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Abstract In this paper we address several issues arising from a singularly perturbed fourth order
problem with small parameter ε. First, we introduce a new family of non-conforming elements. We
then prove that the corresponding finite element method is robust with respect to the parameter ε
and uniformly convergent to order h1/2. In addition, we analyze the effect of treating the Neumann
boundary condition weakly by Nitsche’s method. We show that such treatment is superior when the
parameter ε is smaller than the mesh size h and obtain sharper error estimates. Such error analysis
is not restricted to the proposed elements and can easily be carried out to other elements as long as
the Neumann boundary condition is imposed weakly. Finally, we discuss the local error estimates
and the pollution effect of the boundary layers in the interior of the domain.
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1 Introduction

We consider the fourth order problem:

ε2∆2u−∆u = f in Ω, (1.1a)

u =
∂u

∂n
= 0 on ∂Ω, (1.1b)
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where Ω ⊂ Rd (d = 2, 3) is a convex polygonal domain, f ∈ L2(Ω), and n denotes the outward unit
normal of ∂Ω. In two dimensions, the boundary value problem (1.1) arises in the context of linear
elasticity of thin buckling plates with u representing the displacement of the plate. The dimensionless
positive parameter ε, assumed to be small (i.e. ε� 1), is defined by

ε =
t3E

12(1 − ν2)`2T
.

Here, t is the thickness of the plate, E the Young modulus of the elastic material, ν the Poisson
ratio, ` characteristic diameter of the plate, and T the absolute value of the density of the isotropic
stretching force applied at the end of the plate [11]. In three dimensions, problem (1.1) can be
considered a gross simplification of the stationary Cahn-Hilliard equation with ε being the length of
the transition region of phase separation.

Since problem (1.1) is fourth order, standard conformal finite element methods require function
spaces to be subspaces of H2(Ω). Such elements require polynomials of high degree and even in two
dimensions are not easy to construct. Moreover, the approximation properties of such elements may
not even be high on quasi-uniform meshes due to the presence of strong boundary layers that affect
global regularity estimates [1,22,23]. Specifically, a priori estimates show (cf. Lemma 4)

‖u‖Hs(Ω) ≤ Cε3/2−s‖f‖L2(Ω), for s = 2, 3. (1.2)

Therefore, due to their relative simplicity, non-conforming methods are an attractive option.
In this direction, there are several such methods available in the literature. The Morley element

is a natural choice since it has the least number of degrees of freedom on each element for fourth
order problems, as its basis functions consist of only quadratic polynomials [15,24]. However, since
the Morley element is not convergent for second order problems [17,27], either the formulation
of the Morley method must be modified or the element itself must be altered in order to obtain
robust schemes. In the former category, a modified Morley method was proposed and analyzed in
two and three dimensions in [28] and [29]. In these papers, the authors used the original Morley
element in conjunction with an enriching operator within their numerical method. In the later
category, Nilssen et al. [17] did not change the formulation of the Morley method, but rather enriched
second degree polynomials with cubic bubble functions in two dimensions. Tai and Winther later
extended this element to three dimensions in [26], and variations of the element were also proposed
in [30]; all of these elements are low-order. Another approach to compute the solution to (1.1) is
by using C0 interior penalty methods. For this method, one uses standard continuous Lagrange
finite elements while replacing the C1(Ω) continuity requirement with penalization techniques. Such
methods were proposed in [6,7,10] with ε = 1, and the corresponding simply supported plate problem
was constructed and analyzed in [8].

In the three papers [17,28,29] it was shown that the modified Morley methods are convergent
uniformly in ε in the energy norm with bounds of order h1/2. In fact, in the last remark in [17]
the authors argue that this is the best possible ε-independent error estimate for any finite element
method on quasi-uniform meshes due to the strong boundary layers of the solution. This claim
seems plausible if one takes in consideration all possible relations between ε and h. However in some
regimes it is not the case. For example, modifying a method by imposing the Neumann boundary
conditions weakly, we obtain better error estimates in the case of ε < h, while still retaining the h1/2

and ε-uniform error estimate.
As the title suggests, there are several aims of this paper. First, we propose a family of non-

conforming finite elements for the singular perturbation problem (1.1) that is robust with respect
to the parameter ε. The element is motivated by the element constructed in [17], and although our
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lowest order element has the same degrees of freedom as the elements in [17,26], the finite element
spaces are different. This is because we use face (3D)/edge (2D) bubbles to construct our elements.
Our elements also come in a natural hierarchy, and therefore higher order approximations may be
possible. We are not aware of any other family of elements with such a hierarchical construction for
the biharmonic problem.

Our next contribution is that we modify our method to impose the Neumann boundary condition
in (1.1b) weakly. The new error estimates show that this approach is superior to that enforcing
boundary conditions strongly and may lead to better convergence rates. Although the analysis of
such convergence rates is fairly involved, the concept is very natural. If we let ū be to the solution
to the reduced problem

−∆ū = f in Ω, (1.3a)

ū = 0 on ∂Ω, (1.3b)

we see that ū has no dependence on ε, and therefore no boundary layers. Moreover, since Ω is convex,
ū ∈ H2(Ω) and there holds [12]

‖ū‖H2(Ω) ≤ C‖f‖L2(Ω). (1.4)

Furthermore, it can be shown (cf. Lemma 4) that ‖u − ū‖H1(Ω) ≤ Cε1/2; that is for small ε the
solution to (1.1) is very close to the solution to the reduces problem (1.3). Thus we naturally want to
construct a finite element method that does not only approximate u for all ε, but also approximate
ū well when ε is small. Noting that ū does not satisfy the second boundary condition in (1.1b), it
is then logical to construct a method that does not enforce the normal derivative constraint on the
boundary with ε = 0. This naturally leads us to formulation using Nitsche’s ideas [18], that is, to
impose the boundary condition weakly in the variational formulation using penalization techniques.
We note that the use of Nitsche’s method for singular problems is not new (e.g. [2,13,14,20,25]).
However, as far as we are aware, this is the first time such an approach has been applied for problem
(1.1). Moreover, we give a rigorous justification of the advantage of Nitsche’s method for (1.1) by
proving sharp error estimates in the case ε is small. Similar analysis has been developed by [20] for
second order convection-diffusion problems.

The rest of the paper is organized as follows. In the next section we provide the notation that
will be used throughout the paper. In Section 3 we introduce a family of elements for the singular
perturbation problem in two and three dimensions. Here, we describe the local and global spaces,
its associated degrees of freedom, and unisolvency. We also address the approximation properties of
the space as well. In Section 4 we define and analyze the finite element method with weakly imposed
boundary conditions. We show that the new method satisfies all of the estimates in [17,28,29], but
in addition, derive a new estimate which is better for small ε-values. In Section 5, we derive L2 error
estimates. In Section 6 we mention how other popular methods can be modified to include Nitsche’s
method. Finally, in the last section we discuss the local error estimates and the pollution effect of
the boundary layers in the interior of the domain.

2 Notation

We use Hs(Ω) (s ≥ 0) to denote the set of all L2(Ω) functions whose distributional derivatives up
to order s are in L2(Ω), and Hs

0(Ω) the set of functions whose traces vanish up to order s−1 on ∂Ω.
We use (·, ·)D to denote the L2 inner product between two functions over a d-dimensional set D,
〈·, ·〉G to denote the L2 inner product over a set G of dimension less than d, and use the convention
(·, ·) := (·, ·)Ω.
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Let Th be a shape regular simplicial triangulation [5,9] of the domain Ω, and let Fh denote the
set of (d − 1)-dimensional simplices in Th, i.e., the set of faces (3D) or edges (2D) in Th. We adopt
the following notations:

– F i
h = the set of interior (d− 1)-dimensional simplices in Th,

– Fb
h = the set of boundary(d− 1)-dimensional simplices in Th,

– hT = the diameter of T ,
– h = maxT∈Th

hT ,
– hF = the diameter of the (d− 1)-dimensional simplex F ,
– v± = v

∣

∣

T± , the restriction of the function v to the simplex T±,

– P
k(G) = the space of polynomials of degree less than or equal to k restricted to the set G.

