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Abstract. The analysis of finite-element-like Galerkin discretization techniques for the station-

ary Stokes problem relies on the so-called LBB condition. In this work we discuss equivalent

formulations of the LBB condition.

1. Introduction

The well known Ladyženskaja-Babuška-Brezzi (LBB) condition is a particular instance of the so-
called discrete inf–sup condition which is necessary and sufficient for the well-posedness of discrete
saddle point problems arising from discretization via Galerkin methods. If Xh denotes the discrete
velocity space and Mh the discrete pressure space, then the LBB condition for the Stokes problem
states that there is a constant c independent of the discretization parameter h such that

(LBB) c‖qh‖L2 ≤ sup
vh∈Xh

∫
Ω

(∇·vh) qh

‖vh‖H1

, ∀qh ∈Mh.

The reader is referred to [6] for the basic theory on saddle point problems on Banach spaces and
their numerical analysis. Simply put, this condition sets a structural restriction on the discrete
spaces so that the continuous level property that the divergence operator is closed and surjective,
see [1, 4], is preserved uniformly with respect to the discretization parameter.

In the literature the following condition, which we shall denote the generalized LBB condition,
is also assumed

(GLBB) c‖∇qh‖L2 ≤ sup
vh∈Xh

∫
Ω

(∇·vh) qh

‖vh‖L2

, ∀qh ∈Mh,

here and throughout we assume Mh ⊂ H1(Ω). By properly defining a discrete gradient operator, the
case of discontinuous pressure spaces can be analyzed with similar arguments to those that we shall
present. Condition (GLBB), for example, was used by Guermond ([8, 9]) to show that approximate
solutions to the three-dimensional Navier Stokes equations constructed using the Faedo-Galerkin
method converge to a suitable, in the sense of Scheffer, weak solution. On the basis of (GLBB), the
same author has also built ([10]) an Hs-approximation theory for the Stokes problem, 0 ≤ s ≤ 1.
Olshanskĭı, in [12], under the assumption that the spaces satisfy (GLBB) carries out a multigrid
analysis for the Stokes problem. Finally, Mardal et al., [11], use a weighted inf–sup condition to
analyze preconditioning techniques for singularly perturbed Stokes problems (see Section 5 below).
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It is not difficult to show that, on quasi-uniform meshes, (GLBB) implies (LBB), see [8]. We
include the proof of this result below for completeness. The question that naturally arises is whether
the converse holds. Recall that a well-known result of Fortin [2] shows that the inf–sup condition
(LBB) is equivalent to the existence of a so-called Fortin projection that is stable in H1

0(Ω). In this
work, under the assumption that the mesh is shape regular and quasi-uniform, we will show that
(GLBB) is equivalent to the existence of a Fortin projection that has L2-approximation properties.
Moreover, when the domain is such that the solution to the Stokes problem possesses H2-regularity,
we will prove that (GLBB) is in fact equivalent to (LBB), again on quasi-uniform meshes.

The work by Girault and Scott ([7]) must be mentioned when dealing with the construction
of Fortin projection operators with L2-approximation properties. They have constructed such
operators for many commonly used inf–sup stable spaces, one notable exception being the lowest
order Taylor-Hood element in three dimensions. However, (GLBB) has been shown to hold for
the lowest order Taylor-Hood element directly [8]. Our results then can be applied to show that,
(GLBB) is satisfied by almost all inf–sup stable finite element spaces, regardless of the smoothness
of the domain.

This work is organized as follows. Section 2 introduces the notation and assumptions we shall
work with. Condition (GLBB) is discussed in Section 3. In Section 4 we actually show the equiv-
alence of conditions (LBB) and (GLBB), provided the domain is smooth enough. A weighted
inf–sup condition related to uniform preconditioning of the time-dependent Stokes problem is pre-
sented in Section 5, where we show that (GLBB) implies it. Some concluding remarks are provided
in Section 6.

2. Preliminaries

Throughout this work, we will denote by Ω ⊂ Rd with d = 2 or 3 an open bounded domain with
Lipschitz boundary. If additional smoothness of the domain is needed, it will be specified explicitly.
L2(Ω), H1(Ω) and H1

0 (Ω) denote, respectively, the usual Lebesgue and Sobolev spaces. We denote
by L2∫

=0(Ω) the set of functions in L2(Ω) with mean zero. Vector valued spaces will be denoted by
bold characters.

