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Abstract. We show that the approximation given by the original discontinuous Galerkin method
for the transport-reaction equation in d space dimensions is optimal provided the meshes are suitably
chosen: the L2-norm of the error is of order k + 1 when the method uses polynomials of degree k.
These meshes are not necessarily conforming and do not satisfy any uniformity condition; they are
only required to be made of simplexes each of which has a unique outflow face. We also find a new,
element-by-element postprocessing of the derivative in the direction of the flow which superconverges
with order k + 1.
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1. Introduction. We show that the original discontinuous Galerkin (DG) [16,
13], method can approximate in an optimal fashion the solution of the convection-
reaction problem

β · ∇u + c u = f in Ω, (1.1a)

u = g on Γ−. (1.1b)

Here Ω ⊂ Rd is a polyhedral domain, Γ− := {x ∈ ∂Ω : β · n(x) < 0}, and n(x) is
the outward unit normal at the point x ∈ ∂Ω. The functions f and g are smooth, β

is a non-zero constant unit vector and c is a bounded function. Indeed, if uh denotes
the approximation given by the DG method using polynomials of degree k, we prove
that, for a special class of triangulations Th, we have

‖ u− uh ‖L2(Th) + ‖P(∂βu) − ∂β,huh ‖L2(Th) ≤C |u |Hk+1(Th) h
k+1,

where ∂β := β ·∇, P is the L2-projection into the finite element space, and ∂β,huh is an
approximation to ∂β u obtained by using an element-by-element postprocessing of uh.
Note that the above approximation result is optimal for the quantity ‖ u− uh ‖L2(Th)

in the order of convergence in h as well as in the regularity of the exact solution;
the estimate of the quantity ‖P(∂βu) − ∂β,huh ‖L2(Th) is clearly a superconvergence
result. This has to be contrasted with the estimate for general triangulations

‖ u− uh ‖L2(Th) + h1/2 ‖ ∂βu− ∂βuh ‖L2(Th) ≤ C |u |Hk+1(Th) h
k+1/2,

that follows from results obtained back in 1986 in [12].
The mechanisms that induce the loss of h1/2 in the order of convergence of the

L2-norm of the error are not very well known yet. In 1988, it was shown [17] that, in
the two-dimensional case, the estimate

‖ u− uh ‖L2(Th) ≤ C |u |Hk+2(Th) h
k+1,
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holds for conforming triangulations obtained by using slabs of parallelograms divided
into two triangles always in the same way. The triangles were chosen so that their
sides are uniformly not aligned with the convection direction β, that is, so that they
satisfy what we could call the transversality condition

|β · nK | ≥ γ > 0 on ∂K, for all K ∈ Th, (1.2)

where nK is the outward unit normal of the simplex K and γ is a fixed constant. In
1991, the rate of convergence of hk+1/2 for ‖ u− uh ‖L2(Th) was shown to be sharp in
[14]; a rigorous proof was given for the case k = 0 and convincing numerical evidence
was shown for the case k = 1, also in the two-dimensional case. As the reader might
expect, in those numerical experiments, triangulations violating the transversality
condition played a central role which lead the author to conjecture that this condition
“may be a natural condition under which to seek improved estimates”. However, a
consequence of our main result is that improved estimates can be obtained even if
the transversality condition is not satisfied in any triangle. Indeed, our improved
estimates hold for triangulations Th made of simplexes K satisfying the simple flow

conditions with respect to β

Each simplex K has a unique outflow face with respect to β, e+K . (1.3a)

Each interior face e+K is included in an inflow face with respect to β

of another simplex .
(1.3b)

We say that the face e of the simplex K is an outflow (inflow) face with respect to
β if β · nK |e > (<) 0. We say that a face is interior if it is not included in ∂Ω.
Note that the second condition allows the triangulation to be nonconforming. In two
dimensions, this means that hanging nodes in a simplex K are allowed provided they
are not in its outflow edge; an example of such a triangulation is given in Fig. 1.1.
Note that this triangulation is not uniform or translation invariant. In the Appendix,
we show how to construct triangulations satisfying the flow conditions in any number
of space dimensions.

As usual, the families of triangulations we consider also satisfy the classical as-
sumption of shape regularity, see [6], namely, there is a constant σ > 0 such that

For each simplex K ∈ Th : hK/ρK ≥ σ, (1.4)

where hK denotes the diameter of the simplex K and ρK the diameter of the biggest
ball included in K.