Furthermore, we define the patch of F ∈ Fh and T ∈ Th as

TF =
{

T ∈ Th : F ⊂ ∂T
}

, TT =
{

T ′ ∈ Th : ∂T ′ ∩ ∂T 6= ∅
}

,

and we use the convention

‖v‖2
Hm(Th) =

∑

T∈Th

‖v‖2
Hm(T ), ‖v‖2

Hm(TF ) =
∑

T∈TF

‖v‖2
Hm(T ), ‖v‖2

Hm(TT ) =
∑

T ′∈TT

‖v‖2
Hm(T ′).

For F ∈ F i
h, there exist two simplices, T+, T− ∈ Th such that F = ∂T+ ∩ ∂T−. We define the

jump of the normal derivative of v on F as

[[

∂v

∂n

]]

∣

∣

∣

F
=
∂v+

∂nF

∣

∣

∣

F
−
∂v−

∂nF

∣

∣

∣

F
,

where nF denotes the normal of F pointing from T+ to T−. On the boundary F ∈ Fb
h, we take

[[

∂v

∂n

]]

∣

∣

∣

F
=

∂v

∂nF

∣

∣

∣

F
.

We also define the average of the normal derivative as

{{

∂v

∂n

}}

=
1

2

( ∂v+

∂nF

∣

∣

∣

F
+
∂v−

∂nF

∣

∣

∣

F

)

if F ∈ F i
h,

{{

∂v

∂n

}}

=
∂v

∂nF

∣

∣

∣

F
if F ∈ Fb

h.

Given T ∈ Th, we denote by {λF} the (d + 1) barycentric coordinates of T , labeled such that
λF vanishes on the (d−1)-dimensional simplex F ⊂ ∂T . The element bubble and face/edge bubbles
are then given by

bT =
∏

F

λF , bF =
∏

G 6=F

λG,

where the product runs over the (d− 1)-dimensional simplices of T .
We use C to denote a generic constant independent of h, ε, or any penalty parameters that may

take different values throughout the paper. In the analysis we will often use the following version of
the trace inequality (see e.g., [5, Theorem 1.6.6]).

Proposition 1 For any simply connected domain D with piece-wise smooth boundary ∂D there

exists a constant C > 0 such that

‖v‖L2(∂D) ≤ C‖v‖1/2
L2(D)‖v‖

1/2
H1(D), ∀v ∈ H1(D). (2.1)
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In particular, by a standard scaling argument we obtain the following estimates on any simplex T

‖v‖L2(∂T ) ≤ C(h
−1/2
T ‖v‖L2(T ) + ‖v‖1/2

L2(T )‖∇v‖
1/2
L2(T )), ∀v ∈ H1(T ), (2.2a)

‖v‖L2(∂T ) ≤ C(h
−1/2
T ‖v‖L2(T ) + h

1/2
T ‖∇v‖L2(T )), ∀v ∈ H1(T ). (2.2b)

In addition we will also need a standard inverse estimate. Let q be fixed. Then for all v ∈ P
q(T ),

‖v‖L2(∂T ) ≤ Ch
−1/2
T ‖v‖L2(T ), (2.3)

where C is independent of v.

3 A Family of Non-conforming Finite Elements

In this section we introduce a new family of non-conforming elements for the biharmonic problem
(1.1). We mainly focus our ideas on the three dimensional case, and briefly discuss the corresponding
two dimensional elements below as their construction and properties are similar.

Essentially, we add local function spaces that use bubble functions to Lagrange elements. This
strategy was used in [17,26], where the authors developed low-order elements in two and three di-
mensions. Although our lowest order elements are similar to the non-conforming elements introduced
in [17,26] the spaces are different. The key to our element is using face (3D)/edge (2D) bubbles.

First, for k ≥ 2 we define the local space of the non-conforming element as

Xk(T ) = P
k(T ) +Qk−2(T ), (3.1)

with
Qk−2(T ) = bT

∑

F

bFQ
k−2
F (T ), (3.2)

where the sum runs over the four faces of T and

Qk−2
F (T ) =

{

q ∈ P
k−2(T ) : (q, bT bFw)T = 0 for all w ∈ P

k−3(T )
}

. (3.3)

That is, Qk−2
F (T ) is the space of orthogonal polynomials of degree P

k−2(T ) with respect to the inner

product (·, bT bF ·)T . For the case k = 2, we set Qk−2
F (T ) = P

0(T ).
We define the following degrees of freedom for the local space Xk(T ):

w(a) for all vertices a, (3.4a)
〈

w, µ
〉

e
for all µ ∈ P

k−2(e) and edges e of T, (3.4b)
〈

w, κ
〉

F
for all κ ∈ P

k−3(F ) and faces F of T, (3.4c)

(w, ρ)T for all ρ ∈ P
k−4(T ), (3.4d)

〈

∂w/∂nF , ω
〉

F
for all ω ∈ P

k−2(F ) and faces F of T. (3.4e)

Here we use the convention that if k = 2, then the degrees of freedom (3.4c) and (3.4d) are not
needed, and if k = 3, then the degrees of freedom (3.4d) are not needed. Note that the first four
types of degrees of freedom (3.4a)–(3.4d) uniquely determine a polynomial of degree k. Furthermore,
by the definition of Qk−1

F (K), we have

dimQk−2
F (T ) = dimP

k−2(T ) − dimP
k−3(T ) =

1

2
k(k − 1) = dimP

k−2(F ). (3.5)

Therefore by (3.2) we have dimQk−1(T ) ≤ 4 dimP
k−2(F ), and so dimXk(T ) ≤ dimP

k(T ) +
4 dimP

k−2(F ), which is exactly the number of degrees of freedom given in (3.4). The next lemma
shows that this last inequality is in fact an equality.
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Lemma 1 There holds

Xk(T ) = P
k(T ) ⊕Qk−2(T ), (3.6)

dimXk(T ) = dimP
k(T ) + 4 dimP

k−2(F ). (3.7)

Furthermore, any function w ∈ Xk(T ) is uniquely determined by the degrees of freedom (3.4).

Proof Suppose that w ∈ P
k(T ) ∩Qk−2(T ). Then since bT is quartic, we have

w = bT q with q ∈ P
k−4(T ), and q =

∑

F

bF qF with qF ∈ Qk−2
F (T ).

But by the definition of Qk−2
F (T ) (3.3), we have

(q, bTq)T =
∑

F

(qF , bT bF q)T = 0.

Therefore, q ≡ 0 and (3.6) follows.

To show (3.7), we note that by (3.5) and (3.6), it suffices to show that (3.2) is a direct sum. To
this end, we show that if q = bK

∑

F bF qF = 0, then qF = 0 for all faces F . First, we note that

0 =
∂q

∂nF

∣

∣

F
=
∂bT
∂nF

bF qF

∣

∣

F
= −|∇λF |b

2
FqF

∣

∣

F
,

where we used that ∂bT

∂nF

∣

∣

F
= −|∇λF |bF . Therefore qF

∣

∣

F
= 0 for all faces F since b2F is strictly

positive on the face F . Thus, we have qF = λF pF for some pF ∈ P
k−3(T ), and therefore by (3.3),

we have

0 = (qF , bT bF pF )T = (pF , bT bFλF pF )T ,

which implies pF ≡ 0. Thus, qF ≡ 0, and the dimension count (3.7) immediately follows.

Note that the dimension of Xk(T ) is the exact number of degrees of freedom given by (3.4).
Thus, to show that the degrees of freedom (3.4) are unisolvent on the space Xk(T ), it suffices to
show that if the degrees of freedom vanish for w ∈ Xk(T ), then w ≡ 0. Write

w = w0 + q with w0 ∈ P
k(T ), q ∈ Qk−2(T ), and q = bK

∑

F

bF qF with qF ∈ Qk−2
F (T ).