We introduce a conforming triangulation Th of Ω which we assume shape-regular and quasi-
uniform in the sense of [2]. The size of the cells in the triangulation is characterized by h > 0. We
introduce finite dimensional spaces Xh ⊂ H1

0(Ω) and Mh ⊂ L2∫
=0(Ω)∩H1(Ω) which are constructed,

for instance using finite elements, on the triangulation Th. For these spaces, the inverse inequalities

(2.1) ‖vh‖H1 ≤ ch−1‖vh‖L2 , ∀vh ∈ Xh,

and

(2.2) ‖qh‖H1 ≤ ch−1‖qh‖L2 , ∀qh ∈Mh,

hold, see [2]. Here and in what follows we denote by c will a constant that is independent of h.
We shall denote by Ch : H1

0(Ω) → Xh the so-called Scott-Zhang interpolation operator ([13])
onto the velocity space and we recall that

(2.3) ‖v − Chv‖L2 + h‖Chv‖H1 ≤ ch‖v‖H1 , ∀v ∈ H1
0(Ω).

and

(2.4) ‖v − Chv‖H1 ≤ ch‖v‖H2 , ∀v ∈ H1
0(Ω) ∩H2(Ω)

The Scott-Zhang interpolation operator onto the pressure space Ih : L2∫
=0(Ω)→Mh can be defined

analogously and satisfies similar stability and approximation properties. We shall denote by πh :
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L2(Ω) → Xh the L2-projection onto Xh and by Π0 : L2(Ω) → L2(Ω) the L2-projection operator
onto the space of piecewise constant functions, i.e.,

Π0q =
∑
T∈Th

1

|T |

(∫
T

q

)
χT , ∀q ∈ L2(Ω).

For one result below we shall require full H2-regularity of the solution to the Stokes problem:

Assumption 1. The domain Ω is such that for any f ∈ L2(Ω), the solution (ψ, θ) ∈ H1
0(Ω) ×

L2∫
=0(Ω) to the Stokes problem

(2.5)


−∆ψ +∇θ = f, in Ω,

∇·ψ = 0, in Ω,

ψ = 0, on ∂Ω,

satisfies the following estimate:

(2.6) ‖ψ‖H2 + ‖θ‖H1 ≤ c‖f‖L2 .

Assumption 1 is known to hold in two and three dimensions (d = 2, 3) whenever Ω is convex or
of class C1,1, see [3, Theorem 6.3].

By suitably defining a discrete gradient operator acting on the pressure space, the proofs for
discontinuous pressure spaces can be carried out with similar arguments.

We introduce the definition of a Fortin projection.

Definition 2.7. An operator Fh : H1
0(Ω)→ Xh is called a Fortin projection if F2

h = Fh and

(2.8)

∫
Ω

∇·(v −Fhv)qh = 0, ∀v ∈ H1
0(Ω), ∀qh ∈Mh.

We shall be interested in Fortin projections Fh that satisfy the condition:

(FH1) ‖Fhv‖H1 ≤ c‖v‖H1 , ∀v ∈ H1
0(Ω),

or

(FL2) ‖v −Fhv‖L2 ≤ ch‖v‖H1 , ∀v ∈ H1
0(Ω).

Let us remark that the approximation property (FL2) implies H1-stability.

Lemma 2.9. If an operator Fh : H1
0(Ω) → Xh satisfies (FL2) then it is H1-stable, i.e., (FH1) is

satisfied.

Proof. The proof relies on the stability and approximation properties (2.3) of the Scott-Zhang
operator and on the inverse estimate (2.1), for if v ∈ H1

0(Ω),

‖Fhv‖H1 ≤ ‖Fhv − Chv‖H1 + c‖v‖H1 ≤ ch−1‖Fhv − Chv‖L2 + c‖v‖H1

≤ ch−1‖v −Fhv‖L2 + ch−1‖v − Chv‖L2 + c‖v‖H1 .

