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Abstract. In this paper, we introduce and analyze a new discontinuous
Galerkin method for solving the biharmonic problem ∆2u = f . The method
has two main, distinctive features, namely, it is amenable to an efficient imple-
mentation, and it displays new superconvergence properties. Indeed, although
the method uses as separate unknowns u, ∇u, ∆u and ∇∆u, the only globally
coupled degrees of freedom are those of the approximations to u and ∆u on
the faces of the elements. This is why we say it can be efficiently implemented.
We also prove that, when polynomials of degree at most k ≥ 1 are used on
all the variables, approximations of optimal convergence rates are obtained
for both u and ∇u; the approximations to ∆u and ∇∆u converge with order
k + 1/2 and k − 1/2, respectively. Moreover, both the approximation of u as
well as its numerical trace superconverge in L2-like norms, to suitably chosen
projections of u with order k+2 for k ≥ 2. This allows the element-by-element
construction of another approximation to u converging with order k + 2 for
k ≥ 2. For k = 0, we show that the approximation to u converges with order
one, up to a logarithmic factor. Numerical experiments are provided which
confirm the sharpness of our theoretical estimates.

1. Introduction

In this paper, we continue our study of the LDG-H methods, introduced in [11]
in the framework of second order elliptic problems, and consider the extension of
the so-called single face-hybridizable (SFH) method, a particular LDG-H method
proposed and studied in [10], to the biharmonic problem

∆2u = f in Ω,(1.1a)

u = g on ∂Ω,(1.1b)

∂u

∂n
= −qN on ∂Ω,(1.1c)

where Ω ⊂ R
d is a polyhedral domain (d ≥ 2), and f ∈ L2(Ω).

Since the first equation of the above problem can be rewritten as

−∆z = f,

−∆u = z,
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it is natural to consider extensions of numerical methods for second-order elliptic
problems to our setting. In [10], it was shown that the SFH method for second-order
elliptic problems is optimally convergent in both the scalar variable and its gradient,
and has superconvergence properties allowing for the construction of a new, better
approximation to the scalar variable. In this paper we explore if similar results can
be obtained by extending the SFH method to the biharmonic problem.

To describe our results and render clear their relevance, let us begin by presenting
a short overview of the development of finite element methods for the biharmonic
problem. In the past 40 years, many different finite element methods for the bihar-
monic problem have been devised. We bias our discussion towards methods that are
not conforming and that employ piecewise polynomial approximations of arbitrary
degree. A thorough discussion about conforming methods and non-conforming
methods of using low polynomial degree approximations can be found in Section 6
in [8]. We begin our discussion with the mixed finite element method introduced
in 1974 by Ciarlet and Raviart [9]; see also Section 7 in [8].

Ciarlet and Raviart [9] showed that, with C0−finite elements associated with
piecewise polynomials of degree k ≥ 2, the H1-norm of the error in u and the
L2-norm of the error in ∆u converge with order k − 1. These estimates have been
subsequently improved by Scholz in [23, 24]. Indeed, in 1976, Scholz obtained an
optimal error estimate of u for k ≥ 3. Two years later, by using an L∞-estimate, he
showed that piecewise linear elements yield first order convergence in the H1-norm
of the error in u and 1/2 order convergence in the L2-norm of the error in ∆u; he
also mentioned that this approach can be extended to higher order polynomials.
In 1978, Falk [15] devised a variant of Ciarlet-Raviart mixed method which gives
approximations that optimally converge to u and sub-optimally converge to ∆u in
the L2-norm with order (k − 1) for k ≥ 3. For more details, see the review paper
[18].

Another popular mixed finite element method that has been applied to the bihar-
monic problem is the Hellan-Herrmann-Johnson (HHJ) method. In 1980, Babuška
et.al. [3] analyzed the HHJ method on two-dimensional convex polygonal domains.
They showed that the continuous approximation to the scalar variable u converges
with order k + 1 if polynomials of degree k ≥ 1 are used, and the approximation
to the matrix of second-order partials of u converges with order k if polynomials
of degree k − 1 are used. In [1], a Lagrange multiplier was used to impose interele-
ment continuity, and a better piecewise linear approximation to u was generated
by post-processing, which automatically gave a superconvergent approximation to
the gradient of u. In [13], Comodi developed similar post-processing to extend the
result to the case of k ≥ 2; she showed a superconvergence result for the distance
between the approximation of u and a suitable projection of u which allowed her
to use post-processing to construct an approximation converging with an optimal
rate to gradient of u. In [25], Stenberg used a different post-processing to produce
a new approximation to u, which converges in H1-norm with order k + 1 for k ≥ 1
and converges in L2-norm with order k + 2 for k ≥ 3.

Interior penalty methods have also been investigated for the biharmonic prob-
lem. In his pioneering work of 1977, Baker [5] devised an interior penalty method
based on discontinuous finite elements to the biharmonic problem, and obtained
an optimal error estimates for k ≥ 3. In a sequence of papers [20, 26, 21] by Süli
et.al., hp-version of symmetric, nonsymmetric and semi-symmetric interior penalty
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discontinuous Galerkin finite element methods have been studied, and optimal ap-
proximations to u and (k − 1)th order approximation to ∆u were obtained for
polynomials of degree k ≥ 2. On the other hand, C0 interior penalty methods
for plate bending problems using quadrilateral elements were analyzed in [14], and
the error was shown to converge optimally in L2-norm for smooth solutions when
k ≥ 3. Later Brenner and Sung [7] extended the analysis to polygonal domains and
nonsmooth solutions, and they used post-processing to generate C1 approximate
solutions from C0 approximate solutions.

The method we present here is also a discontinuous Galerkin method, but is
formulated in terms of approximations not only to u but also to ∇u, ∆u and ∇∆u.
As we mentioned above, this proliferation of unknowns is significantly compensated
by the fact that the only globally coupled degrees of freedom are those associated
to approximations to u and ∆u in the element borders. The convergence properties
of the method are the following. When piecewise polynomial approximations of
degree k ≥ 1 are used for all these unknowns, the approximations to both u and
∇u optimally converge with order k + 1, and that the approximations to ∆u and
∇∆u converge with order k + 1/2 and k − 1/2, respectively. We also show that
suitably chosen projections of the error in u superconverge with order k + 2 for
k ≥ 2 and with order 5

2 for k = 1. This allows us to locally construct a new

approximation to u converging with order k + 2 for k ≥ 2 and with order 5
2 for

k = 1. We also show that we can improve the above estimates for k = 1 in the
two-dimensional case, d = 2, and for k = 0 and d = 2, 3. Indeed, for k = 1 and
d = 2, we show that the postprocessed approximation of u converges with order
3, up to a logarithmic factor. For k = 0 and d = 2, 3, we show that, again up to
logarithmic factors, the approximation to u, ∇u, and ∆u converge with orders 1, 3

4

and 1
2 , respectively. Finally, although

Certain technical assumptions were made in order to carry out our analysis and
prove the above convergence rates. In particular, we assume the domain Ω is convex
and we assume H4 regularity for the dual problem. Moreover, we assume our family
of meshes are quasi-uniform. However, our numerical experiments show that the
method performs very well even if we violate these assumptions. Finally, although
the converge rates for z and σ measured in the global L2 norm are sub-optimal
with rates k + 1/2 and k − 1/2, respectively, our numerical experiments show that
the convergence rates are optimal in any fixed interior sub-domain of Ω.

The paper is organized as follows. In Section 2, we introduce the method, dis-
cuss the characterization of its approximate solution and state our a priori error
estimates. The proof of the characterization is presented in Appendix I and the
proofs of the error estimates are given in Section 3; they use an auxiliary result
on pointwise error estimates for SFH approximations to solutions of second-order
problems in Appendix II. In Section 4, we discuss the extension of our results to
the two-dimensional case and k = 1, and the two- and three-dimensional case and
k = 0. In Section 5, we display numerical experiments validating the theoretical
results. We end with some concluding remarks in Section 6.

2. Main results

In this section, we introduce the SFH method and show how the method under
consideration can be hybridized, that is, how the only globally coupled degrees of
freedom are those of the numerical traces ûh and ẑh. We show that they are the
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solution of a mixed formulation and obtain conditions on the local stabilization
parameters τ that guarantee the existence and uniqueness of its solution. We then
present a priori error estimates for all the variables as well as two superconvergence
results for approximations to u. We end by showing how to use the superconver-
gence results to construct, in an element-by-element fashion, a new approximation
u⋆

h converging faster than u.

2.1. The SFH method. Now let us introduce the method. We begin by rewriting
the problem as a first-order system as follows:

σ + ∇z = 0 in Ω,(2.2a)

∇ · σ = f in Ω,(2.2b)

q + ∇u = 0 in Ω,(2.2c)

∇ · q = z in Ω,(2.2d)

with the boundary conditions

u = g on ∂Ω,(2.2e)

q · n = qN on ∂Ω.(2.2f)

Next, let us introduce some notation. We denote by Ωh = {K} a triangulation of
the domain Ω of shape-regular tetrahedra K and set ∂Ωh := {∂K : K ∈ Ωh}. We
associate to this triangulation the set of interior faces E

i
h and the set of boundary

faces E
∂
h . We say that e ∈ E

i
h if there are two simplexes K+ and K− in Ωh such

that e = ∂K+ ∩ ∂K−, and we say that e ∈ E
∂
h if there is a simplex in Ωh such that

e = ∂K ∩ ∂Ω. We set Eh := E
i
h ∪ E

∂
h .

The SFH method seeks an approximation (σh, zh, qh, uh, γh, λh) to the exact
solution (σ|Ω, z|Ω, q|Ω, u|Ω, z|Eh

, u|Eh\∂Ω), in a finite dimensional space V h ×Wh ×
V h × Wh × Mh × M0

h of the form

V h :={v ∈ L2(Ω) : v|K ∈ P
k(K) ∀K ∈ Ωh},(2.3a)

Wh :={ω ∈ L2(Ω) : ω|K ∈ P
k(K) ∀K ∈ Ωh},(2.3b)

Mh :={m ∈ L2(∂Ωh) : m|e ∈ P
k(e) ∀e ∈ Eh},(2.3c)

M0
h :={m ∈ Mh : m|∂Ω = 0},(2.3d)

and determines it by requiring that

(σh,ρ)Ωh
− (zh,∇ · ρ)Ωh

+ 〈ẑh,ρ · n〉∂Ωh
=0,(2.4a)

−(σh,∇η)Ωh
+ 〈σ̂h · n, η〉∂Ωh

=(f, η)Ωh
,(2.4b)

(qh,v)Ωh
− (uh,∇ · v)Ωh

+ 〈ûh,v · n〉∂Ωh
=0,(2.4c)

−(qh,∇ω)Ωh
+ 〈q̂h · n, ω〉∂Ωh

=(zh, ω)Ωh
,(2.4d)

〈σ̂h · n, µ〉∂Ωh
=0,(2.4e)

〈q̂h · n, χ〉∂Ωh
=〈qN, χ〉∂Ω,(2.4f)

for all (ρ, η,v, ω, µ, χ) ∈ V h × Wh × V h × Wh × M0
h × Mh. Here, we denote the

space of polynomials of degree at most k ≥ 0 defined on D by P
k(D), and set
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P
k(D) := [Pk(D)]d. We have used the notation

(ρ,v)Ωh
:=

∑

K∈Ωh

∫

K

ρ(x) · v(x) dx,

(η, ω)Ωh
:=

∑

K∈Ωh

∫

K

η(x) ω(x) dx,

〈η,v · n〉∂Ωh
:=

∑

K∈Ωh

∫

∂K

η(γ)v(γ) · n dγ,

for any functions ρ,v in H1(Ωh) := [H1(Ωh)]d and η, ω in H1(Ωh). The outward
normal unit vector to ∂K is denoted by n.

The numerical traces (σ̂h, ẑh, q̂h, ûh) are defined as

ûh =

{
P∂ g on ∂K ∩ ∂Ω,

λh otherwise,
(2.5a)

ẑh =γh(2.5b)

q̂h =qh + τ (uh − ûh)n,(2.5c)

σ̂h =σh + τ (zh − ẑh)n,(2.5d)

where λh ∈ M0
h and γh ∈ Mh are called Lagrange multipliers which are unknown,

and P∂ denotes an L2-projection defined as follows. Given any function η ∈ L2(Eh)
and an arbitrary face e ∈ Eh, the restriction of P∂(η) to e is defined as the element
of Pk(e) that satisfies

〈P∂η − η, ω〉e = 0, ∀ω ∈ P
k(e).(2.6)

The parameter τ is taken as, on each simplex K ∈ Ωh

τ =

{
0, on ∂K \ eτ

K ,

τK > 0, on eτ
K ,

(2.7)

where eτ
K is an arbitrary but fixed face of K if K does not contain any boundary

face.
We also make an important assumption on the triangulation Ωh. We assume

that

each tetrahedra K has at most one boundary face,(2.8a)

if K has one boundary face, eτ
K is the boundary face.(2.8b)

Experimentally, we have verified that if this assumption is violated then the ap-
proximate solution is not well defined. This assumption is thus necessary.

2.2. Characterization of the approximate solution. Next, we give a charac-
terization of the approximate solution provided by the SFH method; we follow [11].
To state it, we need to introduce the local solvers associated with the method.
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The first local solver is defined on the simplex K ∈ Ωh as the mapping γ ∈
L2(∂K) → (Sγ, Zγ, Qγ, Uγ) ∈ P

k(K) × Pk(K) × P
k(K) × Pk(K) where

(Sγ,ρ)K − (Zγ,∇ · ρ)K = −〈γ,ρ · n〉∂K ,(2.9a)

−(Sγ,∇η)K + 〈Ŝγ · n, η〉∂K = 0,(2.9b)

(Qγ,v)K − (Uγ,∇ · v)K = 0,(2.9c)

−(Qγ,∇w)K + 〈Q̂γ · n, w〉∂K = (Zγ, w)K ,(2.9d)

for all (ρ, η,v, w) ∈ P
k(K) × Pk(K) × P

k(K) × Pk(K), where

Ŝγ = Sγ + τ(Zγ − P∂γ)n,(2.9e)

Q̂γ = Qγ + τ Uγn.(2.9f)

The second local solver is defined on the simplex K ∈ Ωh as the mapping m ∈
L2(∂K) → (Sm, Zm, Qm, Um) ∈ P

k(K) × P
k(K) × P

k(K) × P
k(K) where

(Sm,ρ)K − (Zm,∇ · ρ)K = 0,(2.10a)

−(Sm,∇η)K + 〈Ŝm · n, η〉∂K = 0,(2.10b)

(Qm,v)K − (Um,∇ · v)K = −〈m,v · n〉∂K ,(2.10c)

−(Qm,∇w)K + 〈Q̂m · n, w〉∂K = (Zm, w)K ,(2.10d)

for all (ρ, η,v, w) ∈ P
k(K) × Pk(K) × P

k(K) × Pk(K), where

Ŝm = Sm + τ Zmn,(2.10e)

Q̂m = Qm + τ(Um − P∂m)n.(2.10f)

The third local solver is defined on the simplex K ∈ Ωh as the mapping f ∈
L2(K) → (Sf, Zf, Qf, Uf) ∈ P

k(K) × P
k(K) × P

k(K) × P
k(K) where

(Sf,ρ)K − (Zf,∇ · ρ)K = 0,(2.11a)

−(Sf,∇η)K + 〈Ŝf · n, η〉∂K = (f, η)K ,(2.11b)

(Qf,v)K − (Uf,∇ · v)K = 0,(2.11c)

−(Qf,∇w)K + 〈Q̂f · n, w〉∂K = (Zf, w)K ,(2.11d)

for all (ρ, η,v, w) ∈ P
k(K) × Pk(K) × P

k(K) × Pk(K), where

Ŝf = Sf + τ Zf n,(2.11e)

Q̂f = Qf + τ Uf n.(2.11f)

We can now state a characterization of the approximation solutions in terms of
the local solvers.



