre are what used in FFT and should not be changed

during calculation, while w2r, w2i, w3r, w3: are temporary storages for FF'T.

avg means the storage for averaged quantities and amp is the storage for
Eulerian statistics.

16



3.2 Program structure

The program Iso_par is, roughly, composed of 3 steps. First, the stationary turbu-
lent field is obtained from input file and simulations are initialized. Second, time
is advanced by subroutines nonlin_1st, nonlin_2nd, and nonlin_3rd. Lastly, tur-
bulence statistics are obtained and the computed turbulent field is saved.

3.2.1 Step1

ppar prints out information about grid size given in par.f.

rparam reads the file iso.i which contains control information and the maximum
cfl number is defined in this subroutine.

prepr initializes variables for VECFFT and define wavenumbers in each direction.

getcoeff defines the number of forced modes for each threads. This subroutine is
necessary only when using OpenMP.

rdisc reads the input file which contains velocities, stochastic processes for isotropic
forcing, and the information about particles. When the grid size in the input file
is not identical with that in par.f, grid expansion or contraction is performed. In
this case, to remove the effects of transient flow, you should run the simulation
sufficiently long time before obtaining statistics.

When variable time step, getdt calculates c¢fl number and adjusts time step based
on the maximum cfl number defined in rparam.

ctim computes CPU time.

3.2.2 Step 2

nonlin_1st saves 0u/0y and Jw/0y used to evaluate vorticities and calculates

A’n

—n—1
_ ~n—vk2(an+by)dt = —vk2(an+bntan_1+bn_1)dt
" =1uje +b,dtNL, e n=1TOn—1)at,

Then, the subroutine performs backward FFT in y-direction.
nonlin_2nd performs backward FFTs in z- and z-directions. The subroutine also
computes the nonlinear terms and obtain fluid velocities at the location of particles

using Hermite interpolation. Then, forward FFTs of the computed nonlinear terms
in z- and z-directions are performed.

17



nonlin3rd performs forward FFTs in y-direction. Applying stationary forcing, the
velocities at n 4+ 1 are computed,

—— 1 ~ A
NL, = ki HY + HY + T,
a?ﬂ _ andtﬁ?ewm(aﬁbn)dt + ,&;n

Among forced modes, conjugate pairs are artificially adjusted.
G _forcing computes the Uhlenbeck-Ornstien processes for the next time step.

tracking calculates particle velocities at the present time step and the location of
particles at the next time step.

3.2.3 Step 3
getstat calculates Eulerian statistics such as €, v, and [ E(k)/k dk.

loc_stat and vel_stat calculates, respectively, Lagrangian statistics of position and
velocities of particle and fluid element.

loc_ini and vel_ini set the location and velocities of particles at the present time
step as an initial condition to calculate Lagrangian statistics.

wdisc writes velocities, external forces, and velocities and position of particles.

3.3 Miscellaneousness

par.f contains information about the size of simulation.

iso.i contains control parameter such as input and output file name, maximum
number of iteration, time step, and kinematic viscosity.

getxyb gets variables on x — y plane, performing zero-padding for dealiasing. This
subroutine should be used before backward FFT in y direction.

getxyf gets variables on x — y plane. Zero-padding is not performed in this
subroutine. This subroutine is typically used before forward FFT in y direction.

getxz gets variables on z — z plane, performing zero-padding. This subroutine is
used before two-dimensional FFT in x — z plane.

18



putxyb puts variables on x — y plane in temporary storages into main storages
without performing dealiasing.

putxyf puts variables on z — y plane in temporary storage into main storages
performing dealiasing.

putxz puts variables on z — z plane in temporary storage into main storages
performing dealiasing.

chkdiv checks whether the velocity field satisfies the divergence-free condition or
not.

Hermite calculates the fluid velocities at the location of a particle using 4th-order
central differencing scheme.

Variable s_id gives an i.d. to the currently initialized Lagrangian statistics set.
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