Conclude using the L2-approximation properties of the operators Fh and Ch. �

Remark 2.10. Girault and Scott, [7], explicitly constructed a Fortin projection that satisfies (FH1)
and (FL2) for many commonly used spaces. In fact, they showed that the approximation is local,
i.e.,

‖Fhv − v‖L2(T ) + hT ‖Fhv − v‖H1(T ) ≤ chT ‖v‖H1(N (T )), ∀v ∈ H1
0(Ω) and ∀T ∈ Th,
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where N (T ) is a patch containing T . In particular, they have shown the existence of this projection
for the Taylor-Hood elements in two dimensions. In three dimensions they proved this result for all
the Taylor-Hood elements except the lowest order case.

In this work we shall prove the implications

(LBB) ks +3
KS

∃Fh s.t. (2.8) and (FH1)

(GLBB) ks +3 ∃Fh s.t. (2.8) and (FL2) (LBB) and Assumption 1ks

thus showing that, in our setting, all these conditions are indeed equivalent. The top equivalence
is well-known, see [2, 6, 5]. The left implication is also known (see [8]), for completeness we show
this in Theorem 3.3. The bottom implications, although simple to prove, seem to be new.

3. The Generalized LBB Condition

Let us begin by noticing that the generalized LBB condition (GLBB) is actually a statement
about coercivity of the L2-projection on gradients of functions in the pressure space. Namely,
(GLBB) is equivalent to

(3.1) ‖πh∇qh‖L2 ≥ c‖∇qh‖L2 , ∀qh ∈Mh.

It is well known that (GLBB) implies (LBB). For completeness we present the proof. We begin
with a perturbation result.

Lemma 3.2. There exists a constant c independent of h such that, for all qh ∈Mh, the following
holds:

c‖qh‖L2 ≤ sup
vh∈Xh

∫
Ω

(∇·vh) qh

‖∇vh‖L2

+ h‖∇qh‖L2 .

Proof. The proof relies on the properties (2.3) of the Scott-Zhang interpolation operator Ch,

c‖qh‖L2 ≤ sup
v∈H1

0(Ω)

∫
Ω

(∇·v) qh

‖∇v‖L2

≤ sup
v∈H1

0(Ω)

∫
Ω

(∇· Chv) qh

‖∇(Chv)‖L2

+ sup
v∈H1

0(Ω)

∫
Ω

(
∇· (v − Chv)

)
qh

‖∇v‖L2

≤ sup
vh∈Xh

∫
Ω

(∇·vh) qh

‖∇vh‖L2

+ sup
v∈H1

0(Ω)

∫
Ω

(v − Chv) ·∇qh
‖∇v‖L2

,

conclude using (2.3). �

On the basis of Lemma 3.2 we can readily show that (GLBB) implies (LBB). Again, this result
is not new and we only include the proof for completeness.

Theorem 3.3. (GLBB) implies (LBB).

Proof. Since we assumed that Mh ⊂ L2∫
=0(Ω) ∩H1(Ω), the proof is straightforward:

sup
vh∈Xh

∫
Ω

(∇·vh) qh

‖∇vh‖L2

= sup
vh∈Xh

∫
Ω
vh·∇qh
‖∇vh‖L2

≥
∫

Ω
πh∇qh·∇qh
‖∇πh∇qh‖L2

=
‖πh∇qh‖2L2

‖∇πh∇qh‖L2

≥ ch‖πh∇qh‖L2

where, in the last step, we used the inverse inequality (2.1). This, in conjunction with Lemma 3.2
and the characterization (3.1), implies the result. �
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Let us now show that the generalized LBB condition (GLBB) is equivalent to the existence of a
Fortin operator satisfying (FL2). We begin with a modification of a classical result.

Lemma 3.4. For all p ∈ H1(Ω) there is v ∈ H1
0(Ω) such that

∇·v = p−Π0p, v|∂T = 0 ∀T ∈ Th,
and

‖v‖L2 ≤ c

(∑
T∈Th

h4
T ‖∇p‖2L2(T )

)1/2

.

Proof. Let p ∈ H1(Ω) and T ∈ Th. Clearly,∫
T

p−Π0p = 0.