A DG METHOD FOR BIHARMONIC PROBLEMS 7

Theorem 2.1. The approximate solution (σh, zh, qh, uh, γh, λh) ∈ V h×Wh×V h×
Wh × Mh × M0

h given by the method is well defined. Moreover, we have that

(σh, zh, qh, uh) =(Sγh, Zγh, Qγh, Uγh)

+ (Sλh, Zλh, Qλh, Uλh)

+ (Sg, Zg, Qg, Ug)

+ (Sf, Zf, Qf, Uf),

where (γh, λh) ∈ Mh × M0
h satisfies

ah(γh, χ) + bh(λh, χ) = ℓ1(χ) ∀χ ∈ Mh,

bh(µ, γh) = ℓ2(µ) ∀µ ∈ M0
h ,

where

ah(ς, χ) := (Zς, Zχ)Ωh
,

bh(µ, χ) := 〈µ, Sχ · n〉∂Ωh
= 〈χ, Qµ · n〉∂Ωh

,

ℓ1(χ) := − (f, Uχ)Ωh
− 〈g, Sχ · n〉∂Ω + 〈qN, χ〉∂Ω,

ℓ2(µ) := − (f, Uµ)Ωh
,

for all ς, χ ∈ Mh, and µ ∈ M0
h. The solution (γh, λh) ∈ Mh × M0

h of the above
formulation exists and is unique if τK > 0 for each K ∈ Ωh and if the conditions
(2.8) are satisfied.

A detailed proof of this result can be found in the Appendix I. Note that the
above result implies that the system of equations for the vector of degrees of freedom
for γh and λh, [γh] and [λh], respectively, is of the form

[
A B

Bt 0

] [
[γh]
[λh]

]
=

[
b1

b2

]
.

This is a reflection of the fact that γh approximates z, that λh approximates u, and
that we can write our original problem (1.1) as

[
Id ∆
∆ 0

] [
z
u

]
=

[
0
−f

]
.

2.3. A priori error estimates. Now we present a priori error estimates for the
approximation (σh, zh, qh, uh) ∈ V h×Wh×V h×Wh given by the SFH method and
for the numerical trace ûh defined by (2.5). To state them, we need to introduce
new notation.

For any real-valued function η in H l(Ωh), we set

| η |Hl(Ωh) :=
( ∑

K∈Ωh

| η |2Hl(K)

) 1
2 .

For a vector-valued function ρ = (σ1, . . . , σd) ∈H
l(Ωh) we set

|ρ |Hl(Ωh) :=
( d∑

i=1

|σi |
2
Hl(Ωh)

) 1
2 .

Our error estimates for the SFH approximation to (1.1) will depend on L∞ es-
timates of the SFH approximation to Laplace’s equation. These L∞ are contained
in the appendix and assume elliptic H2 regularity for Laplace’s equation with zero
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Dirichlet boundary conditions and estimates for the first derivative of the corre-
sponding Green’s function. This assumption is satisfied if Ω is convex; see [16].
Therefore, for our main theorem we assume that Ω is convex. Moreover, we assume
that the family of meshes {Ωh} be quasi-uniform since the L∞ estimates require
this. Finally, we will also assume H4 elliptic regularity for the bi-harmonic problem
which requires more than convexity; see [6] for results on polygons. More precisely,
we assume that

(2.12) ‖ ζ ‖H1(Ωh) + ‖ξ ‖H2(Ωh) + ‖ψ ‖H3(Ωh) + ‖ϕ ‖H4(Ωh) ≤ Cer ‖ η ‖L2(Ω),

where (ζ, ξ,ψ, ϕ) is the solution of the following problem:

ζ + ∇ξ = 0 in Ω,(2.13a)

∇ · ζ = η in Ω,(2.13b)

ψ + ∇ϕ = 0 in Ω,(2.13c)

∇ ·ψ = ξ in Ω,(2.13d)

ϕ = 0 on ∂Ω,(2.13e)

ψ · n = 0 on ∂Ω,(2.13f)

Again, we would like to emphasize that the convexity of the domain and H4 elliptic
regularity are just technical assumptions for the purpose of our error analysis. From
the numerical experiment in Section 5.3, we see that the method still performs well
when these assumptions are violated.

The L2-errors in the approximation of u, q, z and σ as well as the error in the
weighted jump τ (ûh − uh) in the norm

‖ ûh − uh ‖L2(∂Ωh;τ) := (
∑

K∈Ωh

τK ‖(ûh − uh)‖2
L2(eτ

K
))

1/2,

are given in the following theorem.
We are now ready to state our first result.

Theorem 2.2. Suppose that the exact solution (u, q, z,σ) belongs to Hk+1(Ωh) ×
W k+1,∞(Ωh) × Hk+1(Ωh) ×Hk+1(Ωh). If τK > 0 is of order h−1

K for all K ∈ Ωh

and k ≥ 1, then for h sufficiently small we have

‖u − uh‖L2(Ωh) ≤ C hk+1,

‖q − qh‖L2(Ωh) ≤ C hk+1,

‖z − zh‖L2(Ωh) ≤ C hk+1/2,

‖σ − σh‖L2(Ωh) ≤ C hk−1/2,

and

‖ ûh − uh ‖L2(∂Ωh;τ)≤ C hk+1,

where

C := C(|u|Hk+1(Ωh) + |q|W k+1,∞(Ωh) + |z|Hk+1(Ωh) + |σ|Hk+1(Ωh)),

for some constant C independent of h and the exact solution.

Note that this result states that, for k ≥ 1, the convergence orders of the approx-
imations to u and q are optimal whereas those to z and σ are suboptimal by 1/2
and 3/2. Since we actually observe these orders in our numerical results, the above
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result is sharp. However, our numerical experiment suggest that the converge rates
for all the variables are optimal for interior sub-domains of Ω.

We also note that if we don’t assume q ∈ W k+1,∞(Ωh), it is possible to prove
optimal convergence rates for u and q, and order k and k − 1 for z and σ without
using L∞ estimates of the SFH approximation to Laplace’s equation. However,
our analysis required the extra regularity of the solutions in order to improve the
convergence rates for z and σ.

2.4. Superconvergence of ûh and uh. Next we present a superconvergence re-
sult. To do that, we need to introduce the following norm:

‖P∂u − ûh ‖L2(Eh;h) = (
∑

K∈Ωh

hK‖P∂u − ûh ‖
2
L2(∂K))

1/2.

We also need to introduce the projection Pℓ. Given a function η ∈ H1(Ωh) and an
arbitrary simplex K ∈ Ωh, the restriction of Pℓη to K is defined for ℓ ≥ 0 as the
element of Pℓ(K) that satisfies

(Pℓη − η, ω)K = 0, ∀ω ∈ P
ℓ(K).(2.14)

If ℓ < 0, then Pℓ is the zero operator.

Theorem 2.3. Under the same assumption as in Theorem 2.2, we have

‖Pk−1(u − uh)‖L2(Ωh) ≤C C hk+min{k+1/2,2},

‖P∂u − ûh‖L2(Eh;h) ≤ C C hk+min{k+1/2,2}.

A similar result was proven for the scalar variable of the SFH method as applied
to second-order elliptic equations [10].

2.5. Postprocessing. Finally, we introduce a new approximation to u, u⋆
h, defined

as follows; see [10, 12]. On the simplex K, u⋆
h, is the function of Pk+1(K) given by

u⋆
h = uh + ũh,(2.15a)

where

uh =
1

|K|

∫

K

uh dx(2.15b)

and ũh is the polynomial in P
k+1
0 (K) satisfying

(∇ũh,∇w)K = (zh, w)K − 〈w, q̂h · n〉∂K ∀w ∈ P
k+1
0 (K).(2.15c)

Here P
k+1
0 (K) is the set of polynomials in Pk+1(K) with zero mean.

We have the following result.

Theorem 2.4. Under the same assumption as in Theorem 2.2, we have

‖u − u⋆
h‖L2(Ωh) ≤ C C hk+min{k+1/2,2}.

Notice that all our results above are stated for k ≥ 1. We show results for the
case k = 0 in the Extensions section since the proof is more delicate.

We note that many of the results in the following section hold for k ≥ 0. When
we assume that k ≥ 1 we will explicitly state it.
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3. Proof of the error estimates

In this section, we prove all the error estimates of Section 2. Since the analysis
is quite involved, let us sketch its main steps. We begin by introducing a projection
which will play a key role in our analysis, (Π, P). We then use energy-like argu-
ments to obtain preliminary estimates for Π(σ − σh), Π(q − qh) and P(z − zh);
a duality argument is then used to get a first estimate of P(u − uh). Finally, we
conclude by using approximation properties of the projection (Π, P). Let us point
out that the estimate of P(z − zh) turned out to be the most delicate. It needed
the introduction of an auxiliary SFH approximation of a second-order elliptic prob-
lem as well as pointwise estimates error estimates presented in Appendix II. The
boundary conditions we considered here are the root of this technical difficulty.

3.1. Preliminaries: The projection (Π, P). In this subsection, we recall the
definition of the projection

(Π, P) : H1(Ωh) × H1(Ωh) → V h × Wh,

introduced and studied in [10].
Given a function ρ ∈H1(Ωh) and an arbitrary simplex K ∈ Ωh, the restriction

of Πρ to K is defined as the element of P
k(K) that satisfies

(Πρ− ρ,v)K = 0, ∀v ∈ P
k−1(K), if k ≥ 1,(3.16a)

〈(Πρ− ρ) · n, ω〉e = 0, ∀ω ∈ P
k(e) and e 6= eτ

K .(3.16b)

Similarly, given a function η ∈ H1(Ωh) and an arbitrary simplex K ∈ Ωh, the
restriction of P(η) to K is defined as the element of P

k(K) that satisfies

(Pη − η, w)K = 0, ∀w ∈ P
k−1(K), if k ≥ 1,(3.17a)

〈Pη − η, ω〉eτ
K

= 0, ∀ω ∈ P
k(eτ

K).(3.17b)

A key property of these projections which will be constantly used in the analysis
is contained in the following result which can be deduced from property (iii) of
Proposition in [10].

Proposition 3.1. We have

〈Pη − P∂η,Πρ · n− P∂ρ · n〉∂Ωh
= 0,

for all (ρ, η) ∈H1(Ωh) × H1(Ωh).

3.2. The error equations. As it is customary, we begin by displaying the error
equations we are going to use in the analysis. So, from the equations satisfied by
the exact solution, (2.2), and those satisfied by the numerical approximation, (2.4),
we obtain

(eσ,ρ)Ωh
− (ez,∇ · ρ)Ωh

+ 〈z − ẑh,ρ · n〉∂Ωh
= 0,

−(eσ,∇η)Ωh
+ 〈(σ − σ̂h) · n, η〉∂Ωh

= 0,

(eq,v)Ωh
− (eu,∇ · v)Ωh

+ 〈u − ûh,v · n〉∂Ωh
= 0,

−(eq,∇ω)Ωh
+ 〈(q − q̂h) · n, ω〉∂Ωh

= (ez, ω)Ωh
,

〈(σ − σ̂h) · n, µ〉∂Ωh
= 0,

〈(q − q̂h) · n, χ〉∂Ωh
= 0,
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for all (ρ, η,v, ω, µ, χ) ∈ V h×Wh×V h×Wh×M0
h ×Mh, where we set ep = p−ph,

for p = u, q, z and σ.
Using the orthogonality property of P, (3.17a), and that of Π, (3.16a), we obtain,

after some simple algebraic manipulations

(eσ,ρ)Ωh
− (ez,∇ · ρ)Ωh

+ 〈z − ẑh,ρ · n〉∂Ωh
= 0,

−(Πeσ,∇η)Ωh
+ 〈(σ − σ̂h) · n, η〉∂Ωh

= 0,

(eq,v)Ωh
− (Peu,∇ · v)Ωh

+ 〈u − ûh,v · n〉∂Ωh
= 0,

−(Πeq,∇ω)Ωh
+ 〈(q − q̂h) · n, ω〉∂Ωh

= (ez, ω)Ωh
,

〈(σ − σ̂h) · n, µ〉∂Ωh
= 0,

〈(q − q̂h) · n, χ〉∂Ωh
= 0,

for all (ρ, η,v, ω, µ, χ) ∈ V h × Wh × V h × Wh × M0
h × Mh.

Finally, after integrating by parts and using the definition of the projections P∂ ,
(2.6), we get the form of the error equations we are going to use:

(eσ,ρ)Ωh
− (Pez,∇ · ρ)Ωh

+ 〈z − ẑh,ρ · n〉∂Ωh
= 0.(3.18a)

(∇ · Πeσ, η)Ωh
+ 〈(P∂σ − σ̂h) · n− Πeσ · n, η〉∂Ωh

= 0,(3.18b)

(eq,v)Ωh
− (Peu,∇ · v)Ωh

+ 〈u − ûh,v · n〉∂Ωh
= 0,(3.18c)

(∇ ·Πeq, ω)Ωh
+ 〈(P∂q − q̂h) · n− Πeq · n, ω〉∂Ωh

= (ez, ω)Ωh
,(3.18d)

〈(σ − σ̂h) · n, µ〉∂Ωh
= 0,(3.18e)

〈(q − q̂h) · n, χ〉∂Ωh
= 0,(3.18f)

for all (ρ, η,v, ω, µ, χ) ∈ V h × Wh × V h × Wh × M0
h × Mh.

3.3. Some properties of Πeσ. We begin our analysis by obtaining a few simple
properties of the error in σ. They follow directly from the error equation (3.18b)
and the special choice of the stabilization parameter τ , (2.7).

Lemma 3.2. For each simplex K ∈ Ωh, we have that,

(3.19) (σ̂h − σh) · n = τ (zh − ẑh) = P∂σ · n− Πσ · n on ∂K.

Moreover, Πeσ ∈ H(div, Ω) and

(3.20) ∇ ·Πeσ = 0.

Proof. Setting Z := Πeσ and w := (P∂σ − σ̂h) · n− Πeσ · n, we can see that the
error equation (3.18b), becomes

(∇ · Z, η)K + 〈w, η〉∂K = 0 ∀η ∈ P
k(K).

Note that Z ∈ P
k(K), w|eτ

K
∈ Pk(eτ

K), and that, on any face on ∂K \ eτ
K ,

w = P∂eσ · n− Πeσ · n = 0,

by definition of σ̂h, (2.5d), by definition of τ , (2.7), and by the orthogonality
property of Π, (3.16b). In Lemma 3.1 in [10], it was shown that this implies that
w|∂K = 0 and that ∇ · Z = 0, that is, that (3.19) and (3.20) hold.