The main idea behind the devising of these meshes, and the associated analysis
giving rise to optimal error estimates, is a suitable adaptation to the convection-
reaction equation under consideration of the projection (Π,P) recently introduced
for the analysis of superconvergent discontinuous Galerkin methods for second-order
elliptic problems in [7]. The first component of such projection, Π, was previously
used in the analysis of the so-called minimal-dissipation LDG method for convection-
diffusion problems. Here, we use the second component, P, to render the analysis
of error in u not only extremely simple and optimal but also capable of handling
non-conforming meshes that are not uniform in any way.

Let us emphasize that the role of the special meshes for the construction of the
approximation ∂β,huh to the directional derivative ∂βu is not essential for two reasons.
The first is that such an approximation can be defined on any mesh of simplexes. The
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Fig. 1.1. A triangulation satisfying the flow conditions with β = (1, 0).

second is that, for the general meshes considered in [12], we can still obtain the
estimate

‖P(∂βu) − ∂β,huh ‖L2(Th) ≤ C |u |Hk+1(Th) h
k+1/2,

which shows that even in this case, ∂β,huh is a better approximation than ∂βuh.
Postprocessings similar to the one giving rise to ∂β,huh have been used before in
the context of flow through porous media, [4], in the context of the Navier-Stokes
equations, [8], and in the context of linear elastic incompressible materials, [9]. In all
the above-mentioned references, they have been used to construct exactly divergence-
free approximations to the velocity or exactly divergence-free stresses.

It is interesting to note that, when the triangulations Th satisfy the flow conditions
(1.3) with respect to β and with respect to −β, case in which the triangulation
consists of tubes aligned with β, we can obtain error estimates of the numerical trace
ûh in each outflow face e, namely,

‖P∂u− ûh‖H−s(e) ≤ C(c, s)hk+s+1|u |Hk+1(Ωe),

for s ∈ [0, k], where P∂ is the L2-projection into the space of polynomials of degree
at most k on each face, Ωe is a suitably chosen subset of Th, and c ∈ W s,∞(Ωe). In
particular, this implies that the average of ûh on the face e converges to the average
of u on that face with order 2 k+ 1. This is the only result of this type in the current
available scientific literature, to the knowledge of the authors.

Finally, we extend our results in two directions. First, we consider approximations
that are polynomials of different degrees on different elements. With the condition
that the degrees of polynomials are non-increasing in the direction of β, we show that
the estimates of approximations of u and ∂β,huh still hold. Then we consider the
singularly perturbed problem in Ω ⊂ R

2

−ǫ∆u+ β · ∇u+ cu = f in Ω,

u = g on ∂Ω.
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where 0 < ǫ << 1 is a constant and prove optimal local error estimates for ǫ ≤ h2

on quasi-uniform meshes. We also show that internal numerical layers have width
max(h, ǫ1/2) on triangulations Th that satisfy the flow conditions (1.3) with respect
to both β and −β. This improves the best known result of h1/2; see [11]. A similar
result for the streamline-diffusion method is contained in [15].

The paper is organized as follows. In section 2 we state and prove our main
results. In section 3, we extend our results to variable-degree versions of the method;
we show the results for the singularly perturbed problem. Our theoretical results
are verified in section 4 by numerical experiments. We end in Section 5 with some
concluding remarks.

2. The main results.

2.1. The DG method. Suppose we have a family of triangulations {Th} of Ω
satisfying the flow conditions (1.3). To each triangulation Th, we associate the number
h = supK∈Th

hK , where hK = diam(K), and the finite-dimensional space V k
h which

is composed of functions that are polynomials of degree at most k on each simplex
K ∈ Th.

The DG approximation uh ∈ V k
h of the solution of (1.1) satisfies

B(uh, vh) =(f, vh)Th
− 〈g, vh β · n〉Γ− , for all vh ∈ V k

h , (2.1a)

where

B(w, v) = − (w, ∂βv)Th
+ 〈ŵ, v β · n〉∂Th\Γ− + (cw, v)Th

, (2.1b)

for any w, v in H1(Th). Note that we only need to define the numerical trace ŵ on
faces that are not parallel to the direction β and do not belong to the inflow part of
the boundary Γ−. Therefore, the numerical trace of a function w on a simplex K for
such faces e is given by

ŵ :=w−, (2.1c)

where w±(z) = limδ↓0 w(z ± δβ) where z ∈ e. We are using the notation

(σ,v)Th
:=

∑

K∈Th

∫

K

σ(x) · v(x) dx, (ζ, ω)Th
:=

∑

K∈Th

∫

K

ζ(x) ω(x) dx,

〈ζ,v · n〉∂Th
:=

∑

K∈Th

∫

∂K

ζ(γ)v(γ) · n dγ,

for any functions σ,v in H1(Th) := [H1(Th)]d and ζ, ω in H1(Th). The outward
normal unit vector to ∂K is denoted by n.