A classical result ([1, 14, 6, 4]) implies that there is a vT ∈ H1
0(T ) with ∇·vT = p−Π0p in T and

(3.5) ‖∇vT ‖L2(T ) ≤ c‖p−Π0p‖L2(T ).

Given that the mesh is assumed to be shape regular, by mapping to the reference element it is seen
that the constant in the last inequality does not depend on T ∈ Th.

Let v ∈ H1
0(Ω) be defined as v|T = vT for all T in Th. By construction,

∇·v = p−Π0p, a.e. in Ω.

Moreover,

‖v‖2L2 =
∑
T∈Th

‖v‖2L2(T ) ≤ c
∑
T∈Th

h2
T ‖∇v‖2L2(T ) ≤ c

∑
T∈Th

h2
T ‖p−Π0p‖2L2(T ) ≤ c

∑
T∈Th

h4
T ‖∇p‖2L2(T ).

The first equality is by definition; then we applied the Poincaré-Friedrichs inequality (since v|T =
vT ∈ H1

0(T )); next we used the properties of the function vT and the approximation properties of
the projector Π0. �

With this result at hand we can prove the following.

Theorem 3.6. If there exists a Fortin operator Fh that satisfies (FL2), then (GLBB) holds.

Proof. Let qh ∈Mh. Using the properties of the operator Π0 and the local analogue of the inverse
inequality (2.2), we get

‖∇qh‖2L2 =
∑
T∈Th

‖∇ (qh −Π0qh)‖2L2(T ) ≤
∑
T∈Th

1

h2
T

‖qh −Π0qh‖2L2(T ) ≤
c

h2
‖qh −Π0qh‖2L2 .

From Lemma 3.4 we know there exists v ∈ H1
0(Ω) with ∇·v = qh −Π0qh and

‖v‖L2 ≤ ch2‖∇qh‖L2 ,

hence

‖∇qh‖2L2 ≤
c

h2
‖qh −Π0qh‖2L2 =

c

h2

∫
Ω

(∇·v) (qh −Π0qh) =
c

h2

∫
Ω

(∇·v) qh,

where the last inequality follows from integration by parts over each T and using the fact that
v|∂T = 0 (see Lemma 3.4).

Using the existence of the operator Fh,

‖∇qh‖2L2 ≤
c

h2

∫
Ω

(∇·Fhv)qh ≤
(

sup
wh∈Xh

∫
Ω

(∇·wh) qh

‖wh‖L2

)
c

h2
‖Fhv‖L2 .
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It remains to show that

‖Fhv‖L2 ≤ ch2‖∇qh‖L2 .

For this purpose, we use the approximation property (FL2) and Lemma 3.4

‖Fhv‖L2 ≤ ‖Fhv − v‖L2 + ‖v‖L2 ≤ ch‖∇v‖L2 + ch2‖∇qh‖L2 ≤ ch2‖∇qh‖L2 ,

where the last inequality holds because of (3.5). �

The converse of Theorem 3.6 is given in the following.

Theorem 3.7. If (GLBB) holds, then there exists a Fortin projector Fh that satisfies (FL2).

Proof. Let v ∈ H1
0(Ω). Define (zh, ph) ∈ Xh ×Mh as the solution of

(3.8)


∫

Ω

zh·wh −
∫

Ω

ph∇·wh =

∫
Ω

v·wh, ∀wh ∈ Xh,∫
Ω

qh∇·zh =

∫
Ω

qh∇·v, ∀qh ∈Mh.

Notice that (GLBB) provides precisely necessary and sufficient conditions for this problem to have
a unique solution.

Define Fhv := zh we claim that this is indeed a Fortin projection that satisfies (FL2). By
construction, (2.8) holds (see the second equation in (3.8)). To show that this is indeed a projection,
assume that v = vh ∈ Xh in (3.8), setting wh = zh − vh we readily obtain that

‖zh − vh‖2L2 = 0.