To see that Πeσ ∈ H(div, Ω), we note that, on any interior face of normal n,

Πeσ · n = (Πσ − σh) · n = (P∂σ − σ̂h) · n,

by (3.19), and the result follows because the normal component of σ̂h is single
valued by the error equation (3.18e). This completes the proof. �
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3.4. A first estimate of Πeσ. In what follows, we are going to be using the
following seminorms for functions ξ ∈ L2(∂Ωh):

‖ ξ ‖L2(∂Ωh;ρ) := (
∑

eτ
K
⊂∂Ωh

ρ ‖ ξ ‖2
L2(eτ

K
))

1/2,

‖ ξ ‖L2(∂Ω;ρ) := (
∑

eτ
K
⊂∂Ω

ρ ‖ ξ ‖2
L2(eτ

K
))

1/2,

where ρ|eτ
K
≥ 0 for all K ∈ Ωh. We are now ready to obtain a first estimate of the

quantity Πeσ . It is stated in terms of the following quantity:

κ∂Ω := max
K∈Ωh:K∩∂Ω6=∅

(
h−1

K τ−1
K

)
.

Lemma 3.3. We have that

‖Πeσ‖L2(Ωh) ≤ ‖Πσ − σ ‖L2(Ωh) + C h−1 ‖Pez ‖L2(Ωh),

+ C κ∂Ω ‖ (P∂σ − Πσ) · n ‖L2(∂Ω;h).

Proof. Taking ρ := Πeσ in the error equation (3.18a), we obtain

‖Πeσ‖
2
L2(Ωh) = (Πσ − σ,Πeσ)Ωh

+ (Pez,∇ ·Πeσ)Ωh
− 〈z − ẑh,Πeσ · n〉∂Ωh

.

= (Πσ − σ,Πeσ)Ωh
− 〈z − ẑh,Πeσ · n〉∂Ω,

since, by Lemma 3.2, Πeσ ∈ H(div, Ω) and ∇ ·Πeσ = 0. Now, by the assumption
(2.8), each of the faces e lying on ∂Ω coincides with a face eτ

K for some K ∈ Ωh,
we can write that

‖Πeσ‖
2
L2(Ωh) = (Πσ − σ,Πeσ)Ωh

−
∑

eτ
K
⊂∂Ω

〈z − ẑh,Πeσ · n〉eτ
K

,

and, by the orthogonality property of P (3.17b), that

‖Πeσ‖
2
L2(Ωh) = (Πσ − σ,Πeσ)Ωh

−
∑

eτ
K
⊂∂Ω

〈Pz − ẑh,Πeσ · n〉eτ
K

.

We now use the identity for ẑh given in (3.19), to get

‖Πeσ‖
2
L2(Ωh) = (Πσ − σ,Πeσ)Ωh

−
∑

eτ
K
⊂∂Ω

〈Pez,Πeσ · n〉eτ
K

,

−
∑

eτ
K
⊂∂Ω

〈τ−1
K (P∂σ − Πσ) · n,Πeσ · n〉eτ

K
,

and then weighted Cauchy-Schwarz inequalities, to obtain

‖Πeσ‖
2
L2(Ωh) ≤ ‖Πσ − σ ‖L2(Ωh) ‖Πeσ ‖L2(Ωh)

+ ‖Pez ‖L2(∂Ω;1/h) ‖Πeσ · n ‖L2(∂Ω;h),

+ κ∂Ω ‖ (P∂σ − Πσ) · n ‖L2(∂Ω;h) ‖Πeσ · n ‖L2(∂Ω;h).

The estimate now follows after the application of a standard inverse inequality.
This completes the proof. �
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3.5. A first estimate of Πeq. Next, we obtain a preliminary estimate of Πeq.
To state it, we need to introduce the following quantity:

κΩ := max
K∈Ωh

(τ−1
K h−1

K ).

Lemma 3.4. We have

‖Πeq‖
2
L2(Ωh)+‖ ûh − uh ‖

2
L2(∂Ωh;τ)

≤ C
(
‖Πq − q‖2

L2(Ωh) + ‖ez‖L2(Ωh)‖Peu‖L2(Ωh)

+ κΩ ‖ (Πq − P∂q) · n‖
2
L2(∂Ωh;h)

)
.

Proof. Taking v := Πeq in the error equation (3.18c), we obtain that

‖Πeq‖
2
L2(Ωh) = (Πq − q,Πeq)Ωh

− 〈u − ûh,Πeq · n〉∂Ωh
+ (Peu,∇ · Πeq)Ωh

,

and taking ω := Peu in the error equation (3.18d), that

‖Πeq‖
2
L2(Ωh) = (Πq − q,Πeq)Ωh

+ (ez , Peu)Ωh
− 〈u − ûh,Πeq · n〉∂Ωh

− 〈(P∂q − q̂h) · n− Πeq · n, Peu〉∂Ωh
.

Let us work on the last two terms of the above right-hand side. We have

T := − 〈u − ûh,Πeq · n〉∂Ωh
− 〈(P∂q − q̂h) · n− Πeq · n, Peu〉∂Ωh

= 〈u − ûh − Peu, (P∂q − q̂h) · n− Πeq · n〉∂Ωh
− 〈P∂u − ûh, (q − q̂h) · n〉∂Ωh

= 〈u − ûh − Peu, (P∂q − q̂h) · n− Πeq · n〉∂Ωh

by the error equation (3.18f). Hence

T = 〈(P∂u − Pu) + (uh − ûh), (P∂q − Πq) · n+ (qh − q̂h) · n〉∂Ωh

= 〈P∂u − Pu, (P∂q − Πq) · n〉∂Ωh
+ 〈P∂u − Pu, (qh − q̂h) · n〉∂Ωh

+ 〈uh − ûh, (P∂q − Πq) · n〉∂Ωh
+ 〈uh − ûh, (qh − q̂h) · n〉∂Ωh

.

The first term of the above right-hand side is equal to zero by Proposition 3.1. The
second term is also equal to zero by the definition of the numerical flux q̂h, (2.5c),
the definition of τ , (2.7), and the orthogonality property (3.17b) of the projection
P. Hence, we get

T = 〈uh − ûh, (P∂q − Πq) · n〉∂Ωh
+ 〈uh − ûh, (qh − q̂h) · n〉∂Ωh

= 〈uh − ûh, (P∂q − Πq) · n〉∂Ωh
− ‖ ûh − uh ‖2

L2(∂Ωh;τ).

=
∑

K∈Ωh

〈uh − ûh, (P∂q − Πq) · n〉eτ
K
− ‖ ûh − uh ‖

2
L2(∂Ωh;τ),

by the orthogonality property of the projection Π, (3.16b). The result now easily
follows after straightforward applications of Cauchy-Schwarz and Young’s inequal-
ities. This completes the proof. �
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3.6. A first estimate of Pez. Estimating Pez turns out to be considerably more
involved than obtaining the previous estimates. We are going thus to proceed in
three steps.

Step 1: An identity for ‖Pez‖L2(Ωh). We begin by obtaining an expression

for the L2-norm of Pez .

Lemma 3.5.

‖Pez‖
2
L2(Ωh) = − (z − Pz, Pez)Ωh

− (Πσ − σ,Πeq)Ωh
+ (Πq − q,Πeσ)Ωh

+
∑

K∈Ωh

τ−1
K 〈(P∂q − Πq) · n, (Πσ − P∂σ) · n〉eτ

K

−
∑

K∈Ωh

〈(uh − ûh) · n, (Πσ − P∂σ) · n〉eτ
K

.

Proof. Taking ω := Pez in the error equation (3.18d), we obtain that

‖Pez‖
2
L2(Ωh) = − (z − Pz, Pez)Ωh

+ (∇ ·Πeq, Pez)Ωh

+ 〈(P∂q − q̂h) · n− Πeq · n, Pez〉∂Ωh
,

and taking ρ = Πeq in the error equation (3.18a), that

‖Pez‖
2
L2(Ωh) = − (z − Pz, Pez)Ωh

− (Πσ − σ,Πeq)Ωh
+ (Πeσ,Πeq)Ωh

+ 〈z − ẑh,Πeq · n〉∂Ωh
+ 〈(P∂q − q̂h) · n− Πeq · n, Pez〉∂Ωh

.

Finally, taking v = Πeσ in the error equation (3.18c), and using the fact that, by
Lemma 3.2, Πeσ is in H(div, Ω) and that ∇ · Πeσ = 0, we get

‖Pez‖
2
L2(Ωh) = − (z − Pz, Pez)Ωh

− (Πσ − σ,Πeq)Ωh
+ (Πq − q,Πeσ)Ωh

+ 〈z − ẑh,Πeq · n〉∂Ωh
+ 〈(P∂q − q̂h) · n− Πeq · n, Pez〉∂Ωh

= − (z − Pz, Pez)Ωh
− (Πσ − σ,Πeq)Ωh

+ (Πq − q,Πeσ)Ωh

+ 〈(P∂q − q̂h) · n− Πeq · n, Pez − (z − ẑh)〉∂Ωh

+ 〈P∂z − ẑh, (q − q̂h) · n〉∂Ωh

= − (z − Pz, Pez)Ωh
− (Πσ − σ,Πeq)Ωh

+ (Πq − q,Πeσ)Ωh

+ 〈(P∂q − q̂h) · n− Πeq · n, Pez − (z − ẑh〉∂Ωh
,

by the error equation (3.18f). Rewriting the last term of the above right-hand side,
we obtain

‖Pez‖
2
L2(Ωh) = − (z − Pz, Pez)Ωh

− (Πσ − σ,Πeq)Ωh
+ (Πq − q,Πeσ)Ωh

+ 〈(P∂q − Πq) · n, ẑh − zh〉∂Ωh
+ 〈(qh − q̂h) · n, ẑh − zh〉∂Ωh

+ 〈(P∂q − Πq) · n, Pz − P∂z〉∂Ωh
+ 〈(qh − q̂h) · n, Pz − P∂z〉∂Ωh

.
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The before-the-last term of the above right-hand side is equal to zero by Proposition
3.1 and the last by the definition of the numerical trace q̂h, (2.5c), the definition
of τ , (2.7), and the orthogonality property of the projection P, (3.17b). As a
consequence, we have that

‖Pez‖
2
L2(Ωh) = − (z − Pz, Pez)Ωh

− (Πσ − σ,Πeq)Ωh
+ (Πq − q,Πeσ)Ωh

+ 〈(P∂q − Πq) · n, ẑh − zh〉∂Ωh
+ 〈(qh − q̂h) · n, ẑh − zh〉∂Ωh

= − (z − Pz, Pez)Ωh
− (Πσ − σ,Πeq)Ωh

+ (Πq − q,Πeσ)Ωh

+
∑

K∈Ωh

〈(P∂q − Πq) · n, ẑh − zh〉eτ
K

−
∑

K∈Ωh

τK 〈ûh − uh, ẑh − zh〉eτ
K

,

by the orthogonality property projection Π (3.16) and by the definition of the
numerical trace q̂h, (2.5c). The result now follows by using the identity for ẑh

(3.19). This completes the proof. �

Step 2: An identity for the term (Πq − q,Πeσ)Ωh
. If we use a simple

Cauchy-Schwarz inequality to estimate the term (Πq−q,Πeσ)Ωh
, we would lose a

factor h1/2. To prevent this, we make use of the auxiliary approximation of q, q̃h,
we define next.

The function (q̃h, ũh, ̂̃uh) is the element of Vh×Wh×Mh satisfying the equations

(q̃h,v)Ωh
− (ũh,∇ · v)Ωh

+ 〈̂̃uh,v · n〉∂Ωh
= 0,(3.21a)

−(q̃h,∇ω)Ωh
+ 〈̂̃qh · n, ω〉∂Ωh

= (z, ω)Ωh
,(3.21b)

〈̂̃qh · n, χ〉∂Ωh
= 0,(3.21c)

for every (v, ω, µ) ∈ Vh × Wh × M0
h . Here

̂̃qh = q̃h + τ(ũh − ̂̃uh)n, and ̂̃uh = P∂g on ∂Ω.(3.21d)

We are going to the properties of this function gathered in the following result; see
[10] for the proof.

Proposition 3.6. We have that Πq − q̃h ∈ H(div, Ω) and ∇ · (Πq − q̃h) = 0.

Lemma 3.7. We have

(Πq − q,Πeσ)Ωh
= (Πq − q̃h,Πσ − σ)Ωh

+ 〈Pez, (Πq − q̃h) · n〉∂Ω

+
∑

eτ
K
⊂∂Ω

τ−1
K 〈(P∂σ − Πσ) · n, (Πq − q̃h) · n〉eτ

K
.

Proof. We have

T := (Πq − q,Πeσ)Ωh

= (Πq − q̃h,Πeσ)Ωh
+ (q̃h − q,Πeσ)Ωh

= (Πq − q̃h,Πeσ)Ωh
+ (ũh − u,∇ ·Πeσ)Ωh

− 〈̂̃uh − u,Πeσ · n〉∂Ωh
,



16 B. COCKBURN, B. DONG, AND J. GUZMÁN

by the first equation defining q̃h with v := Πeσ, (3.21a), and since q = −∇u by
the equation (2.2d). Now, since by Lemma 3.2, ∇·Πeσ = 0 and Πeσ ∈ H(div, Ω),
we obtain that

T = (Πq − q̃h,Πeσ)Ωh
− 〈̂̃uh − u,Πeσ · n〉∂Ω

= (Πq − q̃h,Πeσ)Ωh
,

by the definition of the numerical trace ̂̃uh on ∂Ωh. Therefore, by the error equation
(3.18a) with ρ := Πqh − q̃h, we get

T = (Πq − q̃h,Πσ − σ)Ωh
+ 〈z − ẑh, (Πq − q̃h) · n〉∂Ω,

since, by Proposition 3.6, ∇ · (Πq − q̃h) = 0 and Πq − q̃h ∈ H(div, Ω). Now, by
property (3.17b) of the projection P,

T = (Πq − q̃h,Πσ − σ)Ωh
+ 〈Pz − ẑh, (Πq − q̃h) · n〉∂Ω

= (Πq − q̃h,Πσ − σ)Ωh
+ 〈Pz − zh, (Πq − q̃h) · n〉∂Ω

+ 〈zh − ẑh, (Πq − q̃h) · n〉∂Ω

= (Πq − q̃h,Πσ − σ)Ωh
+ 〈Pez, (Πq − q̃h) · n〉∂Ω

+
∑

eτ
K
⊂∂Ω

τ−1
K 〈(P∂σ − Πσ) · n, (Πq − q̃h) · n〉eτ

K
,

by the identity (3.19). This completes the proof. �

Step 3: Estimating ‖Pez‖L2(Ωh).
The preliminary estimate of ‖Pez‖L2(Ωh) is contained in the following result.