Notice that the exact solution u of (1.1) also satisfies the weak formulation (2.1),
so we have the error equation

B(u− uh, vh) = 0 for all vh ∈ V k
h . (2.2)

2.2. The approximation of u. To state our result on the approximation of u,
we need to introduce a special projection, P, defined on triangulations Th satisfying
the flow condition (1.3a). The function Pu ∈ V k

h restricted to K ∈ Th is given by

(Pu− u, v)K = 0, for all v ∈ P
k−1(K) (2.3a)

〈Pu− u,w〉e+

K
= 0, for all w ∈ P

k(e+K), (2.3b)
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where Pℓ(D) stands for the space of polynomials of total degree at most ℓ defined on
the set D.

The following lemma was proved in [7].

Lemma 2.1. If the triangulation Th satisfies the flow condition (1.3a), the projec-

tion P given by (2.3) is well defined. Moreover, if the triangulation Th is shape-regular,

(1.4), then, on each simplex K ∈ Th we have

‖Pu− u‖L2(K) ≤ Chk+1|u |Hk+1(K), (2.4)

where C only depends on k and the shape regularity constant σ.

Now we can state our first error estimate.

Theorem 2.2. If Th satisfies the flow conditions (1.3) and and the shape-

regularity conditoin (1.4), then h1/2 ‖ c ‖L∞(Ω) is small enough, the error between uh

given by the discontinuous Galerkin method (2.1) and the exact solution u of the

equations (1.1) is bounded as follows:

‖Pu− uh‖L2(Th) ≤ C‖c(u− Pu)‖L2(Th),

where C depends on ‖ c ‖L∞(Ω) and the diameter of Ω. In particular, if c ≡ 0 then

uh = Pu.

Note that, after a straightforward application of the triangle inequality, we get

‖u− uh‖L2(Th) ≤ ‖u− Pu‖L2(Th) + C‖c(u− Pu)‖L2(Th),

and, if we assume the shape-regularity condition (1.4) on the triangulation Th, by the
approximation property of the projection P, (2.4), we obtain that

‖ u− uh ‖L2(Th) ≤ C |u |Hk+1(Th) h
k+1,

whenever u ∈ Hk+1(Th), as claimed in the Introduction. Let us prove the above
theorem.

Proof. Set E = uh −Pu. By the error equation (2.2), we have that for all v ∈ V k
h ,

B(E, v) =B(u − Pu, v) =

3∑

i=1

Ti,

where, by definition of the bilinear form B(·, ·), (2.1b),

T1 := − (u− Pu, ∂βv)Th
,

T2 :=〈u − P̂u, v β · n〉∂Th\Γ− ,

T3 :=(c (u − Pu), v)Th
.

Now, by the definition of the projection P, (2.3a),

T1 =0.
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Moreover,

T2 =〈u − P̂u, v β · n〉∂Th\Γ−

=
∑

K∈Th

〈u − P̂u, v β · n〉∂K\Γ−

=
∑

K∈Th

〈u − P̂u, (v− − v+)β · n〉e+

K

=
∑

K∈Th

〈u − Pu, (v− − v+)β · n〉e+

K
.

by the definition of the numerical trace P̂ u, (2.1c). But, since by the second flow
condition (1.3b), (v− − v+)|e+

K
∈ Pk(e+K), we can conclude that

T2 = 0,

by the definition of the projection P, (2.3b). Therefore, we have that

B(E, v) =(c(u − Pu), v)Th
for all v ∈ V k

h .

We claim that this implies

‖E‖L2(Th) ≤C‖c (u− Pu)‖L2(Th),

for h1/2 ‖ c ‖L∞(Ω) small enough. This claim is a straightforward consequence of the
stability result Theorem 2.1 in [12], which implies that the DG approximation uh

defined by (2.1) satisfies the inequality

‖ uh ‖L2(Ω) ≤ C
(
‖ f ‖L2(Ω) + ‖

√
|β · n| g ‖L2(Γ−)

)
,

for h1/2 ‖ c ‖L∞(Ω) small enough. The claim follows by replacing uh by E, f by c (u−
Pu), and g by 0. Let us emphasize the fact that although this stability result was
obtained for the two-dimensional case and conforming triangulations, it can be easily
extended to multidimensions and non-conforming triangulations. This completes the
proof.