By (3.4a)–(3.4c), we have w0 = bT p for some p ∈ P
k−4(T ). But then by (3.4d) and (3.3), we have

0 = (w, p)T = (bT p, p)T +
∑

F

(qF , bT bFp)T = (bT p, p)T ,

and therefore w = q. Finally by (3.4e) we have for each face F ,

0 =
〈

∂w/∂nF , qF

〉

F
=
〈

bF qF (∂bT /∂nF ), qF

〉

F
= −|∇λF |

〈

b2F qF , qF

〉

F
, (3.8)

where we again used ∂bT

∂nF

∣

∣

F
= −|∇λF |bF . It follows from (3.8) that qF

∣

∣

F
= 0 for each face F , and

therefore, by using the same argument above, we conclude qF ≡ 0.
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The degrees of freedom (3.4) naturally lead us to the define the following global spaces:

Xh =
{

w ∈ H1
0 (Ω) : w

∣

∣

T
∈ Xk(T ) for all T ∈ Th, (3.9)

and
〈[[

∂w/∂n
]]

, ω
〉

F
= 0 for all ω ∈ P

k−2(F ) and F ∈ F i
h

}

,

X0
h =

{

w ∈ Xh :
〈

∂w/∂nF , ω
〉

F
= 0 for all ω ∈ P

k−2(F ) and F ∈ Fb
h

}

. (3.10)

The next lemma addresses the approximation properties of the global spaces. The degrees of
freedom (3.4) naturally induce an interpolant from H2(Ω) ∩ H1

0 (Ω) onto Xh. However, such an
interpolant will not be bounded in H1(Ω) and hence we need to define a regularized interpolant.

Lemma 2 There exists an operator Ih : H1
0(Ω) → Xh such that for any v ∈ Hs(Ω) ∩H1

0 (Ω) with

1 ≤ s ≤ k + 1, there holds

‖v − Ihv‖Hm(Th) ≤ Chs−m‖v‖Hs(Ω) 0 ≤ m ≤ s. (3.11)

Moreover, there exists I0
h : H1

0 (Ω) → X0
h such that

‖v − I0
hv‖Hm(Th) ≤ Chs−m‖v‖Hs(Ω) if v ∈ H2

0(Ω), (3.12)

‖v − I0
hv‖Hm(Th) ≤ C

(

hs−m‖v‖Hs(Ω) + h1−m‖v‖H1(Ω)

)

if v 6∈ H2
0(Ω). (3.13)

Proof Let Lh ⊂ H1
0(Ω) be the Lagrange finite element space consisting of globally continuous

piecewise polynomials of degree k with vanishing trace. Define the projection Πh : Lh → Xh locally
as

(

Πhw − w
)

(a) = 0 for all vertices a, (3.14a)
〈

Πhw −w, µ
〉

e
= 0 for all µ ∈ P

k−1(e) and edges e of T, (3.14b)
〈

Πhw −w, κ
〉

F
= 0 for all κ ∈ P

k−2(F ) and faces F of T, (3.14c)

(Πhw − w, ρ)T = 0 for all ρ ∈ P
k−3(T ), (3.14d)

〈

∂(Πhw)/∂nF −
{{

∂w/∂n
}}

, ω
〉

F
= 0 for all ω ∈ P

k−2(F ) and faces F of T. (3.14e)

By the proof of Lemma 1 and by the definition of Xh, Πh is well-defined.
Note that for any simplex T that contains F as a face we have

∣

∣

∣

{{

∂w/∂n
}}∣

∣

F
− ∂(w

∣

∣

T
)/∂nF

∣

∣

F

∣

∣

∣ =







1

2

∣

∣

[[

∂w/∂n
]]∣

∣ F ∈ F i
h,

0 F ∈ Fb
h.

(3.15)

Therefore by (3.14)–(3.15) and a scaling argument, we have

‖Πhw − w‖L2(T ) ≤ Ch
3/2
T

∑

F⊂∂T∩Fi

h

∥

∥

[[

∂w/∂n
]]∥

∥

L2(F )
. (3.16)

We then set Ih = ΠhΠC, where ΠC : H1
0 (Ω) → Lh is the Scott-Zhang interpolant [21]. Since the

Scott-Zhang interpolant satisfies

‖v −ΠCv‖Hm(T ) ≤ Chs−m
T ‖v‖Hs(TT ), (3.17)

we have by a scaling argument,

h
3/2
T

∑

F⊂∂T∩Fi

h

∥

∥

[[

∂(ΠCv)/∂n
]]∥

∥

L2(F )
≤ Chs

T ‖v‖Hs(TT ). (3.18)
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Therefore by (3.16)–(3.18) and an inverse estimate, we obtain

‖v − Ihv‖Hm(T ) ≤ ‖v −ΠCv‖Hm(T ) + ‖ΠCv −ΠhΠCv‖Hm(T )

≤ Chs−m
T ‖v‖Hs(TT ) +Ch

3/2−m
T

∑

F⊂∂T∩Fi

h

∥

∥

[[

∂(ΠCv)/∂n
]]∥

∥

L2(F )

≤ Chs−m
T ‖v‖Hs(TT ).

To construct an interpolant I0
hv in X0

h, we modify the construction of Πh by replacing (3.14e) with

〈

∂(Πhw)/∂nF −
{{

∂w/∂n
}}

, ω
〉

F
= 0 for all ω ∈ P

k−2(F ) and interior faces F of T, (3.14e′)
〈

∂(Πhw)/∂nF , ω
〉

F
= 0 for all ω ∈ P

k−2(F ) and boundary faces F of T.

If we recall (3.15) for interior faces F and use the fact that

〈

∂(Πhw −w)/∂nF , ω
〉

F
= −

〈

∂w/∂nF , ω
〉

F
for all ω ∈ P

k−2(F ) and boundary faces F of T.

We then have

‖Πhw − w‖L2(T ) ≤ Ch
3/2
T

∑

F⊂∂T

∥

∥

[[

∂w/∂n
]]∥

∥

L2(F )
. (3.19)

Note that, in contrast to (3.16), the right-hand side of (3.19) may include boundary faces. However,
we see that if v ∈ H2

0 (Ω), then the estimate (3.18) still holds with the sum taken over all faces of T
(and not just interior faces). It then follows by using the same argument as above, that if v ∈ H2

0(Ω),
then

‖v − I0
hv‖Hm(T ) ≤ Chs−m

T ‖v‖Hs(TT ).

However, if v 6∈ H2
0 (Ω) then we only obtain the estimate

h
3/2
T

∑

F⊂∂T∩Fb

h

∥

∥

[[

∂(ΠCv)/∂n
]]∥

∥

L2(F )
≤ ChT ‖v‖H1(TT ).

It then follows that

‖v − I0
hv‖Hm(T ) ≤ ‖v −ΠCv‖Hm(T ) + ‖ΠCv −ΠhΠCv‖Hm(T )

≤ Chs−m
T ‖v‖Hs(TT ) +Ch

3/2−m
T

∑

F⊂∂T

∥

∥

[[

∂(ΠCv)/∂n
]]∥

∥

L2(F )

≤ C
(

hs−m
T ‖v‖Hs(TT ) + h1−m

T ‖v‖H1(TT )

)

.

Remark 1 The lackluster estimate (3.13) will play a key role while discussing the advantages of
enforcing boundary conditions weakly into the formulation (cf. Remark 3).
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3.1 Remarks on the two dimensional elements

The family of two dimensional elements are similar to the three dimensional case, so we only sketch
the details. The local space of the two dimensional element takes the same form as (3.1), but the
sum in (3.2) now run over all edges. Also note that the definition of bF in (3.2)–(3.3) are quadratic
edge bubbles instead of cubic face bubbles.