Corollary 3.8. Let l(k) = log( 1
h ) if k = 0 and l(k)=1 otherwise. Then,

‖Pez‖
2
L2(Ωh) ≤ ‖ z − Pz ‖L2(Ωh) ‖Pez ‖L2(Ωh) + ‖Πσ − σ ‖L2(Ωh) ‖Πeq ‖L2(Ωh)

+ ‖Πq − q ‖L2(Ωh) ‖Πσ − σ ‖L2(Ωh)

+ C ‖Pez ‖L2(Ωh)×(
h−1/2 ‖q − Πq‖L∞(Ωh) + l(k)h1/2 ‖∇ · (q − Πq)‖L∞(Ωh)

)

+ C κ∂Ω ‖ (P∂σ − Πσ) · n ‖L2(∂Ω;h) ‖Πq − q ‖L2(Ωh)

+ κΩ ‖ (P∂q − Πq) · n ‖L2(∂Ωh;h) ‖ (Πσ − P∂σ) · n ‖L2(∂Ωh;h)

+ κ
1/2
Ω ‖ uh − ûh ‖L2(∂Ωh;τ) ‖ (Πσ − P∂σ) · n ‖L2(∂Ωh;h).

To prove this corollary, we need two key estimates contained in the following
result.

Proposition 3.9. We have

‖Πq − q̃h‖L2(Ωh) ≤ ‖q − Πq‖L2(Ωh),

‖Πq − q̃h‖L∞(Ωh) ≤ C
(
‖q − Πq‖L∞(Ωh) + l(k)h ‖∇ · (q − Πq)‖L∞(Ωh)

)
.

The first estimates was proven in [10]. The second is proven in the Appendix II;
see Theorem 6.3. We are now ready to prove Corollary 3.8.



A DG METHOD FOR BIHARMONIC PROBLEMS 17

Proof. Applying weighted Cauchy-Schwarz inequalities to the identity of Lemma
3.5, we obtain

‖Pez‖
2
L2(Ωh) ≤ ‖ z − Pz ‖L2(Ωh) ‖Pez ‖L2(Ωh) + ‖Πσ − σ ‖L2(Ωh) ‖Πeq ‖L2(Ωh)

+ | (Πq − q,Πeσ)Ωh
|

+ κΩ ‖ (P∂q − Πq) · n ‖L2(∂Ωh;h) ‖ (Πσ − P∂σ) · n ‖L2(∂Ωh;h)

+ κ
1/2
Ω ‖ uh − ûh ‖L2(∂Ωh;τ) ‖ (Πσ − P∂σ) · n ‖L2(∂Ωh;h).

We now use the expression of the third term of the above right-hand given by the
identity of Lemma 3.7 to obtain

| (Πq − q,Πeσ)Ωh
| ≤ ‖Πq − q̃h ‖L2(Ωh) ‖Πσ − σ ‖L2(Ωh)

+ C ‖Pez ‖L2(∂Ω) ‖ (Πq − q̃h) · n ‖L∞(∂Ω)

+ κ∂Ω ‖ (P∂σ − Πσ) · n ‖L2(∂Ω;h) ‖ (Πq − q̃h) · n ‖L2(∂Ω;h)

≤ ‖Πq − q̃h ‖L2(Ωh) ‖Πσ − σ ‖L2(Ωh)

+ C ‖Pez ‖L2(∂Ω) ‖Πq − q̃h ‖L∞(Ωh)

+ C κ∂Ω ‖ (P∂σ − Πσ) · n ‖L2(∂Ω;h) ‖Πq − q̃h ‖L2(Ωh),

by a standard inverse inequality. Finally, using the estimates of Proposition 3.9,
we obtain that

| (Πq − q,Πeσ)Ωh
| ≤ ‖Πq − q ‖L2(Ωh) ‖Πσ − σ ‖L2(Ωh)

+ C ‖Pez ‖L2(∂Ω)×(
‖q − Πq‖L∞(Ωh) + l(k)h ‖∇ · (q − Πq)‖L∞(Ωh)

)

+ C κ∂Ω ‖ (P∂σ − Πσ) · n ‖L2(∂Ω;h) ‖Πq − q ‖L2(Ωh),

and the result follows by using an inverse inequality. This completes the proof. �

3.7. A first estimate of Peu. To obtain the estimate of Peu, we begin by obtaining
the following result.

Lemma 3.10. We have

‖Peu‖
2
L2(Ωh) = (eq,Πζ − ζ)Ωh

+
∑

K∈Ωh

〈ûh − uh, (P∂ζ − Πζ) · n〉eτ
K

− (q − Πq,∇(Pξ − ξ))Ωh
− (ez, Pξ − ξ)Ωh

+ (∇(z − Pz),ψ − Πψ)Ωh

−
∑

K∈Ωh

τ−1
K 〈(P∂σ − Πσ) · n, (P∂ψ − Πψ) · n〉eτ

K

− (σ − Πσ,Πψ −ψ)Ωh
+ (σ − Πσ,∇(ϕ − Pϕ))Ωh

− (Πeσ,Πψ −ψ)Ωh
.

Proof. By the adjoint equation (2.13b) with η := Peu, we have that

‖Peu‖
2
L2(Ωh) = (Peu,∇ · ζ)Ωh

= (Peu,∇ · Πζ)Ωh
+ (Peu,∇ · (ζ − Πζ))Ωh

= (Peu,∇ · Πζ)Ωh
+ 〈Peu, (ζ − Πζ) · n〉∂Ωh

,
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after integrating by parts and using the orthogonality property (3.16a) of the pro-
jection Π. Now, taking v := Πζ in the error equation (3.18c), we obtain that

‖Peu‖
2
L2(Ωh) = (eq,Πζ)Ωh

+ 〈u − ûh,Πζ · n〉∂Ωh
+ 〈Peu, (ζ − Πζ) · n〉∂Ωh

= (eq,Πζ − ζ)Ωh
− (eq,∇ξ)Ωh

+ 〈u − ûh, ζ · n〉∂Ωh

+ 〈Peu − u + ûh, (ζ − Πζ) · n〉∂Ωh
,

by the adjoint equation (2.13a). Since P∂u − ûh and ζ are single-valued, and since
P∂u − ûh = 0 on ∂Ω, we have

‖Peu‖
2
L2(Ωh) = (eq,Πζ − ζ)Ωh

− (eq,∇ξ)Ωh
+ 〈Peu − u + ûh, (ζ − Πζ) · n〉∂Ωh

= (eq,Πζ − ζ)Ωh
− (eq,∇ξ)Ωh

+ 〈Pu − u + ûh − uh, (ζ − Πζ) · n〉∂Ωh

= (eq,Πζ − ζ)Ωh
− (eq,∇ξ)Ωh

+ 〈ûh − uh, (ζ − Πζ) · n〉∂Ωh
,

by Proposition 3.1. Hence

‖Peu‖
2
L2(Ωh) = (eq,Πζ − ζ)Ωh

+
∑

K∈Ωh

〈ûh − uh, (P∂ζ − Πζ) · n〉eτ
K
− (eq,∇ξ)Ωh

,

by the orthogonality property of the projection Π (3.16b).
Let us now work on the last term of the above right-hand side. We have

T := (eq,∇ξ)Ωh

= (eq,∇(Pξ − ξ))Ωh
− (eq,∇Pξ)Ωh

= (eq,∇(Pξ − ξ))Ωh
− (Πeq,∇Pξ)Ωh

,

by the orthogonality property (3.16a) of Π. Integrating by parts, we get

T = (eq,∇(Pξ − ξ))Ωh
+ (∇ ·Πeq, Pξ)Ωh

− 〈Πeq · n, Pξ〉∂Ωh
,

and by the error equation (3.18d) with ω := Pξ,

T = (eq,∇(Pξ − ξ))Ωh
+ (ez, Pξ)Ωh

− 〈(P∂q − q̂h) · n, Pξ〉∂Ωh

=(q − Πq,∇(Pξ − ξ))Ωh
+ (Πeq,∇(Pξ − ξ))Ωh

+ (ez, Pξ)Ωh
− 〈(P∂q − q̂h) · n, Pξ〉∂Ωh

.

Integrating by parts and using the orthogonality property of the projection P,
(3.17a) , we obtain

T = (q − Πq,∇(Pξ − ξ))Ωh
+ 〈Πeq · n, Pξ − ξ〉∂Ωh

+ (ez, Pξ)Ωh
− 〈(P∂q − q̂h) · n, Pξ〉∂Ωh

= (q − Πq,∇(Pξ − ξ))Ωh
+ (ez , Pξ)Ωh

+ 〈(Πq − P∂q) · n, Pξ − ξ〉∂Ωh
− 〈(qh − q̂h) · n, Pξ − ξ〉∂Ωh

.

The third term of the above right-hand side is equal to zero by Proposition 3.1 and
the fourth by the definition of the numerical trace q̂h, (2.5c), the definition of τ ,
(2.7), and the orthogonality property of the projection P, (3.17b). We thus obtain
that

T = (q − Πq,∇(Pξ − ξ))Ωh
+ (ez , Pξ)Ωh

.
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Let us now work on the last term of the above identity. We have

U := (ez , Pξ)Ωh

= (ez , Pξ − ξ)Ωh
+ (ez, ξ)Ωh

= (ez , Pξ − ξ)Ωh
+ (ez,∇ · (ψ − Πψ))Ωh

+ (ez ,∇ · Πψ)Ωh
,

by the adjoint equation (2.13d). Integrating by parts, we get

U = (ez , Pξ − ξ)Ωh
− (∇ez ,ψ − Πψ)Ωh

+ 〈ez, (ψ − Πψ) · n〉∂Ωh
+ (ez,∇ ·Πψ)Ωh

= (ez , Pξ − ξ)Ωh
− (∇(z − Pz),ψ − Πψ)Ωh

+ 〈ez, (ψ − Πψ) · n〉∂Ωh
+ (ez,∇ ·Πψ)Ωh

,

by the orthogonality property (3.16a) of Π. Now, by the error equation (3.18a)
with ρ := Πψ, we have

U = (ez , Pξ − ξ)Ωh
− (∇(z − Pz),ψ − Πψ)Ωh

+ 〈ez, (ψ − Πψ) · n〉∂Ωh
+ (eσ,Πψ)Ωh

+ 〈z − ẑh,Πψ · n〉∂Ωh

= (ez , Pξ − ξ)Ωh
− (∇(z − Pz),ψ − Πψ)Ωh

+ 〈zh − ẑh, (ψ − Πψ) · n〉∂Ωh
+ (eσ,Πψ)Ωh

= (ez , Pξ − ξ)Ωh
− (∇(z − Pz),ψ − Πψ)Ωh

+
∑

K∈Ωh

τ−1
K 〈(P∂σ − Πσ) · n, (P∂ψ − Πψ) · n〉eτ

K
+ (eσ,Πψ)Ωh

,

by the identity (3.19). Let us now work on the last term of the above right-hand
side. We have

V := (eσ ,Πψ)Ωh

= (σ − Πσ,Πψ −ψ)Ωh
− (σ − Πσ,∇ϕ)Ωh

+ (Πeσ,Πψ −ψ)Ωh
+ (Πeσ,∇ϕ)Ωh

,

by the adjoint equation (2.13c). By the orthogonality property (3.16a) of Π,

V = (σ − Πσ,Πψ −ψ)Ωh
− (σ − Πσ,∇(ϕ − Pϕ))Ωh

+ (Πeσ,Πψ −ψ)Ωh
+ (Πeσ,∇ϕ)Ωh

= (σ − Πσ,Πψ −ψ)Ωh
− (σ − Πσ,∇(ϕ − Pϕ))Ωh

+ (Πeσ,Πψ −ψ)Ωh

since

(Πeσ,∇ϕ)Ωh
= −(∇ · Πeσ , ϕ)Ωh

+ 〈Πeσ · n, ϕ〉∂Ωh
= 0,

by Lemma 3.2 and the boundary condition for ϕ of the adjoint problem (2.13e).
This completes the proof. �

Now, a straightforward application of weighted Cauchy-Schwarz inequalities to
the expression for ‖Peu‖2

L2(Ωh) given by Lemma 3.10 gives us the estimate we

sought.
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Corollary 3.11.

‖Peu‖
2
L2(Ωh) ≤ ‖ eq ‖L2(Ωh) ‖Πζ − ζ ‖L2(Ωh)

+ κ
1/2
Ω ‖ ûh − uh ‖L2(∂Ωh;τ) ‖ (P∂ζ − Πζ) · n ‖L2(∂Ωh;h)

+ ‖ q − Πq‖L2(Ωh) ‖∇(Pξ − ξ) ‖L2(Ωh)

+ ‖ ez ‖L2(Ωh) ‖Pξ − ξ ‖L2(Ωh)

+ ‖∇(z − Pz) ‖L2(Ωh) ‖ψ − Πψ ‖L2(Ωh)

+ κΩ ‖ (P∂σ − Πσ) · n ‖L2(∂Ωh;h) ‖ (P∂ψ − Πψ) · n ‖L2(∂Ωh;h)

+ ‖σ − Πσ ‖L2(Ωh) ‖ψ − Πψ ‖L2(Ωh)

+ ‖σ − Πσ ‖L2(Ωh) ‖∇(ϕ − Pϕ) ‖L2(Ωh)

+ ‖Πeσ ‖L2(Ωh) ‖Πψ −ψ ‖L2(Ωh).

3.8. Final estimates. In this section we combine the intermediate error estimates
to obtain the final estimates for all the variables. We are going to use the following
approximation result.

Proposition 3.12. For any (ρ, η) ∈Hk+1(Ωh) × Hk+1(Ωh) we have

‖Πρ · n− P∂ρ · n ‖L2(∂Ωh;h) ≤ C hk+1 | ∇ · ρ |Hk+1(Ωh),(3.22a)

‖Πρ− ρ ‖L2(Ωh) ≤ C hk+1 | ∇ · ρ |Hk+1(Ωh),(3.22b)

‖Πρ− ρ ‖L∞(Ωh) ≤ C hk+1 | ∇ · ρ |W k+1,∞(Ωh),(3.22c)

‖∇ · (q − Πq) ‖L∞(Ωh) ≤ C hk+1 | ∇ · ρ |W k+1,∞(Ωh),(3.22d)

‖Pη − η ‖L2(Ωh) ≤ C hk+1 | ∇η |Hk+1(Ωh)(3.22e)

where C depends only on k and the shape-regularity parameters of the simplex K.