2.3. Post-processing: The approximation to ∂βu. Next we show how to
post-process uh in order to get a superconvergent approximation of ∂βu. To this end,

for each simplex K we define qh ∈ P
k(K) + xPk(K) to be the solution of

(qh − βuh,v)K = 0, for all v ∈ P
k−1(K) (2.5a)

〈(qh − βλh) · n, w〉e = 0, for all w ∈ P
k(e), for all faces e of K, (2.5b)

where λh = P∂g on Γ− and λh = ûh otherwise; here P
k(K) := [Pk(K)]d. The

existence and uniqueness of qh is well known; see, for example, [5]. We then define

∂β,huh := ∇ · qh in Th.

We can now state the error estimate between ∂β,huh and ∂βu.
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Theorem 2.3. If Th is an arbitrary triangulation of Ω, then

‖∂β,huh − P(∂βu)‖L2(Th) ≤ C‖c(u− uh)‖L2(Th).

In particular, if c ≡ 0 then

∂β,huh = P(∂βu).

Here P is the L2-projection into V k
h .

We can thus see that, if we use the estimates for arbitrary triangulations Th

obtained in [12], which assume the shape-regularity condition (1.4), we obtain

‖P(∂βu) − ∂β,huh ‖L2(Th) ≤ C |u |Hk+1(Th) h
k+1/2,

and if, we assume that Th satisfies the flow conditions (1.3), we obtain, by Theorem
2.2,

‖P(∂βu) − ∂β,huh ‖L2(Th) ≤ C |u |Hk+1(Th) h
k+1,

as claimed in the Introduction. This implies that, if u is smooth enough, the quantity
‖ ∂βu − ∂β,huh ‖L2(Th) is of order hk+1/2 for arbitrary meshes and of order hk+1 for
the special meshes under consideration.

Proof. For v ∈ V k
h we have

(∂β,huh − P(∂βu), v)Th
=(∇ · qh − ∂βu, v)Th

= − (qh,∇v)Th
+ 〈qh · n, v〉∂Th

− (∂βu, v)Th

= − (qh,∇v)Th
+ 〈qh · n, v〉∂Th

− (f, v)Th
+ (c u, v)Th

,

by the definition of the exact solution u of (1.1a). By the definition of qh, (2.5),

(∂β,huh − P(∂βu), v)Th
= − (uh, ∂βv)Th

+ 〈ûh, v β · n〉Th\Γ− + 〈g, vβ · n〉Γ−

− (f, v)Th
+ (c u, v)Th

=(c (u− uh), v)Th
,

by the definition of the approximate solution uh, (2.1). The proof is complete once
we take v = ∂β,huh − P(∂βu).

2.4. The approximation of the numerical trace ûh on outflow faces. To
state the approximation result, let us introduce some notation. We are going to use
the following negative-order norm

‖ γ ‖H−s(e) := sup
ϕ∈C∞(e)

〈γ, ϕ〉e
‖ϕ ‖Hs(e)

, (2.6)

where e is the outflow face of the simplex K ∈ Th. To this face, we associate the
subset of Th defined by

Ωe := {K ′ ∈ Th : ∀x ∈ K ′, such that x+ βt lies on e for some t ≥ 0}.

An example is displayed in Fig. 2.1 below.



8 B. Cockburn, B. Dong and J. Guzmán

e
Ωe

Fig. 2.1. An example of the set Ωe for β = (1, 0).

Theorem 2.4. Let Th be a triangulation of Ω satisfying the shape-regularity

condition (1.4) and the flow conditions (1.3), with respect to β and −β. Then on any

outflow face e

‖P∂u− ûh‖H−s(e) ≤ C(c, s) hk+s+1|u |Hk+1(Ωe),

for s ∈ [0, k], where C(c, s) := C(‖c‖Wmax{s,0},∞(Ωe),Ωe
) ‖c‖2

L∞(Ωe)/|β ·ne |. In partic-

ular, if c ≡ 0 then

P∂u = ûh.

Note that if the triangulation Th satisfies the flow conditions (1.3) with respect
to β and −β, then each of its simplexes K has exactly one outflow face e+K and one
inflow face e−K . Moreover, the outflow face e+K lies on ∂Ω \ Γ− or coincides with an
inflow face, and e−K lies on Γ− or coincides with an outflow face.