The associated degrees of freedom of Xk(T ) are defined as follows:

w(a) for all vertices a of T, (3.20a)
〈

w, µ
〉

F
for all µ ∈ P

k−2(F ) and edges F of T, (3.20b)

(w, ρ)T for all ρ ∈ P
k−3(T ), (3.20c)

〈

∂w/∂nF , ω
〉

F
for all ω ∈ P

k−2(F ) and edges F of T. (3.20d)

Lemma 3 There holds

Xk(T ) = P
k(T ) ⊕Qk−2(T ), (3.21)

dimXk(T ) = dimP
k(T ) + 3P

k−2(F ). (3.22)

Furthermore, any function w ∈ Xk(T ) is uniquely determined by the degrees of freedom (3.20).

The proof of Lemma 3 is very similar to that of Lemma 1, so we omit it. Similar to the three
dimensional case, we can define the global spaces as (3.9)–(3.10) by substituting faces by edges in
the definition. Moreover, following similar arguments to those found in the proof of Lemma 2, there
exists interpolants Ih : H1

0 (Ω) → Xh and I0
h : H1

0(Ω) → X0
h such that the estimates (3.11)–(3.13)

hold. Again, we omit the proof.

4 The finite element method

In this section we define the finite element method for (1.1) and analyze its convergence. First we
provide the variational form of the singular biharmonic problem. A function u ∈ H2

0(Ω) is a solution
to (1.1) if for all test functions v ∈ H2

0 (Ω), there holds

Aε(u, v) = (f, v), (4.1)

where
Aε(u, v) := ε2a(u, v) + b(u, v), (4.2)

with
a(u, v) := (D2u,D2v), b(u, v) := (∇u,∇v). (4.3)

Here, we have used the notation

(D2u,D2v) =

∫

Ω

D2u : D2v dx =
d
∑

i,j=1

∫

Ω

∂2u

∂xi∂xj

∂2v

∂xi∂xj
dx,

and

(∇u,∇v) =

∫

Ω

∇u · ∇v dx =

d
∑

i=1

∫

Ω

∂u

∂xi

∂v

∂xi
dx.
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Similarly, a function ū ∈ H1
0 (Ω) is defined to be a solution to (1.3) if there holds

b(ū, v) =

∫

Ω

fv dx ∀v ∈ H1
0 (Ω). (4.4)

Before continuing, we first state the following a priori estimates and convergence rates to the reduced
problem.

Lemma 4 Let u be the solution to (4.2), and ū the solution to the reduced problem (1.3). Then

u ∈ H3(Ω), and there exists a constant C > 0 independent of ε, u, and f such that

‖u‖Hs(Ω) ≤ Cε3/2−s‖f‖L2(Ω) s = 2, 3, (4.5a)

‖u− ū‖H1(Ω) ≤ Cε1/2‖f‖L2(Ω), (4.5b)

‖u− ū‖L2(Ω) ≤ Cε‖f‖L2(Ω). (4.5c)

Proof The proofs of the estimates (4.5a)–(4.5b) are given in [17]. To prove (4.5c), we use a duality
argument. For arbitrary v ∈ L2(Ω), let ψ be the solution to the following second order problem:

−∆ψ = v in Ω, (4.6a)

ψ = 0 on ∂Ω. (4.6b)

By (4.6), (1.1), (1.3), and integration by parts, we have

(u− ū, v) = b(u− ū, ψ) = −ε2a(u, ψ) + ε2
〈∂2u

∂n2

∂ψ

∂n

〉

∂Ω
.

Therefore by the trace inequality (2.1), the estimates (4.5a) and elliptic regularity, we obtain

(u − ū, v) ≤ Cε2
(

‖u‖H2(Ω) + ‖u‖1/2
H2(Ω)

‖u‖1/2
H3(Ω)

)

‖ψ‖H2(Ω)

≤ Cε2
(

ε−1/2 +
(

ε−1/2
)1/2(

ε−3/2
)1/2

)

‖f‖L2(Ω)‖v‖L2(Ω)

≤ Cε‖f‖L2(Ω)‖v‖L2(Ω).

The estimate (4.5c) then follows from this last inequality.

To define the finite element method, we introduce the bilinear form

ah(v, w) =
∑

T∈Th

(D2v,D2w)T −
∑

F∈Fb

h

〈 ∂2v

∂n2
F

,
∂w

∂nF

〉

F
(4.7)

−
∑

F∈Fb

h

〈 ∂v

∂nF
,
∂2w

∂n2
F

〉

F
+ σ

∑

F∈Fb

h

h−1
F

〈 ∂v

∂nF
,
∂w

∂nF

〉

F
,

where σ is a positive penalization parameter.
The finite element method then reads: Find uh ∈ Xh such that

Aε,h(uh, w) = (f, w) ∀w ∈ Xh, (4.8)

where

Aε,h(w, v) = ε2ah(w, v) + b(w, v). (4.9)
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We define the following norms associated with problem (4.8):

‖v‖2
2,h =

∑

T∈Th

|v|2H2(T ) +
∑

F∈Fb

h

h−1
F ‖∂v/∂nF ‖

2
L2(F ), (4.10)

‖v‖2
ε,h = ε2‖v‖2

2,h + |v|2H1(Ω). (4.11)

The next lemma shows that the finite element method (4.8) is well-posed.

Lemma 5 There exists a constant σ0 > 0 depending only on the shape regularity of Th, such that

for σ ≥ σ0, there holds

1

2
‖w‖2

ε,h ≤ Aε,h(w,w) ∀w ∈ Xh. (4.12)

Proof To show (4.12), it suffices to show that the bilinear form ah(·, ·) is coercive with respect to
the norm ‖ · ‖2,h. By the form’s definition (4.7), we have

ah(w,w) =
∑

T∈Th

|w|2H2(T ) − 2
∑

F∈Fb

h

〈

∂2w/∂n2
F , ∂w/∂nF

〉

F
+ σ

∑

F∈Fb

h

h−1
F ‖∂w/∂nF‖

2
L2(F ). (4.13)

By the Cauchy-Schwarz inequality and a standard scaling argument, there exists a constant C > 0
depending only on the shape regularity of the mesh such that

2
∑

F∈Fb

h

〈

∂2w/∂n2
F , ∂w/∂nF

〉

F
≤ 2





∑

F∈Fb

h

hF ‖∂
2w/∂n2

F‖
2
L2(F )





1/2



∑

F∈Fb

h

h−1
F ‖∂w/∂nF ‖

2
L2(F )





1/2

≤ C





∑

F∈Fb

h

|w|2H2(TF )





1/2



∑

F∈Fb

h

h−1
F ‖∂w/∂nF ‖

2
L2(F )





1/2

≤
1

2

∑

T∈Th

|w|2H2(T ) +
C2

2

∑

F∈Fb

h

h−1
F ‖∂w/∂nF ‖

2
L2(F ).

Therefore by (4.13) we obtain

ah(w,w) ≥
1

2

∑

T∈Th

|w|2H2(T ) +
(

σ −
C2

2

)

∑

F∈Fi

h

h−1
F ‖∂w/∂nF ‖

2
L2(F ).

Choosing σ0 = 1
2(C2 + 1), we obtain (4.12).

Before deriving our main results, we need a few more technical lemmas. The first measures the
interpolation error in the norm given by (4.11).