These estimates can be proven as in [10].
So, from the estimates for ‖Πeσ ‖L2(Ωh), ‖Πeq ‖L2(Ωh) and ‖Pez ‖L2(Ωh), in

Lemmas 3.3, 3.4 and 3.8, respectively, we get

‖Πeσ‖L2(Ωh) ≤ C C hk+1 + C h−1 ‖Pez ‖L2(Ωh),

‖Πeq‖L2(Ωh) ≤ C (1 + κ
1/2
Ω )C hk+1 + ‖Pez‖

1/2
L2(Ωh) ‖Peu‖

1/2
L2(Ωh)

‖ ûh − uh ‖L2(∂Ωh;τ) ≤ C (1 + κ
1/2
Ω )C hk+1 + ‖Pez‖

1/2
L2(Ωh) ‖Peu‖

1/2
L2(Ωh)

‖Pez‖L2(Ωh) ≤ C (l(k) + h1/2κ
1/2
Ω )C hk+1/2 + C ‖Πeq ‖L2(Ωh)

+ Cκ
1/2
Ω ‖ uh − ûh ‖L2(∂Ωh;τ).
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The remaining estimate requires a more careful handling. Indeed, from the estimate
of ‖Peu ‖L2(Ωh) in Lemma 3.11, we get

‖Peu‖
2
L2(Ωh) ≤ C h ‖ eq ‖L2(Ωh) | ζ |H1(Ωh)

+ C κ
1/2
Ω h ‖ ûh − uh ‖L2(∂Ωh;τ) | ζ |H1(Ωh)

+ C hmin{k,1} ‖ q − Πq‖L2(Ωh) | ξ |H2(Ωh)

+ C hmin{k,1}+1 ‖ ez ‖L2(Ωh) | ξ |H2(Ωh)

+ C hmin{k,1}+1 ‖∇(z − Pz) ‖L2(Ωh) |ψ |H3(Ωh)

+ C hmin{k,2}+1 κΩ ‖ (P∂σ − Πσ) · n ‖L2(∂Ωh;h) |ψ |H3(∂Ωh;h)

+ C hmin{k,1}+1‖σ − Πσ ‖L2(Ωh) |ψ |H3(Ωh)

+ C hmin{k,3}‖σ − Πσ ‖L2(Ωh) |ϕ |H4(Ωh)

+ C hmin{k,2}+1‖Πeσ ‖L2(Ωh) |ψ |H3(Ωh).

and by the elliptic regularity estimate (2.12), we obtain

‖Peu‖L2(Ωh) ≤ C C (1 + κ∂Ω h)hmin{k,1}+k+1

+ C h ‖Πeq ‖L2(Ωh) + C κ
1/2
Ω h ‖ ûh − uh ‖L2(∂Ωh;τ)

+ C hmin{k,1}+1‖Pez ‖L2(Ωh) + C hmin{k,2}+1‖Πeσ ‖L2(Ωh).

We can immediately see that the optimal choice for κΩ is to be of order one. So,
if we take τ |K to be of order h−1

K the above estimates become

‖Πeσ‖L2(Ωh) ≤ C C hk+1 + C h−1 ‖Pez ‖L2(Ωh),

(3.23)

‖Πeq‖L2(Ωh) ≤ C C hk+1 + ‖Pez‖
1/2
L2(Ωh) ‖Peu‖

1/2
L2(Ωh)

(3.24)

‖ ûh − uh ‖L2(∂Ωh;τ) ≤ C C hk+1 + ‖Pez‖
1/2
L2(Ωh) ‖Peu‖

1/2
L2(Ωh)

(3.25)

‖Pez‖L2(Ωh) ≤ C C l(k)hk+1/2 + C ‖Πeq ‖L2(Ωh) + C‖ uh − ûh ‖L2(∂Ωh;τ),

(3.26)

‖Peu‖L2(Ωh) ≤ C C hmin{k,1}+k+1 + C h ‖Πeq ‖L2(Ωh) + C h ‖ ûh − uh ‖L2(∂Ωh;τ)

+ C hmin{k,1}+1 ‖Pez ‖L2(Ωh) + C hmin{k,2}+1‖Πeσ ‖L2(Ωh).

If we assume k ≥ 1 and apply some simple algebraic manipulations, and if we
assume that h is small enough, we get

‖Πeσ‖L2(Ωh) ≤ C C hk−1/2

‖Πeq‖L2(Ωh) ≤ C C hk+1

‖ ûh − uh ‖L2(∂Ωh;τ) ≤ C C hk+1

‖Pez‖L2(Ωh) ≤ C C hk+1/2

‖Peu‖L2(Ωh) ≤ C C hk+1+min{k−1/2,1}.
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The proof is now complete if we apply the triangle inequality. We would like to point
out that since hmin{k,2}+1‖Πeσ ‖L2(Ωh) appears in the estimate of ‖Peu‖L2(Ωh) it
was important that we assumed that k ≥ 1. In fact, because of this term we were
not able to get an estimate for k = 0. In the Extension section we prove a different
estimate for ‖Peu‖L2(Ωh) which will allow us to prove error estimates in the case
k = 0.

3.9. Proof of Theorems 2.2 and 2.3. If we now use the approximation prop-
erties of P and Π of Proposition 3.12, the estimates of Theorem 2.2 follow im-
mediately. Note that the first estimate of Theorem 2.3 follows from the fact that
‖Pk−1eu ‖L2(Ωh) ≤ ‖Peu‖L2(Ωh). It remains to prove the second estimate of Theo-
rem 2.3

The proof is similar to that of Theorem 2.8 in [10]. For each simplex K, we have
that on the face eτ

K , by definition of the projection P, (3.17),

‖P∂u − ûh ‖L2(eτ
K

) = ‖Pu − ûh ‖L2(eτ
K

)

≤‖Pu − uh ‖L2(eτ
K

) + ‖ uh − ûh ‖L2(eτ
K

).

By using a classical inverse inequality, we can conclude that

h
1/2
K ‖P∂u − ûh ‖L2(eτ

K
) ≤C

(
‖Pu − uh ‖L2(K) + h

1/2
K ‖ uh − ûh ‖L2(eτ

K
)

)
.

Now we consider the error in the faces e of K which are different from the face
eτ

K . By the error equation (3.18c), we have that, for all v ∈ P
k(K),

〈ûh − P∂u,v · n〉∂K\eτ
K

= (q − qh,v)K − (Pu − uh,∇ · v)K

− 〈ûh − P∂u,v · n〉eτ
K

.

Taking v := Z given by Lemma 3.2 in [10] with z = ûh − P∂u, we obtain that

‖ ûh − P∂u ‖L2(∂K\eτ
K

) ≤ C (h
1/2
K ‖ q − qh ‖L2(K) + h

−1/2
K ‖Pu − uh ‖L2(K)

+ ‖ ûh − P∂u ‖L2(eτ
K

) ) ,

and using the estimate for the error in eτ
K ,

h
1/2
K ‖ ûh − P∂u ‖L2(∂K\eτ

K
) ≤ C (‖Pu − uh ‖L2(K) + hK ‖ q − qh ‖L2(K)

+ h
1/2
K ‖ uh − ûh ‖L2(eτ

K
) ) .

As a consequence

‖P∂u − ûh ‖L2(Eh;h) ≤ C (‖Pu − uh ‖L2(Ωh) + h‖ q − qh ‖L2(Ωh)

+ h κΩ ‖(ûh − uh)‖L2(Eh;τ) ) .

The result now follows from Theorems 2.2. This completes the proof of Theorem
2.3.

3.10. Proof of Theorem 2.4. The proof of Theorem 2.4 is almost identical to
that of Theorem 2.9 in [10]. We define u|K := 1

|K| (u, 1)K for every K ∈ Ωh, and

let ũ := u − u. Note that, by the definition of u⋆
h, (2.15a), we have

‖ u − u⋆
h ‖L2(K) ≤‖ u − uh ‖L2(K) + ‖ ũ − ũh ‖L2(K),

We estimate each of the two terms of the right-hand side separately.
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We begin by estimating the error u − uh. Since u − uh = P0(u − uh), we get

‖ u − uh ‖L2(K) ≤ ‖Pk−1(u − uh) ‖L2(K),

for k ≥ 1.
Hence,

‖ u − uh ‖L2(Ωh) ≤ ‖Pk−1(u − uh) ‖L2(Ωh) ≤ C C hk+1+min{k−1/2,1},

which follows from Theorem 2.3.
Now we estimate the error ũ − ũh. Note that by Poincaré’s inequality, we have

‖ ũ − ũh ‖L2(K) ≤ C hK ‖∇(ũ − ũh) ‖L2(K),

so it is enough to estimate the error in the gradient. By the definition of ũh, (2.15c),

(∇(ũ − ũh),∇w)K = (z − zh, w)K − 〈w, (q − q̂h) · n〉∂K ∀w ∈ P
k+1
0 (K).

Then we have

(∇(Pk+1ũ −ũh),∇w)K =
3∑

i=1

Ti,

where

T1 =(∇(Pk+1ũ −ũ),∇w)K ,

T2 =(z − zh, w)K ,

T3 = − 〈w, (q − q̂h) · n〉∂K .

By using Cauchy-Schwarz inequality, we get that

T1 ≤‖∇(Pk+1ũ − ũ) ‖L2(K) ‖∇w ‖L2(K),

and

T2 ≤‖ z − zh ‖L2(K) ‖w ‖L2(K)

≤ChK‖ z − zh ‖L2(K) ‖∇w ‖L2(K),

by Poincaré’s inequality. Similar to the proof of Theorem 2.9 [10], we get that

T3 ≤ C ‖∇w ‖L2(K)

(
‖ q − qh ‖L2(K) + hK ‖ z − Pkz ‖L2(K)

+ h
1/2
K τ

1/2
K ‖ τK(uh − ûh) ‖L2(eτ

K
)

)
.

Hence, we have

(∇(Pk+1ũ − ũh),∇w)K =

3∑

i=1

Ti ≤ C ‖∇w ‖L2(K)ΘK ,

where

ΘK =‖∇(Pk+1ũ − ũ) ‖L2(K) + hK‖ z − zh ‖L2(K) + ‖ q − qh ‖L2(K)

+ hK ‖ z − Pkz ‖L2(K) + h
1/2
K τ

1/2
K ‖ τK(uh − ûh) ‖L2(eτ

K
).

Taking w = Pk+1ũ − ũh, we get that

‖∇(Pk+1ũ − ũh) ‖L2(K) ≤ C ΘK .
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This implies, after using Poincaré’s inequality, that

‖Pk+1ũ − ũh ‖L2(Ωh) ≤Ch(
∑

K∈Ωh

Θ2
K)1/2 ≤ C C hk+2.

by Theorem 2.2 and the well-known approximation properties of Pk+1 and Pk. This
completes the proof of Theorem 2.4

4. Extensions

In this section we will show how to improve the error estimates in Theorems
2.3 and 2.4 in the case of linear approximations, k = 1, and dimension d = 2.
Moreover, we will be able to prove error estimates for u, q and z in the case k = 0
and d = 2, 3.

We start by stating the improved result for k = 1 and d = 2.

Theorem 4.1. We assume the same hypotheses of Theorem 2.2 and we further
assume that k = 1 and d = 2. We have,

‖Pk−1(u − uh)‖L2(Ωh) ≤ C C log(
1

h
)h3,

‖P∂u − ûh‖L2(Eh;h) ≤ C C log(
1

h
)h3,

‖u − u⋆
h‖L2(Ωh) ≤ C C log(

1

h
)h3,

where C is independent of h, and the exact solution.

Next we state a result for k = 0 and d = 2, 3.

Theorem 4.2. We assume the same hypotheses of Theorem 2.2 and further assume
that k = 0 and d = 2, 3. Then,

‖u − uh‖L2(Ωh) ≤ C C log(
1

h
)2 h,

‖q − qh‖L2(Ωh) ≤ C C log(
1

h
)

3
2 h

3
4 ,

‖z − zh‖L2(Ωh) ≤ C C log(
1

h
)h

1
2 ,

and

‖ ûh − uh ‖L2(∂Ωh;τ)≤ C C log(
1

h
)

3
2 h

3
4 .

Notice that this results gives quasi-optimal error estimates for u. Moreover,
we get sub-optimal error estimates for q and z. Note that we do not state error
estimates for σ. This is because σh does not converge to σ for k = 0 as our
numerical experiments demonstrate.

4.1. A different estimate for Peu. In order to prove these results we will need
to improve the estimates for Peu. We start by writing an identity that is different
than the one giving in Lemma 3.10. To do that we need to define an auxiliary
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variable, ψ̃h ∈ V h. This function along with φ̃h ∈ Wh and
̂̃
φh ∈ M0

h , solve

(ψ̃h,v)Ωh
− (φ̃h,∇ · v)Ωh

+ 〈̂̃φh,v · n〉∂Ωh
= 0,(4.27a)

−(ψ̃h,∇ω)Ωh
+ 〈 ̂̃ψh · n, ω〉∂Ωh

= (ξ, ω)Ωh
,(4.27b)

〈 ̂̃ψh · n, χ〉∂Ωh
= 0,(4.27c)

for every (v, ω, µ) ∈ V h × Wh × M0
h . Here

̂̃
ψh = ψ̃ + τ(φ̃h − ̂̃

φh)n, and
̂̃
φh = 0 on∂Ω.(4.27d)

In other words, (ψ̃h, φ̃h, ̂̃φh) is the SFH approximation to the second-order problem

ψ + ∇φ =0 Ω,

∇ · ψ =ξ Ω,

φ =0 ∂Ω.

We are now ready to state the result.

Lemma 4.3. We have

‖Peu‖
2
L2(Ωh) = (eq,Πζ − ζ)Ωh

+
∑

K∈Ωh

〈ûh − uh, (P∂ζ − Πζ) · n〉eτ
K

− (q − Πq,∇(Pξ − ξ))Ωh
− (ez, Pξ − ξ)Ωh

+ (∇(z − Pz),ψ − Πψ)Ωh

−
∑

K∈Ωh

τ−1
K 〈(P∂σ − Πσ) · n, (P∂ψ − Πψ) · n〉eτ

K

+ (σ − Πσ, ψ̃h − P
k−1

ψ)Ωh
+ 〈Pez, (Πψ − ψ̃h) · n〉∂Ω

+ 〈
1

τ
(P∂σ − Πσ) · n, (Πψ − ψ̃h) · n〉∂Ω.

Proof. The proof is exactly the same as the proof of Lemma 3.10 the only difference
being how we treat V . To this end, we apply some simple algebraic manipulations
to obtain

V = (eσ,Πψ)Ωh
= T1 + T2 + T3 + T4,

where

T1 :=(Πeσ, ψ̃h)Ωh
,

T2 :=(σ − Πσ,ψ)Ωh
,

T3 :=(σ − Πσ, ψ̃h −ψ)Ωh
,

T4 :=(eσ,Πψ − ψ̃h)Ωh
.

We now simplify T1, · · · , T4. By using (4.27a), (3.20), and the fact that ̂̃φh = 0
on ∂Ω we get T1 = 0. If we apply (3.16a) we get

T2 = (σ − Πσ,ψ − P
k−1ψ)Ωh

.

We leave T3 the same and we now simplify T4. By applying (7.40) we get

T4 = 〈z − ẑh, (Πψ − ψ̃h) · n〉∂Ω,
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where we applied Proposition 3.6 with q and q̃h replaced with ψ and ψ̃h, respec-
tively. If we now apply (2.7) and (2.8b) we get

T4 =〈Pz − ẑh, (Πψ − ψ̃h) · n〉∂Ω

=〈Pez, (Πψ − ψ̃h) · n〉∂Ω + 〈zh − ẑh, (Πψ − ψ̃h) · n〉∂Ω.

Finally, if we apply (3.19) we get

T4 =〈Pez , (Πψ − ψ̃h) · n〉∂Ω + 〈
1

τ
(P∂σ − Πσ) · n, (Πψ − ψ̃h) · n〉∂Ω.