This result implies, in particular, that the average of the numerical trace ûh on
each outflow face e converges to the average of the exact solution u on that face with
order 2 k+ 1 for general c and with order 2 k+ 2 in the case c = 0. To see this, let us
begin by noting that if Υ ∈ Hk+1(e), we have that

〈ûh − u,Υ〉e =〈ûh − P∂u,Υ〉e + 〈P∂u− u,Υ〉e

=〈ûh − P∂u,Υ〉e + 〈P∂u− u,Υ − P∂Υ〉e,

and so

| 〈ûh − u,Υ〉e | ≤‖ ûh − P∂u ‖H−k(e) ‖Υ ‖Hk(e)

+ ‖P∂u− u ‖L2(e) ‖Υ − P∂Υ ‖L2(e)

≤ C h2 k+1,

where

C = C(c, s) |u |Hk(Ωe) ‖Υ ‖Hk+1(e) + C h |u |Hk+1(e) |Υ |Hk+1(e).
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The claim follows by simply taking Υ = 1.
Let us emphasize that the order of convergence of the approximation of linear

functionals of the form 〈u , Υ〉∂Ω\Γ− can be proven to be of order 2 k + 1; see [1] for
the case c = 0 and Υ = 1. This result holds for functions Υ that are independent of
the mesh; as a consequence, Υ cannot be taken to have support in a single element
face. To the knowledge of the authors, Theorem 2.4 is the only result that allows this.

Next, we give a proof of the result. To do that, we need to introduce some
notation. We begin by introducing so-called the corresponding dual problem, namely,

−β · ∇ψ + c ψ = 0 in Ωe, (2.7a)

ψ = ϕ/β · n on e. (2.7b)

We are also going to use two auxiliary projections. We set P
+ := P which is

defined in (2.3), and let P
− be the projection which satisfies (2.3a) and imposes

(2.3b) on e−K instead of e+K .
We are now ready to prove Theorem 2.4.
Proof. To prove this result, we begin by noting that

〈P∂u− ûh, ϕ〉e =〈P∂u− ûh, ψβ · n〉e,

by the boundary condition of the dual problem, (2.7b), and that

〈P∂u− ûh, ϕ〉e =〈P∂u− ûh, ψβ · n〉∂Ωe\Γ− ,

by our assumptions on the triangulation Th. Then

〈P∂u− ûh, ϕ〉e =〈P∂u− ûh, (ψ − P
−ψ)β · n〉∂Ωe\Γ−

+ 〈P∂u− ûh,P
−ψ β · n〉∂Ωe\Γ− .

Since we can rewrite the error equation (2.2) in terms of the projections P
+ and P∂ ,

as

−(P+u− uh, ∂βv)Ωe
+ 〈P∂u− ûh, v β · n〉∂Ωe\Γ− + (c (u− uh), v)Ωe

= 0,

taking v := P
−ψ, we get that

〈P∂u− ûh, ϕ〉e =〈P∂u− ûh, (ψ − P
−ψ)β · n〉∂Ωe\Γ−

+ (P+u− uh, ∂βP
−ψ)Ωe

− (c (u − uh),P−ψ)Ωe

=〈P∂u− ûh, (ψ − P
−ψ)β · n〉∂Ωe\Γ−

+ (P+u− uh, ∂βP
−ψ)Ωe

− (c (P+u− uh),P−ψ)Ωe

− (c (u − P
+u),P−ψ)Ωe

.

Hence, by the dual equation, (2.7a), we can write

〈P∂u− ûh, ϕ〉e =

4∑

i=1

Ti,
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where

T1 := 〈P∂u− ûh, (ψ − P
−ψ)β · n〉∂Ωe\Γ− ,

T2 := (P+u− uh, ∂β(P−ψ − ψ))Ωe
,

T3 := − (c (P+u− uh),P−ψ − ψ)Ωe
,

T4 := − (c (u − P
+u),P−ψ)Ωe

.

Let us estimate the terms Ti, i = 1, 2, 3, 4. We begin by showing that T1 +T2 = 0.
After a simple integration by parts, we get that

T2 = − 〈P+u− uh, (ψ − P
−ψ)β · n〉∂Ωe

+ (∂β(P+u− uh), ψ − P
−ψ)Ωe

= − 〈P+u− uh, (ψ − P
−ψ)β · n〉∂Ωe

,

by the orthogonality property of the projection P
−, (2.3a). Hence,

T1 + T2 =〈P∂u− ûh, (ψ − P
−ψ)β · n〉∂Ωe\Γ− − 〈P+u− uh, (ψ − P

−ψ)β · n)∂Ωe

=0

since, by the definition of P
+ and ûh, we have that P∂u = P

+u and ûh = uh on any
outflow face, and since, by the definition of P

−, we have that

〈ω, (ψ − P
−ψ)β · n〉ẽ = 0 ∀ω ∈ P

k(ẽ),

on any inflow face ẽ.
It remains to estimate T3 and T4. To do this, we are going to use the following

stability estimate for the solution ψ of the dual problem (2.7),

|ψ|Hs(Ωe) ≤ C‖ϕ‖Hs(e)/β · n, (2.8)

where C = C(‖c‖Wmax{s,0},∞(Th),Ωe). It follows from the expression

ψ(x) = ϕ(x0)e
−

R

t

0
c(x0−τ β))dτ/β · n.