Lemma 6 Let u ∈ Hs(Ω) with 3 ≤ s ≤ k + 1 be the solution to (1.1), and let Ih be the interpolant

from Lemma 2. Then there holds

‖u− Ihu‖ε,h ≤ C
(

hs−1 + εhs−2
)

‖u‖Hs(Ω), (4.14a)

‖u− Ihu‖ε,h ≤ Ch1/2‖f‖L2(Ω). (4.14b)

Moreover, if the solution to the reduced problem satisfies ū ∈ Hm(Ω) for some 2 ≤ m ≤ k + 1, then

‖u− Ihu‖ε,h ≤ C
(

ε1/2‖f‖L2(Ω) + hm−1‖ū‖Hm(Ω)

)

. (4.14c)
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Proof By (3.11) and (4.5a), we have

ε2
∑

T∈Th

|u− Ihu|
2
H2(T ) ≤ Cε2h2s−4‖u‖2

Hs(Ω), (4.15a)

ε2
∑

T∈Th

|u− Ihu|
2
H2(T ) ≤ Cε2h‖u‖H2(Ω)‖u‖H3(Ω) ≤ Ch‖f‖2

L2(Ω), (4.15b)

and

ε2
∑

T∈Th

|u− Ihu|
2
H2(T ) ≤ Cε2‖u‖2

H2(Ω) ≤ Cε‖f‖2
L2(Ω). (4.15c)

Similarly, we have by (3.11), (4.5a), and the trace inequality (2.2b),

ε2
∑

F∈Fb

h

h−1
F

∥

∥∂(u− Ihu)/∂nF

∥

∥

2

L2(F )
≤ Cε2

∑

T∈Th

(

h−2
T ‖u− Ihu‖

2
H1(T ) + ‖u− Ihu‖

2
H2(T )

)

(4.16a)

≤ Cε2h2s−4‖u‖2
Hs(Ω),

ε2
∑

F∈Fb

h

h−1
F

∥

∥∂(u− Ihu)/∂nF

∥

∥

2

L2(F )
≤ Cε2

∑

T∈Th

(

h−2
T ‖u− Ihu‖

2
H1(T ) + ‖u− Ihu‖

2
H2(T )

)

(4.16b)

≤ Cε2h‖u‖H2(Ω)‖u‖H3(Ω) ≤ Ch‖f‖2
L2(Ω),

and

ε2
∑

F∈Fb

h

h−1
F

∥

∥∂(u− Ihu)/∂nF

∥

∥

2

L2(F )
≤ Cε2

∑

T∈Th

(

h−2
T ‖u− Ihu‖

2
H1(T ) + ‖u− Ihu‖

2
H2(T )

)

(4.16c)

≤ Cε2‖u‖2
H2(Ω) ≤ Cε‖f‖2

L2(Ω).

Moreover, we have by (3.11), (4.5a), (4.5b), and (1.4),

|u− Ihu|
2
H1(Ω) ≤ Ch2s−2‖u‖2

Hs(Ω), (4.17a)

|u− Ihu|
2
H1(Ω) ≤ C

(

|u− ū− Ih(u− ū)|2H1(Ω) + |ū− Ihū|
2
H1(Ω)

)

(4.17b)

≤ C
(

h‖u− ū‖H1(Ω)‖u− ū‖H2(Ω) + h2‖ū‖2
H2(Ω)

)

≤ Ch‖f‖2
L2(Ω)

and

|u− Ihu|
2
H1(Ω) ≤ C

(

|u− ū− Ih(u− ū)|2H1(Ω) + |ū− Ihū|
2
H1(Ω)

)

(4.17c)

≤ C
(

‖u− ū‖2
H1(Ω) + h2m−2‖ū‖2

Hm(Ω)

)

≤ C
(

ε‖f‖2
L2(Ω) + h2m−2‖ū‖2

Hm(Ω)

)

.

The first estimate (4.14a) then follows from (4.11), (4.15a), (4.16a) and (4.17a); the second
estimate (4.14b) follows from (4.11), (4.15b), (4.16b) and (4.17b); and the third estimate (4.14c)
follows from (4.11), (4.15c), (4.16c) and (4.17c).

The next lemma is needed to analyze the error equation. It provides bounds for the interpolation
error in the bilinear form restricted to the subspace.
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Lemma 7 Under the same hypotheses of Lemma 6, for any w ∈ Xh there holds,

Aε,h(u − Ihu, w) ≤ C(1 + σ)
(

hs−1 + εhs−2
)

‖u‖Hs(Ω)‖w‖ε,h, (4.18a)

Aε,h(u − Ihu, w) ≤ C(1 + σ)h1/2‖f‖L2(Ω)‖w‖ε,h, (4.18b)

Aε,h(u − Ihu, w) ≤ C(1 + σ)
(

ε1/2‖f‖L2(Ω) + hm−1‖ū‖Hm(Ω)

)

‖w‖ε,h. (4.18c)

Proof By (4.9), we have

Aε,h(u− Ihu, w) = ε2
∑

T∈Th

(D2(u− Ihu), D
2w)T + (∇(u− Ihu),∇w) (4.19)

− ε2
∑

F∈Fb

h

〈∂2(u − Ihu)

∂n2
F

∂w

∂nF

〉

F
− ε2

∑

F∈Fb

h

〈∂(u − Ihu)

∂nF
,
∂2w

∂n2
F

〉

F

+ ε2σ
∑

F∈Fb

h

h−1
F

〈∂(u − Ihu)

∂nF
,
∂w

∂nF

〉

F

=: J1 + J2 + J3 + J4 + J5.

By the Cauchy-Schwarz inequality, (2.3) and (4.11), we can show

J1, J2, J4, J5 ≤ C(1 + σ)‖u− Ihu‖ε,h‖w‖ε,h.

Using (4.14) we have

J1, J2, J4, J5 ≤ C(1 + σ)(εhs−2 + hs−1)‖u‖Hs(Ω)‖w‖ε,h, (4.20a)

J1, J2, J4, J5 ≤ C(1 + σ)h1/2‖f‖L2(Ω)‖w‖ε,h, (4.20b)

and

J1, J2, J4, J5 ≤ C(1 + σ)
(

ε1/2‖f‖L2(Ω) + hm−1‖ū‖Hm(Ω)

)

‖w‖ε,h. (4.20c)

Next, by the Cauchy-Schwarz inequality, the trace inequality (2.2b), (4.11) and (3.11), we have

J3 ≤ Cε2





∑

F∈Fb

h

hF ‖∂
2(u− Ihu)/∂n

2
F‖

2
L2(F )





1/2



∑

F∈Fb

h

h−1
F ‖∂w/∂nF‖

2
L2(F )





1/2

(4.21a)

≤ Cε

(

∑

T∈Th

(

‖u− Ihu‖
2
H2(T ) + h2

T ‖u− Ihu‖
2
H3(T )

)

)1/2

‖w‖ε,h

≤ Cεhs−2‖u‖Hs(Ω)‖w‖ε,h.

Furthermore, by the trace inequality (2.2b), (3.11), the inverse estimate (2.3), and (4.5a), we have

J3 ≤ Cε2

(

∑

T∈Th

(

h−2
T ‖u− Ihu‖

2
H2(T ) + ‖u− Ihu‖

2
H3(T )

)

)1/2

‖w‖H1(T ) (4.20c)

≤ Cε2‖u‖H3(Ω)‖w‖ε,h ≤ Cε1/2‖f‖L2(Ω)‖w‖ε,h.
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Note that if ε ≤ h, then this last estimate also implies

J3 ≤ Ch1/2‖f‖L2(Ω)‖w‖ε,h. (4.20b′)

On the other hand, if h ≤ ε we can use (4.21a) with s = 3 and (4.5a) to obtain

J3 ≤ Cεh‖u‖H3(Ω)‖w‖ε,h ≤ Ch1/2‖f‖L2(Ω)‖w‖ε,h. (4.20b′′)

Finally, the estimate (4.18a) follows from (4.19), (4.20a) and (4.21a); the second estimate (4.18b)
follows from (4.19), (4.20b) and (4.20b); and the third estimate (4.18c) follows from (4.19), (4.20c)
and (4.20c).

We now are now in position to state the prove the main result of this section.

Theorem 1 Suppose that u ∈ Hs(Ω) with 3 ≤ s ≤ k+1. Then there exists a constant C independent

of ε and h such that

‖u− uh‖ε,h ≤ C(εhs−2 + hs−1)‖u‖Hs(Ω), (4.22a)

‖u− uh‖ε,h ≤ Ch1/2‖f‖L2(Ω). (4.22b)

Moreover, if ū ∈ Hm(Ω) with 2 ≤ m ≤ k + 1, then

‖u− uh‖ε,h ≤ C
(

ε1/2‖f‖L2(Ω) + hm−1‖ū‖Hm(Ω)

)

. (4.22c)

Remark 2 We would like to point out that for ε < h the estimate (4.22c) gives a better order
approximation than the uniform order h1/2.