Hence,

V =(σ − Πσ,ψ − P
k−1

ψ)Ωh
+ (σ − Πσ, ψ̃h −ψ)Ωh

+ 〈Pez, (Πψ − ψ̃h) · n〉∂Ω + 〈
1

τ
(P∂σ − Πσ) · n, (Πψ − ψ̃h) · n〉∂Ω

=(σ − Πσ, ψ̃h − P
k−1ψ)Ωh

+ 〈Pez, (Πψ − ψ̃h) · n〉∂Ω

+ 〈
1

τ
(P∂σ − Πσ) · n, (Πψ − ψ̃h) · n〉∂Ω.

The proof of the lemma is complete once we use this result for V in the proof of
Lemma 3.10. �

Now we can state a result analogues to Corollary 3.11.

Corollary 4.4. Let l(k) = 1 if k ≥ 1 and l(k) = log( 1
h ) if k = 0. Then,

‖Peu‖
2
L2(Ωh) ≤ ‖ eq ‖L2(Ωh) ‖Πζ − ζ ‖L2(Ωh)

+ κ
1/2
Ω ‖ ûh − uh ‖L2(∂Ωh;τ) ‖ (P∂ζ − Πζ) · n ‖L2(∂Ωh;h)

+ ‖ q − Πq‖L2(Ωh) ‖∇(Pξ − ξ) ‖L2(Ωh)

+ ‖ ez ‖L2(Ωh) ‖Pξ − ξ ‖L2(Ωh)

+ ‖∇(z − Pz) ‖L2(Ωh) ‖ψ − Πψ ‖L2(Ωh)

+ κΩ ‖ (P∂σ − Πσ) · n ‖L2(∂Ωh;h) ‖ (P∂ψ − Πψ) · n ‖L2(∂Ωh;h)

+ ‖σ − Πσ ‖L2(Ωh) ‖ψ̃h − P
k−1ψ‖L2(Ωh)

+ C h−1/2‖Pez‖L2(Ωh)‖Πψ − ψ̃h‖L2(∂Ω)

+ κ∂Ω ‖ (P∂σ − Πσ) · n ‖L2(∂Ω;h) ‖ (P∂ψ − Πψ) · n ‖L2(∂Ω;h).

If we use approximation properties of P and Π we are able to prove the following
corollary.

Corollary 4.5. If τK is of order 1
hK

for all K ∈ Ωh, then

‖Peu‖L2(Ωh) ≤ C C hmin{k,1}+k+1 + C h ‖Πeq ‖L2(Ωh) + C h ‖ ûh − uh ‖L2(∂Ωh;τ)

+ C hmin{k,1}+1 ‖Pez ‖L2(Ωh)

+ C h−1/4‖Pez‖
1/2
L2(Ωh)×

(‖ψ − Πψ‖L∞(Ω) + l(k)h‖∇ · (ψ − Πψ)‖L∞(Ωh) )
1/2

Proof. This result follows from Corollary 4.4 once we use

‖ψ̃h − P
k−1

ψ‖L2(Ωh) ≤ C hmin{k,3}|ψ|Hk(Ω),
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and

‖Πψ − ψ̃h‖L2(∂Ω) ≤ C (‖ψ − Πψ‖L∞(Ω) + l(k)h‖∇ · (ψ − Πψ)‖L∞(Ωh)).

The first inequality follows from estimates contained in [10]. The second inequal-
ity follows from the fact

‖Πψ − ψ̃h‖L2(∂Ω) ≤ C ‖Πψ − ψ̃h‖L∞(Ω),

and Theorem 6.3 contained in the appendix. �

4.2. Proof of Theorem 4.2. We will estimate the last term of the right-hand side
of the inequality in Corollary 4.5.

After using approximation properties of Π we get

‖ψ − Πψ‖L∞(Ω) + log(
1

h
)h‖∇ · (ψ − Πψ)‖L∞(Ωh) ≤ C log(

1

h
)h‖ψ‖W 1,∞(Ω).

We next apply the following Sobolev inequality which holds in dimension d = 2, 3;
see [8].

‖ψ‖W 1,∞(Ω) ≤ C ‖ψ‖H3(Ω) ≤ C ‖Peu‖L2(Ωh).

In the last inequality we used elliptic regularity (2.12).
Hence,

‖Peu‖L2(Ωh) ≤ C C h + C h ‖Πeq ‖L2(Ωh) + C h ‖ ûh − uh ‖L2(∂Ωh;τ)

+ C h ‖Pez ‖L2(Ωh)

+ C log(
1

h
)h1/2‖Pez‖L2(Ωh).

If we combine this inequality with (3.23), (3.24), (3.25) and (3.26) and apply
algebraic manipulations we arrive at our result.

4.3. Proof of Theorem 4.1. We start by using Corollary 4.5 to estimate ‖Peu‖L2(Ωh).
If we use approximation properties of Π

‖ψ − Πψ‖L∞(Ω) + h‖∇ · (ψ − Πψ)‖L∞(Ωh) ≤C h2−2/p‖ψ‖W 2,p(Ω)

for p > 2. Here we used that d = 2.
Finally, since we are assuming d = 2 the following Sobolev inequality [8] holds

‖ψ‖W 2,p(Ω) ≤ C p ‖ψ‖H3(Ω) ≤ Cp‖Peu‖L2(Ωh).

for any p < ∞.
Therefore, we arrive at

‖ψ − Πψ‖L∞(Ω) + h‖∇ · (ψ − Πψ)‖L∞(Ωh) ≤ C p h2−2/p‖Peu‖L2(Ωh).

Hence, applying Corollary 4.5 we get

‖Peu‖L2(Ωh) ≤ C C h3 + C h ‖Πeq ‖L2(Ωh) + C h ‖ ûh − uh ‖L2(∂Ωh;τ)

+ C h2 ‖Pez ‖L2(Ωh)

+ C p h3/2−2/p‖Pez‖L2(Ωh).

If we use the above inequality and Theorem 2.2, we get

‖Peu‖L2(Ωh) ≤ C C p h3− 2
p .

If we let p = 2 log( 1
h), then h = e

−p

2 . So, we see that

h
−2
p = (e

−p

2 )
−2
p = e.
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Hence,

‖Peu‖L2(Ωh) ≤ C C log(
1

h
)h3.

Theorem 4.1 now follows if we use the above inequality in the proof of Theorems
2.3 and 2.4.

5. Numerical results

In this section, we provide numerical experiments that support our theoreti-
cal convergence results of the SFH method. We also investigate the convergence
properties of the SFH method in interior sub-domains. Finally, we explore the
convergence properties of the SFH method for non-smooth solutions on non-convex
domains using graded meshes.

5.1. Smooth solution. In this subsection, we carry out numerical experiments to
validate the theoretical convergence properties of the SFH method for the bihar-
monic problem. In particular, the solution is smooth and the domain is such that
the H4 regularity assumption is satisfied.

We use uniform meshes obtained by discretizing Ω = (− 1
2 , 1

2 ) × (− 1
2 , 1

2 ) with

squares of side 2−l which are then divided into two triangles as indicated in Fig. 1;
the resulting mesh is denoted by “mesh=l”.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 1. Example of a mesh with h = 1/23.

The test problem is obtained by choosing g and f so that the exact solution is
u(x, y) = x4 y3 on the domain Ω. The history of convergence of the SFH method
with

τK = 1/h = 2l,

on the “mesh=l”, is displayed in Table 1 for polynomials of degree k = 0, 1, 2, 3.
In Table 1, we observe that for k=1,2, 3, the quantities ‖u − uh‖L2(Ω) and

‖q−qh‖L2(Ω) have optimal convergence rates, and ‖z−zh‖L2(Ω) and ‖σ−σh‖L2(Ω)

converge with order k+1/2 and k−1/2, respectively, as predicted by Theorem 2.2.
We also see that ‖P∂u − ûh‖L2(Eh;h) superconverges and ‖u − u⋆

h‖L2(Ω) converges

with rate O(hk+2) for k = 1, 2, 3, which agrees with the conclusion of Theorems 2.3
and 4.1.
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Table 1. History of convergence of the SFH method.

mesh ‖u − uh‖
L2(Ω)

‖u − u⋆
h‖

L2(Ω)
‖q − qh‖

L2(Ω)
‖z − zh‖

L2(Ω)
‖σ − σh‖

L2(Ω)

k ℓ error order error order error order error order error order

1 .66e-2 - .15e-2 - .11e-1 - .83e-1 - .16e+1 -

2 .33e-2 1.00 .97e-3 0.66 .95e-2 0.16 .62e-1 0.42 .10e+1 0.58

0 3 .13e-2 1.40 .41e-3 1.23 .59e-2 0.69 .37e-1 0.77 .54e-0 0.95

4 .41e-3 1.61 .11e-3 1.87 .29e-2 1.02 .19e-1 0.91 .33e-0 0.71

5 .14e-3 1.52 .25e-4 2.15 .14e-2 1.10 .11e-1 0.88 .34e-0 -0.06

6 .61e-4 1.24 .61e-5 2.04 .64e-3 1.08 .60e-2 0.81 .45e-0 -0.37

7 .29e-4 1.06 .27e-5 1.20 .31e-3 1.05 .36e-2 0.74 .60e-0 -0.43

8 .15e-4 1.01 .14e-5 0.89 .15e-3 1.02 .23e-2 0.66 .83e-0 -0.46

1 .10e-1 - .29e-2 - .21e-1 - .15e-0 - .15e+1 -

2 .13e-2 2.94 .26e-3 3.47 .40e-2 2.40 .38e-1 2.03 .57e-0 1.38

1 3 .19e-3 2.83 .20e-4 3.72 .88e-3 2.18 .94e-2 2.00 .31e-0 0.89

4 .30e-4 2.68 .20e-5 3.33 .20e-3 2.15 .34e-2 1.45 .21e-0 0.55

5 .56e-5 2.41 .22e-6 3.13 .47e-4 2.10 .13e-2 1.38 .15e-0 0.47

6 .12e-5 2.16 .27e-7 3.06 .11e-4 2.04 .49e-3 1.43 .11e-0 0.47

7 .30e-6 2.05 .33e-8 3.03 .28e-5 2.01 .18e-3 1.46 .78e-1 0.48

1 .35e-2 - .31e-3 - .56e-2 - .56e-1 - .62e-0 -

2 .23e-3 3.91 .16e-4 4.31 .62e-3 3.18 .58e-2 3.27 .18e-0 1.78

2 3 .17e-4 3.75 .93e-6 4.07 .74e-4 3.08 .11e-2 2.46 .65e-1 1.46

4 .14e-5 3.61 .52e-7 4.15 .84e-5 3.14 .21e-3 2.32 .24e-1 1.42

5 .14e-6 3.34 .31e-8 4.09 .99e-6 3.07 .40e-4 2.41 .90e-2 1.45

6 .16e-7 3.12 .19e-9 4.04 .12e-6 3.02 .72e-5 2.46 .32e-2 1.47

1 .75e-3 - .43e-4 - .11e-2 - .90e-2 - .11e-0 -

2 .28e-4 4.76 .12e-5 5.12 .72e-4 3.94 .53e-3 4.07 .21e-1 2.37

3 3 .11e-5 4.73 .34e-7 5.18 .41e-5 4.15 .54e-4 3.30 .46e-2 2.21

4 .45e-7 4.54 .94e-9 5.17 .23e-6 4.13 .55e-5 3.31 .92e-3 2.32

5 .24e-8 4.26 .28e-10 5.09 .14e-7 4.05 .52e-6 3.40 .17e-3 2.41

6 .14e-9 4.08 .84e-12 5.03 .87e-9 4.01 .47e-7 3.45 .32e-4 2.45

For the case of k = 0, numerical results show that the approximations to u have
optimal convergence order, in agreement with Theorem 4.2, up to a logarithmic
factor. Numerically, it appears, that the approximation to q converges in an optimal
way, which suggest that our error estimate for q is not sharp; see Theorem 4.2.
Theoretically we have no conclusion about the convergence of the approximation
of σ for k = 0.

5.2. Interior sub-domains. In Theorem 2.2, we have that the convergence rates
of z and σ in the domain are k + 1/2 and k − 1/2, respectively, if polynomials
of degree up to k are used. The previous numerical experiment shows that these
convergence rates are actually sharp. However, if we consider a fixed interior sub-
domain, we observe optimal convergence rates of all the variables.

Here, we use the same test problem as in the first numerical experiment. The
domain Ω = (−0.5, 0.5) × (−0.5, 0.5) is discretized by uniform meshes; see Fig. 1.
The exact solution is u(x, y) = x4 y3. In Table 2, we observe that for k = 0, 1, 2
the convergence rates of u, q, z and σ are all optimal in the subdomain Ω0 :=
(−0.4375, 0.4375)× (−0.4375, 0.4375).

5.3. Non-convex domain and graded meshes. In our error analysis, we assume
that the domain is convex and, in fact, we assume H4 regularity for the dual
problem. Moreover, we also assumed that our family of meshes are quasi-uniform.
Here, we test the SFH method on a non-convex domain where we use highly graded
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Table 2. History of convergence of the SFH method in the sub-
domain Ω0 = (−0.4375, 0.4375)× (−0.4375, 0.4375).

mesh ‖u − uh‖
L2(Ω0)

‖u − u⋆
h‖

L2(Ω0)
‖q − qh‖

L2(Ω0)
‖z − zh‖

L2(Ω0)
‖σ − σh‖

L2(Ω0)

k ℓ error order error order error order error order error order

4 .14e-3 - .81e-4 - .11e-2 - .86e-2 - .97e-1 -

0 5 .51e-4 1.49 .16e-4 2.36 .53e-3 0.99 .43e-2 1.00 .41e-1 1.25

6 .23e-4 1.15 .43e-5 1.89 .27e-3 0.99 .22e-2 0.99 .20e-1 1.05

7 .12e-4 0.99 .23e-5 0.87 .13e-3 0.99 .11e-2 1.01 .99e-1 1.00

4 .80e-5 - .88e-6 - .88e-4 - .55e-3 - .44e-2 -

1 5 .21e-5 1.94 .11e-6 2.95 .23e-4 1.95 .14e-3 1.94 .11e-2 2.06

6 .52e-6 2.00 .14e-7 3.00 .57e-5 2.00 .36e-4 1.99 .26e-3 2.01

7 .13e-6 1.99 .17e-8 3.02 .14e-5 2.00 .90e-5 1.99 .65e-3 2.00

4 .45e-6 - .27e-7 - .44e-5 - .22e-4 - .16e-3 -

2 5 .62e-7 2.88 .17e-8 3.98 .57e-6 2.96 .29e-5 2.94 .17e-4 3.25

6 .78e-8 2.98 .11e-9 3.99 .72e-7 2.99 .36e-6 2.98 .21e-5 3.01

meshes near the re-entrant corner. We observe that the method still converges well
although our technical assumptions are violated.

We consider the non-convex domain Ω, which has vertices (0, 0), (0.5, 0), (0.5, 0.5),
(−0.5, 0.5), (−0.5,−0.25) and (−0.25,−0.25); see Fig. 2. Following Grisvard [19],
we choose the exact solution to be the function

u(r, θ) = r1+aU(θ)

where r is the distance to the origin and θ measures the angle from the positive
x-axis. Here, a is the solution of the equation

sin(aθ) = a sin(θ),

and

U(θ) = A(5π/4)B(θ) − A(θ)B(5π/4),

where

A(θ) = sin((a − 1)θ)/(a − 1) − sin((a + 1)θ)/(a + 1),

B(θ) = cos((a − 1)θ) − cos((a + 1)θ).