where x = x0 − β t ∈ Ωe for some t ≥ 0 and x0 ∈ e, by successive differentiation.
The estimate of T3 follows after a straightforward application of Cauchy-Schwarz

inequality, the estimate of Theorem 2.2, the approximation property of the projection
P
−, (2.4), the stability estimate (2.8). Indeed, we easily get that

T3 ≤ C(c, s)hk+s+1|u |Hk+1(Ωe)‖ϕ‖Hs(e),

for s ∈ [0, k+ 1]. Let us estimate T4. If we denote by Pk−1 be the L2-projection onto
V k−1

h , we have that

T4 =(c (u− P
+u), ψ − P

−ψ)Ωe
− (u− P

+u, cψ)Ωe

=(c (u− P
+u), ψ − P

−ψ)Ωe
− (u− P

+u, cψ − P
k−1cψ)Ωe

,

by the orthogonality property of the projection P
+, (2.3a). Then we get

T4 ≤C(c, s)hk+s+1‖ϕ‖Hs(e)|u |Hk+1(Ωe),

for s ∈ [0, k], by the approximation properties of the projections P
+, P

−, and Pk−1,
and the stability estimate (2.8). This completes the proof.
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3. Extensions.

3.1. The variable-degree DG method. The variable-degree DG approxima-
tion uh belongs to the finite dimensional space V k

h which is given by

V k
h = {v ∈ L2(Ω), v|K ∈ P

k(K)(K) ∀K ∈ Th},

where k = {k(K), ∀K ∈ Th}.
The definition of P can easily be generalized for the variable-degree space. We

define Pu ∈ V k
h using the definition of the previous section but with the space P

k−1(K)
replaced with Pk(K)−1(K) and the space Pk(e+K) replaced with Pk(K)(e+K).

We need to impose a condition on the space V k
h :

k(K) ≥ k(K ′) whenever e+K ⊆ e−K′ . (3.1)

The following result can be proven in the same way as Theorem 2.2.
Theorem 3.1. Let uh ∈ V k

h be the variable degree DG approximation given by

(2.1) with V k
h replaced with V k

h . If Th satisfies the flow conditions (1.3) with respect

to β and the shape-regularity condition (1.4), and V k
h satisfies the condition of the

polynomial degrees (3.1), then the results of Theorem 2.2 hold for the variable-degree

DG method.

3.2. Singularly Perturbed Problem. We present local error estimates of a
DG method for the following singular perturbed problem in Ω ⊂ R

2

−ǫ△u+ β · ∇u+ c u = f in Ω, (3.2a)

u = g on ∂Ω. (3.2b)

We use the interior penalty method to discretize the viscosity term −ǫ△u, see [2] and
[10]. Any other DG method which is consistent and stable could be used to discretize
this term, see [3].

Thus, the DG approximation uh ∈ V k
h , where k ≥ 1, of (3.2) solves

ǫA(uh, vh) +B(uh, vh) = F (vh) for all vh ∈ V k
h , (3.3)

where

A(ω, v) = (∇ω,∇v)Th
−

∑

e∈Eh

(〈{{∇ω}}, [[v]]〉e + 〈{{∇v}}, [[ω]]〉e −
η

h
〈[[ω]], [[v]]〉e),

F (v) = (f, v)Th
+ 〈g, vβ · n〉∂Ω + ǫ〈∇v · n, g〉∂Ω − ǫ

η

h
〈g, v〉∂Ω.

The set Eh is the collection of edges of the triangulation Th. The parameter η is large
enough in order to ensure stability.

The average {{·}} and jump [[·]] operators are defined as follows. For an interior
edge e, we set

{{q}} =
1

2
(q1 + q2), [[q]] = q1 · n1 + q2 · n2,

{{ϕ}} =
1

2
(ϕ1 + ϕ2), [[ϕ]] = ϕ1n1 + ϕ2n2,

where e = K1 ∩ K2, qi = q|Ki
, ϕi = ϕ|Ki

and ni is the exterior unit normal to
Ki, i = 1, 2. For a boundary edge e, we set

{{q}} = q, [[ϕ]] = ϕn
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where n is the outward unit normal. The quantities [[q]] and {{ϕ}} on boundary edges
are not required, so they are left undefined.