It remains to show the approximation properties of this operator. We begin by noticing that
(GLBB) implies

(3.9) c‖∇ph‖L2 ≤ sup
wh∈Xh

∫
Ω
ph∇·wh
‖wh‖L2

≤ sup
wh∈Xh

∫
Ω

(v −Fhv)·wh
‖wh‖L2

≤ ‖v −Fhv‖L2 ,

where we used (3.8). To obtain the approximation property (FL2) we use the Scott-Zhang inter-
polation operator Ch,

‖Fhv − v‖2L2 =

∫
Ω

(Chv − v)·(Fhv − v) +

∫
Ω

(Fhv − Chv)·(Fhv − v)

≤ ‖Chv − v‖L2‖Fhv − v‖L2 +

∫
Ω

(Fhv − Chv)·(Fhv − v).

We bound the first term using the approximation property (2.3) of Ch. To bound the second term
we use problem (3.8) with wh = Fhv − Chv, then∫

Ω

(Fhv − Chv)·(Fhv − v) =

∫
Ω

ph∇·(Fhv − Chv) =

∫
Ω

ph∇·(v − Chv) = −
∫

Ω

∇ph·(v − Chv),

we conclude applying the Cauchy-Schwarz inequality and using (3.9). �
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4. Smooth Domains

Here we show that, provided (LBB) holds and, moreover, the domain Ω is such that Assumption 1
is satisfied, then (FL2) holds and hence (GLBB) holds as well. This is shown in the following.

Theorem 4.1. Assume the domain Ω is such that the solution to (2.5) possesses H2-elliptic regu-
larity, i.e., Assumption 1 holds. Then (LBB) implies that there is a Fortin operator Fh that satisfies
(FL2).

Proof. Let v ∈ H1
0(Ω). Define (zh, ph) ∈ Xh ×Mh as the solution to the discrete Stokes problem

(4.2)


∫

Ω

∇zh:∇wh −
∫

Ω

ph∇·wh =

∫
Ω

∇v:∇wh, ∀wh ∈ Xh,∫
Ω

qh∇·zh =

∫
Ω

qh∇·v, ∀qh ∈Mh,

where, in (4.2), the colon is used to denote the tensor product of matrices. Notice that (LBB)
implies that this problem always has a unique solution.

Set Fhv := zh. Proceeding as in the proof of Theorem 3.7 we see that this is indeed a projection.
Moreover, (2.8) holds by construction. It remains to show that (FL2) is satisfied. To this end,
analogously to the proof of Theorem 3.7, we notice that (LBB) implies

‖ph‖L2 ≤ c‖∇(Fhv − v)‖L2 .

We now argue by duality. Let ψ and φ solve (2.5) with f = Fhv−v. Assumption (2.6) then implies

‖Fhv − v‖2L2 =

∫
Ω

(Fhv − v)·(−∆ψ +∇θ)

=

∫
Ω

∇(Fhv − v) : ∇(ψ − Chψ)−
∫

Ω

(θ − Ihθ)∇·(Fhv − v)

+

∫
Ω

∇(Fhv − v) : ∇(Chψ)−
∫

Ω

(Ihθ)∇·(Fhv − v)

Notice that since Ihθ ∈Mh,
∫

Ω
(Ihθ)∇·(Fhv − v) = 0. Since ∇·ψ = 0, using (4.2), the estimate for

ph, (2.4) and (2.6),∫
Ω

∇(Fhv − v) : ∇(Chψ) =

∫
Ω

ph∇·(Chψ − ψ) ≤ ch‖v −Fhv‖H1‖v −Fhv‖L2 .

A direct application of of (2.4), (2.3) and (2.6) allows us to obtain the following estimates:∫
Ω

(θ − Ihθ)∇·(Fhv − v) +

∫
Ω

∇(Fhv − v):∇(ψ − Chψ) ≤ ch‖Fhv − v‖L2‖v‖H1

We conclude using a stability estimate for (4.2)

‖Fhv − v‖L2 ≤ ch‖Fhv − v‖H1 ≤ ch‖v‖H1 ,

which, given (LBB), is uniform in h. �
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5. The Weighted LBB condition

In relation to the construction of uniform preconditioners for discretizations of the time dependent
Stokes problem, Mardal, Schöberl and Winther, [11], consider the following inf–sup condition,

(5.1) c‖qh‖H1+ε−1L2 ≤ sup
vh∈Xh

∫
Ω
∇·vhqh

‖vh‖L2∩εH1

, ∀qh ∈Mh.

where

‖q‖2H1+ε−1L2 = inf
q1+q2=q

(
‖q1‖2H1 + ε−2‖q2‖2L2

)
,

and

‖v‖2L2∩εH1 = ‖v‖2L2 + ε2‖v‖2H1 .