Notice that a ≈ 1.3, so u ∈ H3(Ω), however, u /∈ H3(Ω). In particular, σ /∈ H1(Ω).
We use graded meshes ([4, 2, 22]) to capture the singularity at the origin; see

Fig. 2. As usual, h denotes the largest mesh size of the triangulation. The size of
an arbitrary triangle K, hK , are chosen such that

hK ≤ C h
1

1−β

for triangles which have a vertex at the origin, and

hK = C h rβ
K

for triangles which do not have a vertex at the origin. Here rK is the distance of
K to the origin. In general, to get accurate results the parameter β < 1 is chosen
large enough depending on the polynomial degree k and the regularity of the exact
solution. However, larger β gives more refined meshes. For our problem, β = 1/2
is a good choice for k = 0, 1.
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Figure 2. Example of a graded mesh.

For the graded meshes, we compute the orders of convergence in terms of the
total number of degrees of freedom “N”. We assume that a generic error “e” is of
the form

e(N) = CN−order/2,

since in the uniform case we can take h = N−1/2. The orders of convergence are
given by

order(i) =
log(e(Ni−1)/e(Ni))

log((Ni−1/Ni)−1/2)
.

Notice that the number of triangles in the mesh is proportional to the total number
of degrees of freedom “N”. We obtain the errors and orders of convergence for the
approximate solutions using polynomials of degree k = 0, 1, which are displayed
in Table 3. We can see that the convergence rates are still consistent with those
predicted by the theory for smooth solutions. We expect similar results for higher
polynomial degrees if properly graded meshes are used.

Table 3. History of convergence of the SFH method for a re-
entrant corner problem.

mesh ‖u − uh‖
L2(Ω)

‖u − u⋆
h‖

L2(Ω)
‖q − qh‖

L2(Ω)
‖z − zh‖

L2(Ω)
‖σ − σh‖

L2(Ω)

k #triangles error order error order error order error order error order

94 .22e-0 - .20e-1 - .38 e-0 - .11e+1 - .12e+2 -

280 .87e-1 1.72 .83e-2 1.66 .23e-0 0.97 .95e-0 0.31 .20e+2 -0.83

1100 .36e-1 1.30 .23e-2 1.85 .11e-0 1.00 .61e-0 0.65 .21e+2 -0.09

0 4366 .17e-2 1.10 .67e-3 1.81 .58e-1 0.98 .33e-0 0.89 .23e+2 -0.15

18056 .79e-2 1.06 .15e-3 2.07 .28e-1 1.04 .23e-0 0.51 .31e+2 -0.43

74062 .38e-2 1.03 .32e-4 2.26 .13e-1 1.03 .15e-0 0.57 .44e+2 -0.48

94 .11e-1 - .270e-3 - .11 e-1 - .13e-0 - .41e+1 -

280 .26e-2 2.59 .47e-4 3.19 .36e-2 2.02 .62e-1 1.40 .31e+1 0.51

1 1100 .67e-3 1.96 .71e-5 2.76 .98e-3 1.89 .23e-1 1.47 .21e+1 0.56

4366 .16e-3 2.07 .95e-6 2.91 .26e-3 1.95 .84e-2 1.45 .15e+1 0.50

18056 .38e-4 2.06 .11e-6 3.10 .61e-4 2.03 .29e-1 1.48 .11e+1 0.49

74062 .89e-5 2.04 .12e-7 3.05 .15e-4 2.02 .10e-2 1.50 .75e-0 0.49
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6. Concluding remarks

We can easily extend our results to more general boundary conditions. Exten-
sions to other fourth-order systems of equations arising in computational mechanics
constitutes the subject of ongoing research.

Let us end by pointing out that the loss of optimality we have observed in the
approximation of z and σ does not take place in the one-dimensional case. How to
prevent it and obtain methods optimally convergent remains an interesting open
problem.

Ackknowledgements We would like to thank Manil Suri for valuable discus-
sions about graded meshes. We also thank Monique Dauge and Serge Nicaise for
providing precise references about how to construct singular solutions of the bihar-
monic problem.

Appendix I: Proof of the characterization result

In this section, we prove the characterization of the approximation, Theorem
2.1. We proceed in several steps.

6.1. Step 1: Rewriting the conservativity conditions. As we are going to see
next, the weak formulation defining the Lagrange multiplies λh and γh in Theorem
2.1 is nothing but a rewriting of the conservativity conditions (2.4e) and (2.4f). To
show this, we need the following auxiliary result whose proof will be presented in
detail later.

Lemma 6.1. for any γ ∈ Mh and m ∈ M0
h, we have

(i) 〈χ, Q̂γ · n〉∂Ωh
= (Zχ, Zγ)Ωh

,

(ii) 〈χ, Q̂m · n〉∂Ωh
= 〈m, Sχ · n〉∂Ωh

,

(iii) 〈χ, Q̂f · n〉∂Ωh
= (f, Uχ)Ωh

,

(iv) 〈µ, Ŝγ · n〉∂Ωh
= 〈γ, Qµ · n〉∂Ωh

,

(v) 〈µ, Ŝm · n〉∂Ωh
= 0,

(vi) 〈µ, Ŝf〉∂Ωh
= (f, Uµ)Ωh

.

From the conservativity conditions (2.4e) and (2.4f), we get

〈χ, Q̂γ + Q̂λ + Q̂g + Q̂f) · n〉∂Ωh
= 〈χ, qN〉∂Ω,(6.28a)

〈µ, Ŝγ + Ŝλ + Ŝg + Ŝf) · n〉∂Ωh
= 0.(6.28b)

Then we only need to apply Lemma 6.1 to substitute for the terms on the left hand
side of above equations to see that the weak formulation for (γh, λh) ∈ Mh ×M0

h is
nothing but a rewriting of the conservativity conditions (2.4e) and (2.4f).

6.2. Step 2: Existence and uniqueness. Here, we show that (γh, λh) ∈ Mh ×
M0

h is uniquely defined provided τK > 0 for all K ∈ Ωh and the assumptions (2.8)
are satisfied. To do that, we are going to use a key auxiliary result which easily
follows from the definitions of the local solvers by arguments similar to those used
in [10].
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Lemma 6.2. Assume that τk > 0 for all K ∈ Ωh. Then for any γ ∈ Mh and
m ∈ M0

h, we have

∇ · Sγ = 0, (Ŝγ − Sγ) · n|Eh
= τ(Zγ − γ)|Eh

= 0,(6.29)

∇ · Qm = 0, (Q̂m − Qm) · n|Eh
= τ(Um − m)|Eh

= 0,(6.30)

Sm = Zm = 0, Ŝm = 0.(6.31)

We only have to show that the only solution (γh, λh) ∈ Mh × M0
h of the formu-

lation

ah(γh, χ) + bh(λh, χ) = 0) ∀χ ∈ Mh,

bh(µ, γh) = 0 ∀µ ∈ M0
h ,

is the trivial one.
To do that, we begin by noting that if we take χ := γh and µ := λh, we obtain

that ah(γh, γh) = 0 which implies that Zγh = 0 on Ωh. This implies that τ γh = 0
on ∂Ωh, by property (6.29) of Lemma 6.2. We can also see that the second equation
implies that Sγh · n = 0 on ∂Ωh \ ∂Ω. Hence, the first equation defining the first
local solver, (2.9a), gives, for any K ∈ Ωh,

(Sγh,ρ)K = 〈γh,ρ · n〉∂K\eτ
K

for all ρ ∈ P
k(K).

Now, taking ρ := Sγh, we get that

(Sγh, Sγh)K = 〈γh, Sγh · n〉{∂K\eτ
K
}∩∂Ω = 0,

provided {∂K \ eτ
K}∩∂Ω = ∅, that is, provide the condition (2.8) in satisfied. This

implies that Sγh = 0 and hence that

〈γh,ρ · n〉∂K\eτ
K

= 0 for all ρ ∈ P
k(K).

This implies that γh = 0 on ∂K \ η and hence on ∂K.
Let us now show that λh is also equal to zero. Since the first equation of the

weak formulation is

bh(λh, χ) = 0 ∀χ ∈ Mh,

we see that Qλh ·n = 0 on ∂Ωh. If we take v := Qλh in the third equation defining
the second local solver, (2.10c), we obtain

(Qλh, Qλh)K = −(Uλh,∇ · Qλh)K = 0,

by property (6.30) of Lemma 6.2. This implies that Qλh = 0 on K and so, the
equation (2.10c) becomes, after a simple integration by parts,

−(∇Uλh,v)K = 〈λh − Uλh,v · n〉∂K = 〈λh − Uλh,v · n〉∂K\eτ
K

,

by property (6.30) of Lemma 6.2. This immediately implies, see Lemma 3.2 in [10]
that ∇Uλh = 0 on K and that Uλh = λh on ∂K \ eτ

K and hence on ∂K. As a
consequence λh is a constant on Eh and since λh ∈ M0

h , λh is identically equal to
zero on Eh.

This completes the proof of Theorem 2.1.
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6.3. Step 3: Proof of the auxiliary Lemma 6.1. Now let us prove Lemma 6.1.
(i) By taking γ = χ, and ρ = Qγ in the definition of the local solvers (2.9a), we

have that

〈χ, Q̂γ · n〉∂Ωh
= 〈χ, (Q̂γ − Qγ) · n〉∂Ωh

+ 〈χ, Qγ · n〉∂Ωh

= 〈χ, (Q̂γ − Qγ) · n〉∂Ωh
+ (Sχ, Qγ)Ωh

+ (Zχ,∇ · Qγ)Ωh
.

Then we rewrite the last two terms on the right hand side of the last equality. By
taking v = Sχ in the definition (2.9c) and integrating by parts, we obtain that

(Sχ, Qγ)Ωh
= − (Uγ,∇ · Sχ)Ωh

= − 〈Uγ, Sχ · n〉∂Ωh
+ (Sχ,∇Uγ)Ωh

= 〈(Ŝχ − Sχ) · n, Uγ〉∂Ωh

= 0

by Lemma 6.2 (6.29). Using integration by parts and taking ω = Zχ in the defini-
tion of the local solvers (2.9d) we get

(Zχ,∇ · Qγ)Ωh
= 〈Zχ, Qγ · n〉∂Ωh

− (∇Zχ, Qγ)Ωh

= − 〈Zχ, (Q̂γ − Qγ) · n〉∂Ωh
+ (Zχ, Zγ)Ωh

.

Hence

〈χ, Q̂γ · n〉∂Ωh
= ( Zχ, Zγ)Ωh

+ 〈χ − Zχ, (Q̂γ − Qγ) · n〉∂Ωh
.

By Lemma 6.2 (6.29) we have

〈χ − Zχ, (Q̂γ − Qγ) · n〉∂Ωh
= 〈τ(χ − Zχ), Uγ〉∂Ωh

= 0,

so we get

〈χ, Q̂γ · n〉∂Ωh
= (Zχ, Zγ)Ωh

.

(ii) Using Lemma 6.2 (6.30), and taking γ = χ and ρ = Qλ in the definition of
the local solvers (2.9a), we have that

〈χ, Q̂m · n〉∂Ωh
= 〈χ, Qm · n〉∂Ωh

= (Sχ, Qm)Ωh
+ (Zχ,∇ · Qm)Oh

= (Sχ, Qm)Ωh
.

Then in the definition of the local solvers (2.10c) taking v = Sχ, we get

〈χ, Q̂m · n〉∂Ωh
= 〈m, Sχ · n〉∂Ωh

− (Um,∇ · Sχ)Ωh
.

From Lemma 6.2 (6.30) we know that ∇ · Sχ = 0. Hence

〈χ, Q̂m · n〉∂Ωh
= 〈m, Sχ · n〉∂Ωh

.



A DG METHOD FOR BIHARMONIC PROBLEMS 35

(iii) Taking γ = χ and ρ = Qf in the definition of the local solvers (2.9a), we
get

〈χ, Q̂f · n〉∂Ωh
= 〈χ, (Q̂f − Qf) · n〉∂Ωh

+ 〈χ, Qf · n〉∂Ωh

= 〈χ, (Q̂f − Qf) · n〉∂Ωh
+ (Sχ, Qf)Ωh

+ (Zχ,∇ · Qf)Ωh
.

Taking v = Sχ in the definition of the local solvers (2.11c), we get

(Sχ, Qf)Ωh
= − (Uχ,∇ · Sχ)Ωh

= 0

by Lemma 6.2 (6.29). So we have

〈χ, Q̂f · n〉∂Ωh
= 〈χ, (Q̂f − Qf) · n〉∂Ωh

+ (Zχ,∇ · Qf)Ωh

= 〈χ, (Q̂f − Qf) · n〉∂Ωh
+ 〈Zχ, Qf · n〉∂Ωh

− (∇Zχ, Qf)Ωh

by using integration by parts. Then using the definition of the local solvers (2.11d)
by taking ω = Zχ

〈χ, Q̂f · n〉∂Ωh
= 〈χ, (Q̂f − Qf) · n〉∂Ωh

+ 〈Zχ, Qf · n〉∂Ωh

− 〈Zχ, Q̂f · n〉∂Ωh
+ (Zf, Zχ)Ωh

= 〈χ − Zχ, (Q̂f − Qf) · n〉∂Ωh
+ (Zf, Zχ)Ωh

.

From the definition (2.11f) and Lemma 6.2 (6.29) we get that

〈χ − Zχ, (Q̂f − Qf) · n〉∂Ωh
= 〈τ(χ − Zχ), Uf)〉∂Ωh

+ (Zf, Zχ)Ωh
= 0.

Hence

〈χ, Q̂f · n〉∂Ωh
= (Zf, Zχ)Ωh

.

Then we use the definition of the local solvers (2.9d) by taking γ = χ and ω = Zf ,
and we obtain that

〈χ, Q̂f · n〉∂Ωh
= 〈Q̂χ · n, Zf〉∂Ωh

− (Qχ,∇Zf)Ωh

= 〈(Q̂χ − Qχ) · n, Zf〉∂Ωh
+ (∇ · Qχ, Zf)Ωh

by integration by parts. Taking ρ = Qχ in the definition of the local solvers (2.11a)
and taking (γ,v) = (χ, Sf) in the definition (2.9c), we get that

(∇ · Qχ, Zf)Ωh
= − (Sf, Qχ)Ωh

= (Uχ,∇ · Sf

= 〈Uχ, Sf · n〉∂Ωh
− (∇Uχ, Sf)Ωh

= 〈Uχ, (Sf − Ŝf) · n〉∂Ωh
+ (f, Uχ)Ωh

by integrating by parts and then taking η = Uχ in the definition of the local solvers
(2.11b). Therefore

〈χ, Q̂f · n〉∂Ωh
= 〈(Q̂χ − Qχ) · n, Zf〉∂Ωh

+ 〈Uχ, (Sf − Ŝf) · n〉∂Ωh
+ (f, Uχ)Ωh

.

From the definitions (2.9f) and (2.11e) we get

〈(Q̂χ−Qχ)·n, Zf〉∂Ωh
+〈Uχ, (Sf−Ŝf)·n〉∂Ωh

= 〈τ Uχ, Zf〉∂Ωh
−〈Uχ, τ Uf〉∂Ωh

= 0.