In order to state the result we need to introduce a proper weight function. For
simplicity we assume β = (1, 0). Accordingly, we set, for fixed x0, y1 and y2,

Ω0 =
(
(−∞, x0] × [y1, y2]

)
∩ Ω,

and construct a function ω satisfying

C1 ≤ ω(x, y) ≤ C2, for (x, y) ∈ Ω0,

|ω(x, y)| ≤ C2e
−(x−x0)/Mρ, for x ≥ x0 + h,

|ω(x, y)| ≤ C2e
−(y−y2)/Mσ, for y ≥ y2 + h,

|ω(x, y)| ≤ C2e
−(y1−y)/Mσ, for y ≤ y1 − h.

Here ρ ≥ 0, σ ≥ 0 are parameters that will depend on the mesh size h and ǫ. We say
that ρ is the size of the upwind layer and σ is the size of the crosswind layer. The
positive constants C1, C2 and M are fixed.

Theorem 3.2. Assume that ǫ ≤ h and that the triangulation Th is quasi-uniform,

that is, assume that there is a parameter κ > 0 such that

max
K∈Th

{hK} ≤ κ min
K∈Th

{hK}.

If Th satisfies the flow conditions (1.3) with respect to β. Then the error between uh

given by (3.3) and u given by (3.2) is

‖ω(u− uh)‖L2(Th) ≤ C((1 +
ǫ1/2

h
)‖ω(u− Pu)‖L2(Th) + ǫ1/2‖ω∇(u− Pu)‖L2(Th)

+hǫ1/2‖ωD2(u − Pu)‖L2(Th))

where ω is given above with ρ = log( 1
h )h, σ = h1/2 and M is a sufficiently large fixed

constant. Moreover, if Th also satisfies the flow conditions (1.3) with respect to −β,

then we can choose σ = max(ǫ1/2, h).

From this result, we immediately get optimal weighted error estimates if ǫ ≤ h2.
The size of the crosswind layer σ is typically σ = h1/2 for general triangulations; see
[11]. However, we see that the size of the crosswind layer is reduced to σ = h if
the flow conditions (1.3) for both β and −β are satisfied. This is exactly the result
that was obtained for the streamline diffusion method in [15]. However, in [15] the
following almost-uniform condition on the mesh was imposed: two adjacent elements
K and K ′ that share an edge that is not aligned with β must satisfy

|hβ,K − hβ,K′ | ≤ Ch2
β

where hβ,K is the length of the edge of K that is parallel to β and hβ = maxK hβ,K ;
see the inequality (3.8) in [15]. In contrast, in our results, we only assume quasi-
uniformity. Moreover, our results also hold for high-order elements.

The proof of Theorem 3.2 is very similar to the proof of the local estimates given
in [11]. However, instead of using the L2-projection one must use the projections
P = P

+ and P
− used in this paper.
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4. Numerical Results. In this section we present numerical experiments which
validate our theoretical results. The domain is Ω = (−.5, .5) × (−.5, .5). The coeffi-
cients are β ≡ (1, 0) and c ≡ 1. We choose the right-hand side f so that the solution
is u(x, y) = (x+ 1/2) sin(x) sin(y).

We start with a uniform mesh of size h which satisfies the flow condition with
respect to β; see Fig. 4 left. We then perturb the coordinates of the interior nodes
randomly by at most 2h

5 in such a way that the resulting mesh is no longer uniform

but still satisfies the flow condition with respect to β; see Fig. 4 right. A mesh ℓ is a
perturbation of a uniform mesh of size h = 1

2ℓ .
In Table 4.1 we display the error and orders of convergence for approximate

solutions using polynomials of degree k = 0, 1, 2. We see that order k + 1 is observed
for ‖u− uh‖L2(Ω) and ‖∂βu − ∂β,huh‖L2(Ω) as the theory predicts. Moreover, we see
that maxe∈Eh

|avge(u− ûh)| converges with order 2k + 1 as expected.