Proof Let Ihu be the interpolant of u defined in Lemma 2 and set w = Ihu − uh ∈ Xh. Then by
(4.12) and (4.8), we have

1

2
‖w‖ε,h ≤ Aε,h(Ihu− uh, w) = Aε,h(Ihu− u, w) + Eh(u, w), (4.23)

where the consistency error is defined as

Eh(u, w) = Aε,h(u, w) − (f, w) = ε2ah(u, w) + b(u, w) − (f, w). (4.24)

Since u ∈ H3(Ω), equation (1.1) can be considered in the H−1(Ω) sense, and therefore we have

−ε2(∇∆u,∇w)+ (∇u,∇w)− (f, w) = 0 ∀w ∈ Xh ⊂ H1
0(Ω).

Hence, by (4.24), (1.1b), (4.7) and integration by parts,

Eh(u, w) = ε2
∑

F∈Fi

h

〈 ∂2u

∂n2
F

,

[[

∂w

∂n

]]

〉

F
. (4.25)

By the definition of Xh (3.9), there holds for any ω ∈ P
k−2(F ),

〈 ∂2u

∂n2
F

,

[[

∂w

∂n

]]

〉

F
=
〈 ∂2u

∂n2
F

− ω,

[[

∂w

∂n

]]

〉

F
.
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In particular, we have

〈 ∂2u

∂n2
F

,

[[

∂w

∂n

]]

〉

F
=
〈

{{

∂2(u−ΠCu)

∂n2

}}

,

[[

∂w

∂n

]]

〉

F

≤
∥

∥

{{

∂2(u−ΠCu)/∂n
2
}}∥

∥

L2(F )

∥

∥

[[

∂w/∂n
]]∥

∥

L2(F )
, (4.26)

where we recall that ΠC is the Scott-Zhang interpolant of order k which has the following approxi-
mation properties:

‖u−ΠCu‖Hm(Th) ≤ C hs−m‖u‖Hs(Th) for 1 ≤ m ≤ s ≤ k + 1. (4.27)

We bound each of the factors on the right of (4.26) separately. Using that the average of
[[

∂w
∂n

]]

vanishes on F we have by Poincare’s inequality that

∥

∥

[[

∂w/∂n
]]∥

∥

L2(F )
≤ C hF

∥

∥∇F (
[[

∂w/∂n
]]

)
∥

∥

L2(F )
,

where ∇F is the surface gradient on F . We then have by the inverse estimate (2.3) that

∥

∥

[[

∂w/∂n
]]∥

∥

L2(F )
≤ C h

1/2
F |w|H2(TF ). (4.28)

Of course, using the inverse estimate (2.3) twice we also have

∥

∥

[[

∂w/∂n
]]∥

∥

L2(F )
=
∥

∥

[[

∂w/∂n
]]∥

∥

1/2

L2(F )

∥

∥

[[

∂w/∂n
]]∥

∥

1/2

L2(F )
≤ C |w|

1/2
H1(TF )|w|

1/2
H2(TF ). (4.29)

Next, using the trace inequality (2.2a) we obtain

∥

∥

{{

∂2(u−ΠCu)/∂n
2
}}∥

∥

L2(F )
(4.30)

≤ C
(

h
−1/2
F |u−ΠCu|H2(TF ) + |u−ΠCu|

1/2
H2(TF )|u−ΠCu|

1/2
H3(TF )

)

.

Using (4.26), (4.28), (4.30) and (4.27) we obtain

Eh(u, w) ≤ C εhs−2‖u‖Hs(Ω)‖w‖ε,h. (4.31)

The error estimate (4.22a) then follows from (4.23), (4.18a), (4.31), the triangle inequality and
(4.14a).

Alternatively, by (4.26), (4.28), (4.30), (4.27) and (4.5a) we get

Eh(u, w) ≤ C εh1/2‖u‖
1/2
H3(Ω)‖u‖

1/2
H2(Ω)‖w‖ε,h ≤ Ch1/2‖f‖L2(Ω)‖w‖ε,h. (4.32)

The error estimate (4.22b) follows from (4.23), (4.18b), (4.32) and (4.14b).

Finally, by (4.26), (4.29), (4.30), (4.27) and (4.5a) we see that

Eh(u, w) ≤ Cε2‖u‖
1/2
H3(Ω)‖u‖

1/2
H2(Ω)|w|

1/2
H2(Th)|w|

1/2
H1(Ω) (4.33)

≤ Cε3/2‖u‖1/2
H3(Ω)

‖u‖1/2
H2(Ω)

‖w‖ε,h ≤ Cε1/2‖f‖L2(Ω)‖w‖ε,h.

The third estimate (4.22c) is then deduced from (4.23), (4.18c), (4.33) and (4.14c).
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4.1 Remarks on imposing boundary conditions strongly

Similar to other non-conforming finite element methods (e.g. [15,17,24]), we can define a finite
element method for (1.1) that imposes the normal derivative boundary conditions strongly in the
finite element space. Although this approach is perhaps more natural than the one proposed above,
we argue that the method does not inherit as good convergence properties.

In this case, we define the method as finding u0
h ∈ X0

h such that

A0
ε,h(u0

h, v) = (f, v) ∀v ∈ X0
h , (4.34)

where

A0
ε,h(w, v) = ε2

∑

T∈Th

(D2w,D2v)T + (∇w,∇v),

and we recall that the finite element space X0
h is defined by (3.10).

It is easily to see that (4.34) is well-posed as

‖v‖2
A := A0

ε,h(v, v) (4.35)

is a norm on X0
h . Furthermore, we have the following convergence result.

Theorem 2 Let u ∈ Hs(Ω) with (3 ≤ s ≤ k + 1) be the solution to (1.1), and let u0
h ∈ X0

h satisfy

(4.34). Then there holds

‖u− u0
h‖A ≤ C

(

hs−1 + εhs−2
)

‖u‖Hs(Ω), (4.36a)

‖u− u0
h‖A ≤ Ch1/2‖u‖Hs(Ω). (4.36b)

Proof The proof of Theorem 2 is similar to that of Theorem 1 so we only provide a sketch.
First, by the proof of Lemma 6 along with the interpolation estimates (3.12)–(3.13), we have

‖u− I0
hu‖A ≤ C

(

hs−1 + εhs−2
)

‖u‖Hs(Ω), (4.37a)

‖u− I0
hu‖A ≤ Ch1/2‖f‖L2(Ω). (4.37b)

Next, setting w = I0
hu− u0

h, we have by (4.35) and (4.34),

‖w‖2
A = A0

ε,h(I0
hu− u, w) +E0

h(u, w), (4.38)

where E0
h(u, w) = A0

ε,h(u, w) − (f, w).
By the proof of Lemma 7 and by (3.12)–(3.13), we have

A0
ε,h(u− I0

hu, w) ≤ C(1 + σ)
(

hs−1 + εhs−2
)

‖u‖Hs(Ω)‖w‖A, (4.39a)

A0
ε,h(u− I0

hu, w) ≤ C(1 + σ)h1/2‖f‖L2(Ω)‖w‖A. (4.39b)

Next, after integrating by parts, we conclude

E0
h(u, w) = ε2

∑

F∈Fh

〈 ∂2u

∂n2
F

,

[[

∂w

∂n

]]

〉

F
.