So we get

〈χ, Q̂f · n〉∂Ωh
= (f, Uχ)Ωh

.



36 B. COCKBURN, B. DONG, AND J. GUZMÁN

(iv) From Lemma 6.2 (6.30) we have that

〈µ, Ŝγ · n〉∂Ωh
= 〈µ, Sγ · n〉∂Ωh

.

Then taking m = µ and v = Sγ in the definition of the local solvers (2.10c), we
get

〈µ, Ŝγ · n〉∂Ωh
= (Qµ, Sγ)Ωh

+ (Uµ,∇ · Sγ)Ωh

= (Qµ, Sγ)Ωh

by Lemma 6.2 (6.29). Taking ρ = Qµ in the definition of the local solvers (2.9a),
we obtain

〈µ, Ŝγ · n〉∂Ωh
= 〈γ, Qµ · n〉∂Ωh

− (Zγ,∇ · Qγ)Ωh

= 〈γ, Qµ · n〉∂Ωh

by Lemma 6.2 (6.30).

(v) By Lemma 6.2 (6.31) we have 〈µ, Ŝm · n〉∂Ωh
= 0.

(vi) Using the definition of the local solvers (2.10c) by taking m = µ and v = Sf ,
we get

〈µ, Ŝf〉∂Ωh
= 〈µ, (Ŝf − Sf) · n〉∂Ωh

+ 〈µ, Sf · n〉∂Ωh

= 〈µ, (Ŝf − Sf) · n〉∂Ωh
+ (Qµ, Sf)Ωh

+ (Uµ,∇ · Sf)Ωh
.

Using the definition of the local solvers (2.11a) by taking ρ = Qµ and Lemma 6.2
(6.30), we get

(Qµ, Sf)Ωh
= (Zf,∇ · Qµ)Ωh

= 0.

Hence

〈µ, Ŝf〉∂Ωh
= 〈µ, (Ŝf − Sf) · n〉∂Ωh

+ (Uµ,∇ · Sf)Ωh

= 〈µ, (Ŝf − Sf) · n〉∂Ωh
+ 〈Uµ, Sf · n〉∂Ωh

− (∇Uµ, Sf)Ωh

by integrating by parts. Then taking η = Uµ in the definition of the local solvers
(2.11b), we have

〈µ, Ŝf〉∂Ωh
= 〈µ, (Ŝf − Sf) · n〉∂Ωh

+ 〈Uµ, Sf · n〉∂Ωh

+ (f, Uµ)Ωh
− 〈Ŝf · n, Uµ〉∂Ωh

= (f, Uµ)Ωh
+ 〈µ − Uµ, (Ŝf − Sf) · n〉∂Ωh

.

Note that by Lemma 6.2 (6.30)

〈µ − Uµ, (Ŝf − Sf) · n〉∂Ωh
= 〈τ(µ − Uµ), Zf〉∂Ωh

= 0,

so we have

〈µ, Ŝf〉∂Ωh
= (f, Uµ)Ωh

.

This completes the proof of Lemma 6.1.
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Appendix II: An L∞ estimate for the SFH approximation of the flux

In this section we obtain pointwise bounds for the SFH approximation to the
following problem.

p+ ∇w = 0 in Ω,(6.32a)

∇ · p = f in Ω,(6.32b)

w = g on ∂Ω.(6.32c)

We assume that Ω is a convex polyhedral domain in dimension d and that the
data f and g are sufficiently smooth. We note that the reason we assume Ω is convex
is that we will use H2 regularity results and estimates for the first derivative of the
corresponding Green’s function which hold in convex domains; see for example [16].
Moreover, we require that the family of meshes {Ωh} be quasi-uniform.

We now state our main result.

Theorem 6.3. Let p solve (6.32) and suppose that ph is the SFH approximation
to p. Then, there exists a C > 0 independent of h such that

‖p− ph‖L∞(Ω) ≤ C(‖p− Πp‖L∞(Ω) + l(k)h‖∇ · (p− Πp)‖L∞(Ωh
),

where l(k) = 1 if k ≥ 1 and l(k) = log( 1
h ) if k = 0.

This result is very similar to the result contained in [17] for conforming mixed
methods. In fact, we will follow very closely their techniques to prove the above
theorem. Note that the estimates are quasi-optimal if k = 0 since a logarithmic
factor appears in the estimate, which is the reason logarithmic factors appear in
Theorem 4.2. Before proving the above theorem we gather some preliminary results.

7. Preliminary results

In this section we gather some preliminary results that were stated in [17]. We
start defining the weight function σ which will allow us to convert L∞(Ω) estimates
to weighted L2 estimates.

σ(x) = (|x − x0| + θ2)1/2

where θ = C∗h and C∗ ≥ 1 and x0 ∈ Ω is fixed.
Here we list some properties of σ.

Proposition 7.1. Let K ∈ Ωh then there exists a C independent of h and K such
that

(7.33) max
x∈K

σ(x) ≤ C min
x∈K

σ(x)

(7.34) |∂iσα(x)| ≤ C|σα−i(x)|

The weighted L2 norm is given by

‖Div‖2
σα =

∑

K∈Ωh

∑

λ=i

(σα∂λv, ∂λv).

Proposition 7.2. Let ω ∈ Hj+1
h (Ωh) and v ∈ [Hj+1

h (Ωh)]N , then

(7.35) ‖ω − Pω‖σα ≤ hj+1‖Dj+1ω‖σα ,
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(7.36) ‖v − Πv‖σα + h‖∇(v − Πv)‖σα ≤ hj+1‖Dj+1v‖σα .

If v ∈ V h and β ∈ R, then

(7.37) ‖σβv − Π(σβv)‖σα ≤ C(
h

θ
)‖v‖σα+2 β .

The following results will be used to compare L∞(Ω) and weighted L2 norms.

Proposition 7.3.

(7.38) ‖v‖σ−α ≤ C‖v‖L∞(Ωh)M, for v ∈ L∞(Ωh)

where

M =

{
θ(d−α)/2 for α > d

| log θ|1/2 α = d.

If maxx∈Ω |v(x)| = |v(x0)|, then

(7.39) ‖v‖L∞(Ωh) ≤ C(
θα

hd
)1/2‖v‖σ−α , v ∈ Wh.

The following result is given in ([17], Lemma 3.1).

Proposition 7.4. For every ω ∈ H1
0 (Ω) ∩ H2(Ω) we have

‖D2ω‖σd + ‖Dω‖σd−2 ≤ C(
| log θ|1/2

θ
)‖△ω‖σd+2

The following result can be found in ([17], Lemma 3.2).

Proposition 7.5. Let β ∈ H(div, Ω) and suppose that ω ∈ H1
0 (Ω) ∩ H2(Ω) solve

−△ω = ∇ · β. Then, for 0 < α < 2

‖D2ω‖σd+α ≤ C(α)(‖∇ · β‖σd+α +
1

θ
‖β‖σd+α).

If α = 2, then

‖D2ω‖σd+2 + ‖Dφ‖σd ≤ C(‖∇ · β‖σd+2 +
| log θ|

θ
‖β‖σd+2).

The proof of this result can be found in [17] and relies on H2 regularity and
estimates of the first derivative of the Greens function. These two properties hold
if Ω is convex; see [16].

We end this section by writing the error equations that we will use.

(p− ph,v)Ωh
− (Pw − wh,∇ · v)Ωh

+ 〈w − ŵh,v · n〉∂Ωh
=0,(7.40)

−(p− ph,∇ω)Ωh
+ 〈(p− p̂h) · n, ω〉∂Ωh

=0,(7.41)

for all (v, ω) ∈ V h × Wh.
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8. Proof of Theorem 6.3

We let 0 < α < 2 be a fix number. Let x0 be such that |Πp − ph| attains its
maximum. Then, by (7.39) we get

(8.42) ‖Πp− ph‖L∞(Ω) ≤ Cθα/2‖Πp− ph‖σ−(α+d) ,

where we used that θ ≤ h. We first bound ‖Πp − ph‖σ−(α+d) . Now set ψ :=
σ−(α+d)(Πp−ph). We note that it follows from the analysis in [10] that (Πp−ph) ∈
H(div, Ω), and, in fact, ∇ · (Πp− ph)=0. Therefore, ψ ∈ H(div, Ω).

Then, we easily see that

‖Πp− ph‖
2
σ−(α+d) =T1 + T2 + T3.

where

T1 =(Πp− p,ψ)Ωh

T2 =(p− ph,ψ − Πψ)Ωh

T3 =(p− ph,Πψ)Ωh
.

We now proceed to bound each of these terms. The first estimate follows easily
from the Cauchy-Schwarz inequality, the definition of ψ and Young’s inequality.

T1 ≤ ‖Πp− p‖σ−(α+d)‖ψ‖σα+d ≤
1

2
‖Πp− ph‖

2
σ−(α+d) + C‖Πp− p‖2

σ−(α+d) .

If we apply the Cauchy-Schwarz inequality and then (7.37) we get

T2 ≤C‖p− ph‖σ−(α+d)‖ψ − Πψ‖σ(α+d)

≤C(
h

θ
)‖p− ph‖σ−(α+d)‖Πp− ph‖σ−(α+d)

≤C(
h

θ
)‖Πp− ph‖

2
σ−(α+d) + C‖Πp− p‖2

σ−(α+d) ,

where we used that h ≤ θ.
In order to estimate T3 we define φ ∈ H1

0 (Ω)∩H2(Ω) as the function that satisfies
△φ = ∇ · ψ. If we define Γ := ψ − ∇φ, then it is clear that ∇ · Γ = 0. It then
follows from estimate (vi) of Proposition 3.1 that ΠΓ = ΠRT

k Γ, where ΠRT

k is the
Raviart-Thomas projection of degree k. Therefore, ΠΓ ∈ H(div, Ω) and ∇·ΠΓ = 0.
Hence,

T3 =(p− ph,Π∇φ)Ωh
+ (p− ph,ΠΓ)Ωh

=(p− ph,Π∇φ)Ωh
,

where we used that (p− ph,ΠΓ)Ωh
= 0 which follows from (7.40).

After a simple algebraic manipulations we have

T3 =(p− ph,Π∇φ)Ωh

=(p− ph,∇φ)Ωh
+ (p− ph,Π∇φ −∇φ)Ωh

=(Πp− ph,∇φ)Ωh
+ (p− Πp,∇φ)Ωh

+ (p− ph,Π∇φ −∇φ)Ωh

=(p− Πp,∇φ)Ωh
+ (p− ph,Π∇φ −∇φ)Ωh

.

In the last equation we used integration by parts and used the fact that φ = 0 on
∂Ω to show that

(Πp− ph,∇φ)Ωh
= −(∇ · (Πp− ph), φ)Ωh

= 0,
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where we used that ∇ · (Πp− ph) = 0. We can now simplify (p− Πp,∇φ)Ωh
.

If we use the property (3.16a) of Π we get

(p− Πp,∇φ)Ωh
=(p− Πp,∇(φ − Pφ))Ωh

= − (∇ · (p− Πp), φ − Pφ)Ωh

+ 〈(p− Πp) · n, φ − Pφ〉∂Ωh

= − (∇ · (p− Πp), φ − Pφ)Ωh
.

In the last equation we used

〈(p− Πp) · n, φ − Pφ〉∂Ωh
= 0,

which can be deduced by using Proposition 3.1 and the fact that φ = 0 on ∂Ω.
Hence,

T3 = T4 + T5,

where

T4 :=(p− ph,Π∇φ −∇φ)Ωh

T5 := − (∇ · (p− Πp), φ − Pφ)Ωh
.

If we apply (7.36) and Proposition 7.5 we get

T4 ≤‖p− ph‖σ−(α+d)‖∇φ − Π∇φ‖σα+d

≤Ch‖p− ph‖σ−(α+d)‖D2φ‖σα+d

≤Ch‖p− ph‖σ−(α+d)(‖∇ · ψ‖σα+d +
1

θ
‖ψ‖σα+d).

We can easily show using the definitions of ψ, σ and inequality (7.34) that

‖∇ · ψ‖σα+d +
1

θ
‖ψ‖σα+d ≤

C

θ
‖Πp− ph‖σ−(α+d) .

Since we will need this estimate later we note here that we showed

(8.43) ‖D2φ‖σα+d ≤ C(
h

θ
)‖Πp− ph‖σ−(α+d) .

Therefore,

T4 ≤ C(
h

θ
)‖Πp− ph‖

2
σ−(α+d) + ‖Πp− p‖2

σ−(α+d) ,

where we used that θ ≤ h. By the estimates for T1, T2, T3 and T4 and taking C∗ = θ
h

sufficiently large we get

(8.44) ‖Πp− ph‖
2
σ−(α+d) ≤ C‖Πp− p‖2

σ−(α+d) + C T5.

The estimate of T5 will be different in the case of k ≥ 1 and k = 0. We first assume
that k ≥ 1. In this case, by using (7.35) and (8.43) we get

T5 ≤Ch2‖∇ · (p− Πp)‖σ−(α+d)‖D2φ‖σα+d

≤
h2

θ
‖∇ · (p− Πp)‖σ−(α+d)‖Πp− ph‖σ−(α+d)

≤δ‖Πp− ph‖
2
σ−(α+d) +

Ch2

δ
‖∇ · (p− Πp)‖2

σ−(α+d)

where δ > 0 is arbitrary. By using (8.44) and by taking δ sufficiently small we get

‖Πp− ph‖
2
σ−(α+d) ≤ C‖Πp− p‖2

σ−(α+d) + Ch2‖∇ · (p− Πp)‖2
σ−(α+d) .
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If we then apply (8.42) we get

‖Πp− ph‖
2
L∞(Ω) ≤Cθα‖Πp− p‖2

σ−(α+d) + Ch2θα‖∇ · (p− Πp)‖2
σ−(α+d)

≤C‖Πp− p‖2
L∞(Ω) + Ch2‖∇ · (p− Πp)‖2

L∞(Ωh).

In the last inequality we used (7.38). This completes the proof in the case that
k ≥ 1. Now we assume that k = 0 and proceed to estimate T5. In this case, we
apply Proposition 7.5 to get

T5 ≤Ch‖∇ · (p− Πp)‖σ−d‖Dφ‖σd

≤Ch‖∇ · (p− Πp)‖σ−d(‖∇ ·ψ‖σ2+d +
| log(θ)|1/2

θ
‖ψ‖σ2+d)

≤
C| log(θ)|1/2h

θ
‖∇ · (p− Πp)‖σ−d‖Πp− ph‖σ2−d−2α .

In the last inequality we used the definition of ψ and (7.34). If we let α > 1 and
apply (7.38) we get

T5 ≤
C| log(θ)|h

θα
‖∇ · (p− Πp)‖L∞(Ωh)‖Πp− ph‖L∞(Ω).

If we now use (8.44), (8.42) and (7.38) we have

‖Πp− ph‖
2
L∞(Ω) ≤C‖Πp− p‖2

L∞(Ω)

+ C| log(h)|h‖∇ · (p− Πp)‖L∞(Ωh)‖Πp− ph‖L∞(Ω).

The result follows if we use Young’s inequality.
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