By constructing a Fortin projection operator that is L2-bounded they have showed, on quasi-
uniform meshes, that the inf–sup condition (5.1) holds for the lowest order Taylor-Hood element
in two dimension. In addition, they proved the same result, on shape regular meshes, for the mini-
element. Here, we show that (5.1) holds if we assume (GLBB). A simple consequence of this result
is that, on quasi-uniform meshes, (5.1) holds for any order Taylor-Hood elements in two and three
dimensions.

Theorem 5.2. Let Ω be star shaped with respect to ball. If the spaces Xh and Mh are such that
(GLBB) is satisfied, then the inf–sup condition (5.1) holds with a constant that does not depend on
ε or h.

Proof. We consider two cases: ε ≥ h and ε < h.
Given that the domain Ω is star shaped with respect to a ball, we can conclude ([11]) that the

following continuous inf–sup condition holds,

(5.3) c‖q‖H1+ε−1L2 ≤ sup
v∈H1

0(Ω)

∫
Ω
q∇·v

‖v‖L2∩εH1

, ∀q ∈ L2∫
=0(Ω),

with a constant c independent of ε.
We first assume that ε ≥ h. Using (5.3) for qh ∈Mh we have,

c‖qh‖H1+ε−1L2 ≤ sup
v∈H1

0(Ω)

∫
qh∇·v

‖v‖L2∩εH1

= sup
v∈H1

0(Ω)

∫
Ω
qh∇·(Fhv)

‖Fhv‖L2∩εH1

‖Fhv‖L2∩εH1

‖v‖L2∩εH1

≤ sup
vh∈Xh

∫
Ω
qh∇·vh

‖vh‖L2∩εH1

sup
v∈H1

0(Ω)

‖Fhv‖L2∩εH1

‖v‖L2∩εH1

,

where we used that, since (GLBB) holds, Theorem 3.7 shows that there exists a Fortin operator Fh
that satisfies (2.8). By Lemma 2.9 and the approximation properties (FL2) of the Fortin operator,

‖Fhv‖L2∩εH1 ≤ c (‖Fhv‖L2 + ε‖Fhv‖H1) ≤ c (‖v‖L2 + ‖v −Fhv‖L2 + ε‖v‖H1)

≤ c (‖v‖L2 + (ε+ h)‖v‖H1) ≤ c (‖v‖L2 + 2ε‖v‖H1) ≤ c‖v‖L2∩εH1 ,

where we used that h ≤ ε.
On the other hand, if ε < h we use q1 = qh and q2 = 0 in the definition of the weighted norm for

the pressure space. Condition (GLBB) then implies

‖qh‖H1+ε−1L2 ≤ c‖∇qh‖L2 ≤ c sup
vh∈Xh

∫
Ω
qh∇·vh
‖vh‖L2

≤ c sup
vh∈Xh

∫
Ω
qh∇·vh

‖vh‖L2∩εH1

sup
vh∈Xh

‖vh‖L2∩εH1

‖vh‖L2

.
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By the inverse inequality (2.1),

‖vh‖L2∩εH1

‖vh‖L2

≤ c
(
1 + εh−1

)
.

Conclude using that ε < h. �

6. Concluding Remarks

There seems to be one main drawback to our methods of proof. Namely, all our results rely
heavily on the fact that we have a quasi-uniform mesh. However, at the present moment we do not
know whether this condition can be removed. Finally, it will be interesting to see if (LBB) is in
fact equivalent to (GLBB) on domains that do not satisfy the regularity assumption (2.6) (e.g. non
convex polyhedral domains).

On the other hand, it seems to us that condition (GLBB) must be regarded as the most important
one. Our results show that, under the sole assumption that the mesh is quasi-uniform, this condition
implies the classical condition (LBB) (Theorem 3.3). Moreover, as shown in Theorem 5.2, this
condition implies the weighted inf–sup condition (5.1) on quasi-uniform meshes.
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