Table 4.1

History of convergence

mesh ‖u − uh‖L2(Ω) ‖∂βu − ∂β,huh‖L2(Ω) maxe∈Eh
|avge(u − buh)|

k ℓ error order error order error order

1 .27e-1 - .11e-0 - .16e-1 -
2 .19e-1 0.50 .54e-1 1.05 .88e-2 0.83

0 3 .11e-1 0.80 .29e-1 0.93 .61e-2 0.54
4 .58e-2 0.92 .15e-1 0.92 .35e-2 0.82
5 .29e-2 1.01 .75e-2 1.02 .16e-2 1.11
6 .15e-2 0.98 .38e-2 0.97 .82e-3 0.96
7 .74e-3 0.99 .19e-2 1.00 .42e-3 0.98

1 .12e-1 - .27e-1 - .82e-3 -
2 .34e-2 1.81 .69e-2 1.98 .92e-4 3.16

1 3 .86e-3 1.97 .15e-2 2.17 .18e-4 2.36
4 .23e-3 1.90 .43e-3 1.84 .25e-5 2.83
5 .58e-4 1.99 .11e-3 2.01 .30e-6 3.08
6 .15e-4 1.95 .28e-4 1.94 .44e-7 2.74
7 .38e-5 1.99 .69e-5 2.00 .60e-8 2.90

1 .16e-2 - .14e-2 - .49e-5 -
2 .19e-3 3.10 .17e-3 3.08 .53e-6 3.20

2 3 .26e-4 2.88 .24e-4 2.82 .20e-7 4.74
4 .33e-5 2.99 .30e-5 3.00 .66e-9 4.92
5 .43e-6 2.92 .40e-6 2.91 .25e-10 4.74
6 .54e-7 2.99 .51e-7 2.99 .93e-12 4.73

5. Concluding remarks. This paper contains the first instance in which the
approximation error ‖ u−uh ‖L2(Th), where u is the solution of the transport-reaction
equation and uh is given by the original DG method, is proven to be optimal in the
mesh size h and in the regularity of the exact solution. Unexpectedly, this happens
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Fig. 4.1. Meshes satisfying the flow condition with respect to β = (1, 0): Uniform mesh
(h = 1

23 ) (left) and its nonuniform perturbation (ℓ = 3) (right).

with meshes whose main feature is to be, roughly speaking, aligned with the flow.
The fact that the direction of the flow β is a constant and the use of simplexes

to define the triangulations Th seem to play a major role in the result. The case of
variable β and simplexes with curved boundaries is the subject of ongoing research.

Appendix.

The construction of triangulations satisfying the flow conditions. Let
us show that it is always possible to construct a triangulation of the domain Ω ⊂ R

d

satisfying the flow conditions (1.3).
We can do this as follows. First, we triangulate the inflow border of Ω, Γ−, by

using (d− 1)-dimensional simplexes T ; let Γ−
h := {T } be such a triangulation. Next,

for each T , we construct the d−dimensional prism

TT := (T ⊕ {λβ : λ ∈ R}) ∩ Ω,

which we are going to triangulate by using conforming d-dimensional simplexes. Note
that the triangulations of the prisms are completely independent of each other since
no conformity between them is required thanks to the flow conditions 1.3.

To triangulate the prism TT , we only have to show that, if T and T ′ are two (d−1)-
dimensional simplexes whose vertices are on the border of TT , we can triangulate the
convex hull of T and T ′, CH(T, T ′), by using exactly d d-dimensional simplexes each
of which has one inflow and one outflow face. Those simplexes are CH(Ti−1, Ti),
i = 1, . . . , d, where the (d− 1)-dimensional simplexes Ti, i = 0, . . . , d, are constructed
in such a way that T0 := T , Td := T ′, and, assuming that T is an inflow face, that
Ti−1 is the only inflow face of the simplex CH(Ti−1, Ti) and Ti is the only outflow
face of the simplex CH(Ti−1, Ti).

If we identify the (d− 1)-dimensional simplex Ti with its set of vertices, {xj
i}

d
j=1,

it is not difficult to see that we can take

T0 ≡{x1
0, x2

0, . . . ,x
d−2
0 , xd−1

0 , xd
0},

T1 ≡{x1
0, x2

0, . . . ,x
d−2
0 , xd−1

0 , xd
d},

T2 ≡{x1
0, x2

0, . . . ,x
d−2
0 , xd−1

d , xd
d},

T3 ≡{x1
0, x2

0, . . . ,x
d−2
d , xd−1

d , xd
d},

. . .

Td ≡{x1
d,x

2
d, . . . ,x

d−2
d ,xd−1

d , xd
d},

respectively. An example of this construction is illustrated in the Fig. 5.1.
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Fig. 5.1. Detail of the construction of a 3D triangulation satisfying the flow conditions.
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