Thus, by using the same arguments in the proof of Theorem 1, we have

E0
h(u, w) ≤ C

(

hs−1 + εhs−2
)

‖u‖Hs(Ω)‖w‖A, (4.40a)

E0
h(u, w) ≤ Ch1/2‖f‖L2(Ω)‖w‖A. (4.40b)

The estimate (4.36a) then follows from (4.38), (4.39a), (4.40a) and (4.37a), where as the estimate
(4.36b) follows from (4.38), (4.39b), (4.40b) and (4.37b).
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Remark 3 Note that the error u − u0
h does not satisfy an estimate of the form (4.22c). This is due

to the fact that we cannot derive an estimate of the interpolation error of the form (4.14c). By
carefully studying the proof of Lemma 6, we find a problem occurs when we try to estimate the term
|u− I0

hu|H1(Ω) due to the interpolation result (3.13). Indeed, in comparison to (4.17c), we have by
(3.13) and (4.5a),

|u− I0
hu|H1(Ω) ≤ C

(

|u− ū− I0
h(u− ū)|H1(Ω) + |ū− I0

hū|H1(Ω)

)

≤ C
(

‖u− ū‖H1(Ω) + |ū− I0
hū|H1(Ω)

)

≤ C
(

ε1/2‖f‖L2(Ω) + |ū− I0
hū|H1(Ω)

)

.

However, by (3.13) we can only conclude

|ū− I0
hū|H1(Ω) ≤ C‖ū‖H1(Ω),

and therefore the estimate does not yield anything.
From this result, we see the advantages of imposing Neumann boundary conditions weakly. In

particular, if ε � h, then by (4.22c) we will observe convergence rates of O(hm−1) in the energy
norm instead of convergence rates of O(h1/2).

5 L
2 error estimates

In this section we prove error estimates in the L2 norm for ε small relative to h. Again, we see the
advantage of using Nitsche’s method. We also state an ε-independent estimates.

Theorem 3 Let u and uh satisfy (1.1) and (4.8) respectively. Then, for ε ≤ h and for ū ∈ Hm(Ω)
with 2 ≤ m ≤ k + 1, there exists a constant C such that

‖u− uh‖L2(Ω) ≤ C(1 + σ)2
(

(

hε1/2 + ε
)

‖f‖L2(Ω) + hm‖ū‖Hm(Ω)

)

.

In particular, we have

‖u− uh‖L2(Ω) ≤ C(1 + σ)2
(

ε+ h2
)

‖f‖L2(Ω).

Proof We can decompose the error as

u− uh = (u− ū) + (ū − uh). (5.1)

By (4.5b), we have

‖u− ū‖L2(Ω) ≤ Cε‖f‖L2(Ω). (5.2)

Thus we only need to estimate ‖ū− uh‖L2(Ω).
Let z̄ ∈ H1

0 (Ω) be the solution to the following problem:

(∇z̄,∇w) = (ū − uh, w), ∀w ∈ H1
0 (Ω). (5.3)

We then have

‖ū− uh‖
2
L2(Ω) =

(

∇(z̄ − Ihz̄),∇(ū− uh)
)

+
(

∇Ihz̄,∇(ū− uh)
)

=: J1 + J2. (5.4)
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By (3.11), the triangle inequality, (4.5b) and (4.11),

J1 ≤ Ch‖ū− uh‖H1(Ω)‖z̄‖H2(Ω) ≤ Ch
(

ε1/2‖f‖L2(Ω) + ‖u− uh‖ε,h

)

‖z̄‖H2(Ω). (5.5)

To estimate J2 we have by (4.8), (1.3) and (4.7),

J2 = ε2ah(uh, Ihz̄) (5.6)

= ε2
∑

T∈Th

(D2uh, D
2Ihz̄)T − ε2

∑

F∈Fb

h

〈 ∂uh

∂nF
,
∂2Ihz̄

∂n2
F

〉

F

+ ε2σ
∑

F∈Fb

h

h−1
F

〈 ∂uh

∂nF
,
∂(Ihz̄ − z̄)

∂nF

〉

F
− ε2

∑

F∈Fb

h

〈∂2uh

∂n2
F

,
∂(Ihz̄ − z̄)

∂nF

〉

F

+ ε2σ
∑

F∈Fb

h

h−1
F

〈 ∂uh

∂nF
,
∂z̄

∂nF

〉

F
− ε2

∑

F∈Fb

h

〈∂2uh

∂n2
F

,
∂z̄

∂nF

〉

F

=: K1 +K2 +K3 +K4 +K5 +K6.

Using the Cauchy-Schwarz, inverse inequalities, (4.5a), (4.22b) and (3.11), we have

K1 ≤ Cε2h−1‖uh‖H1(Ω)‖Ihz̄‖H2(Th) ≤ Cε‖f‖L2(Ω)‖z̄‖H2(Ω), (5.7)

where we used that ε ≤ h.
BoundingK2 we use that ∂u/∂n = 0 on ∂Ω. Thus by the Cauchy-Schwarz, the inverse inequality

(2.3), and (3.11),

K2 ≤ ε2





∑

F∈Fb

h

h−1
F

∥

∥∂(u− uh)/∂nF

∥

∥

2

L2(F )





1/2



∑

F∈Fb

h

hF

∥

∥∂2Ihz̄/∂n
2
F

∥

∥

2

L2(F )





1/2

(5.8)

≤ Cε‖u− uh‖ε,h‖Ihz̄‖H2(Th) ≤ Cε‖u− uh‖ε,h‖z̄‖H2(Ω).

Below we will need the following estimate which follows from the trace inequality (2.2b) and the
interpolation estimate (4.14a)

∥

∥∂(Ih z̄ − z̄)/∂n
∥

∥

L2(∂F )
≤ h1/2‖z̄‖H2(TF ). (5.9)

We easily see using (5.9) that we have the bound

K3 ≤ Cσε‖u− uh‖ε,h‖z̄‖H2(Ω). (5.10)

Bounding K4, we have use (5.9) and the inverse estimate (2.3)

K4 ≤ Cε2‖uh‖H2(Th)‖z̄‖H2(Ω).

Note that by the triangle and inverse inequalities, (3.11), (4.5a) and (4.22b),

‖u− uh‖H2(Th) ≤ ‖u− Ihu‖H2(Th) + h−1‖Ihu− uh‖H1(Ω) (5.11)

≤ C‖u‖H2(Ω) + h−1‖u− uh‖H1(Ω)

≤ C
(

ε−1/2 + h−1/2
)

‖f‖L2(Ω) ≤ Cε−1/2‖f‖L2(Ω)
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since ε ≤ h. Thus, ‖uh‖H2(Th) ≤ Cε−1/2‖f‖L2(Ω), and therefore

K4 ≤ ε3/2‖f‖L2(Ω)‖z̄‖H2(Ω). (5.12)

Bounding K5, we again use that ∂u/∂n = 0 on ∂Ω. Thus by the Cauchy-Schwarz inequality,
the trace inequality (2.2b), the trace inequality (2.1), (5.11), (4.22b), and the fact ε ≤ h,

K5 ≤ σε2





∑

F∈Fb

h

h−2
F

∥

∥∂(u − uh)/∂nF

∥

∥

2

L2(F )





1/2

‖∂z̄/∂n‖L2(∂Ω) (5.13)

≤ Cσε2





∑

F∈Fb

h

(

h−3
F ‖u− uh‖

2
H1(TF ) + h−1

F ‖u− uh‖
2
H2(TF )

)





1/2

‖z̄‖H2(Ω)

≤ Cσε2
(

h−3/2‖u− uh‖H1(Ω) + h−1/2‖u− uh‖H2(Th)

)

‖z̄‖H2(Ω)

≤ Cσε2
(

h−1 + h−1/2ε−1/2
)

‖f‖L2(Ω)‖z̄‖H2(Ω)

≤ Cσε‖f‖L2(Ω)‖z̄‖H2(Ω).

Similarly we can bound K6 as follows

K6 ≤ ε2





∑

F∈Fb

h

‖∂2uh/∂n
2
F ‖

2
L2(F )





1/2

‖∂z̄/∂n‖L2(∂Ω) (5.14)

≤ ε2h−1/2‖uh‖H2(Th)‖z̄‖H2(Ω) ≤ ε‖f‖L2(Ω)‖z̄‖H2(Ω),

where again, we used the hypothesis ε ≤ h.
Applying the estimates (5.7)–(5.10) and (5.12)–(5.14) to (5.6) we have

J2 ≤ C(1 + σ)
(

ε‖f‖L2(Ω) + ε‖u− uh‖ε,h

)

‖z̄‖H2(Ω).

Combining this last inequality with (5.5) and (5.4), and using the H2 regularity of z̄, we conclude

‖ū− uh‖L2(Ω) ≤ C(1 + σ)
(

(hε1/2 + ε)‖f‖L2(Ω) + (h + ε)‖u − uh‖ε,h

)

.

It then follows from (5.1), (5.2) and (4.22c) that

‖u− uh‖L2(Ω) ≤ C(1 + σ)
(

(hε1/2 + ε)‖f‖L2(Ω) + (h + ε)‖u− uh‖ε,h

)

≤ C(1 + σ)
(

(hε1/2 + ε)‖f‖L2(Ω) + h‖u− uh‖ε,h

)

≤ C(1 + σ)2
(

(hε1/2 + ε)‖f‖L2(Ω) + hm‖ū‖Hm(Ω)

)

.

Next we state an ε-independent estimate.

Theorem 4 Let u and uh satisfy (1.1) and (4.8) respectively. There exists a constant C such that

‖u− uh‖L2(Ω) ≤ Ch ‖f‖L2(Ω).

The proof of Theorem 4 is based on the duality argument

ε2∆z −∆z = u− uh in Ω,

z =
∂z

∂n
= 0 on ∂Ω,

and by using similar techniques as those found in Theorems 3 and 1. Since the proof is long and
similar to ones above, we omit it.
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6 Other examples of methods imposing boundary conditions weakly

The above error estimates are not limited to just the above finite element method. The weak treat-
ment of the boundary conditions can be applied to any method. In this section, we briefly discuss
how some finite element method may be altered to enjoy the same properties above.

C1 finite element methods

Let Xh = XC ⊂ H2(Ω) ∩H1
0(Ω) denote a C1 conforming finite element space with vanishing trace

on the boundary. Some well-known examples of XC are the family of Argyris elements, macro Hsieh-
Clough-Tocher elements, and singular Zienkiewicz elements [5,9]. In this case, we keep the bilinear
form b(·, ·) and define the bilinear form ah(·, ·) as

ah(v, w) =

∫

Ω

D2v : D2w dx−
∑

F∈Fb

h

∫

F

( ∂2v

∂n2
F

∂w

∂nF
+

∂v

∂nF

∂2w

∂n2
F

−
σ

hF

∂v

∂nF

∂w

∂nF

)

ds.

C0 finite element methods

Let Xh = XL ⊂ H1
0 (Ω) denote the Lagrange finite element space consisting of polynomials of degree

k ≥ 2; that is,

XL =
{

vh ∈ H1
0(Ω); vh

∣

∣

T
∈ P

k(T ) ∀T ∈ Th

}

.

We then take the bilinear form ah(·, ·) as

ah(v, w) =
∑

T∈Th

∫

T

D2v : D2w dx−
∑

F∈Fh

∫

F

(

{{

∂2v

∂n2
F

}}[[

∂w

∂n

]]

+

[[

∂v

∂nF

]]{{

∂2w

∂n2

}}

−
σ

hF

[[

∂v

∂n

]][[

∂w

∂n

]]

)

ds.

We note that this finite element method with ε = 1 was considered in [6,?]. Unlike the C1 finite
element methods above, the weak enforcement of the Neumann boundary condition arises naturally
in the method’s formulation.

Discontinuous Galerkin methods

In the case of DG methods (see [3,16] for example), we take Xh = XDG with

XDG =
{

vh ∈ L2(Ω); vh

∣

∣

T
∈ P

k(T ) ∀T ∈ Th

}

for some integer k ≥ 2. We then define the bilinear form as

ah(v, w) =
∑

T∈Th

∫

T

D2v : D2w dx+
∑

F∈Fh

∫

F

(

{{

∂∆v

∂n

}}

[[

w
]]

+
[[

v
]]

{{

∂∆w

∂n

}}

−

{{

∂2v

∂n2

}}[[

∂w

∂n

]]

−

[[

∂v

∂n

]]{{

∂2w

∂n2

}}

+
σ1

hF

[[

∂v

∂n

]][[

∂w

∂n

]]

+
σ2

h3
F

[[

v
]][[

w
]]

)

ds.
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We also replace the bilinear form b(·, ·) with

bh(v, w) =
∑

T∈Th

∫

T

∇v · ∇w dx−
∑

F∈Fh

(

{{

∂v

∂n

}}

[[

w
]]

+
[[

v
]]

{{

∂w

∂n

}}

−
σ3

hF

[[

v
]][[

w
]]

)

ds.

In comparison to other methods, both boundary conditions are imposed weakly. Our analysis shows
that there is no obvious advantages to imposing function values on the boundary weakly for the
problem in hand.

7 Discussion on local error estimates and pollution effects

In this section we discuss the local error estimates and a pollution effect from the boundary layers.
Our analysis above shows that for ε small the presence of boundary layers has a substantial effect
on global a priori error estimates when the Neumann boundary conditions are imposed strongly (cf.
Section 4.1). As a result, the use of high order elements do not necessary improve the convergence
rates. On the other hand, since the boundary layers are contained in a small neighborhood of the
boundary, one would expect better convergence rates in the interior of the domain. However as was
shown in [22,23] for conformal C1 elements, the improvement is only minor. In those papers, Semper
showed that for ε < h the presence of boundary layers pollutes the finite element method everywhere
even far away from the boundary, and that the error in the interior is controlled by the global error
in the L2 norm; this error happens to be of order h. Numerical results using C1 Hermite polynomials
in one dimension presented in those papers confirm this statement (cf. Table 2 and 3 in [23]). We
stress that this strong pollution effect is not due to the fact that C1 basis are used, but due to the
treatment of Neumann boundary conditions strongly.

The above result may look surprising if compared to analogous result of singularly perturbed
reaction-diffusion problem,

−ε2∆u+ u = f in Ω, (7.1a)

u = 0 on ∂Ω. (7.1b)

Indeed, Schatz and Wahlbin [19], proved that the standard conformal finite element approximation
to the above problem converges optimally on any interior subdomain; i.e., there is no pollution from
the boundary layers into the interior.

At first glance this may seem puzzling since both problems are singularly perturbed elliptic
problems, but their conformal finite elements behave so differently. The fundamental issue lies in the
difference between the low order terms of each respective equation and its Galerkin approximation
(i.e. difference between the Ritz and L2 projections). Some additional insight to that phenomena
can be obtained from looking at one dimensional problem. In one dimension one may decompose
the differential operator as

ε2
∂4

∂x4
−

∂2

∂x2
= (−ε

∂2

∂x2
−

∂

∂x
)(−ε

∂2

∂x2
+

∂

∂x
)
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and rewrite (1.1) as a system
(

−ε
∂2

∂x2
+

∂

∂x

)

u = v (7.2a)

(

−ε
∂2

∂x2
−

∂

∂x

)

v = f, (7.2b)

with the following Dirichlet boundary conditions for u and v: u(0) = u(1) = 0 and v(0) = ε2u′′(0),
v(1) = ε2u′′(1). Thus we obtain a singularly perturbed system of advection-diffusion equations. Thus
for example, if we solve (7.2b) by finite element method on a quasi-uniform mesh, we can not resolve
the boundary layer at x = 0. This will result in a perturbation term on the right hand side for
(7.2a) near x = 0, which is now on inflow part of the boundary for (7.2a) and will pollute the whole
solution on the entire domain. The pollution is of size h (the width of the numerical layer) and that
is precisely the convergence rate observed numerically in [22]. By treating the Neumann boundary
conditions weakly we essentially reduce the size of the numerical layer from h to ε. In the case of
ε < h, this improvement allows us to obtain better global error estimates in energy and L2 norms. In
particular, assuming the reduced solution is smooth, from (4.22c) for ε1/2 ≤ hk, we obtain optimal
error estimates in the energy norm. We also expect to obtain better interior error estimates. In fact,
we expect to observe optimal error estimates in the energy norm in interior sub-domains. We do not
pursue this here as this is outside of the scope of the present paper.
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