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Abstract. We study the approximation of non-smooth solutions of the transport equation in
one-space dimension by approximations given by a Runge-Kutta discontinuous Galerkin method of
order two. We take an initial data which has compact support and is smooth except at a discontinuity,
and show that, if the ratio of the time step size to the grid size is less than 1/3, the error at the time
T in the L2(R\RT )−norm is the optimal order two when RT is a region of size O(T 1/2 h1/2 log 1/h)
to the right of the discontinuity and of size O(T 1/3 h2/3 log 1/h) to the left. Numerical experiments
validating these results are presented.
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1. Introduction. In this paper, we present the first error estimates for the
Runge-Kutta discontinuous Galerkin (RKDG) method for the transport equation with
discontinuous initial data. These results are obtained for a formally second-order
accurate RKDG method applied to the model problem

Ut + Ux = 0 in R× (0, T ), (1.1a)
U(·, 0) = U0(·) on R, (1.1b)

where the initial condition U0 has compact support; it has a discontinuity at x =
0 and is smooth everywhere else. Roughly speaking, we show that the quality of
the approximation at time T is of second order in the size of the mesh, h, outside
a region of size O(T 1/2 h1/2 log 1/h) to the right of the discontinuity and of size
O(T 1/3 h2/3 log 1/h) to the left. An illustration of this result can be seen in Fig. 1.1.

The RKDG method was introduced by Cockburn and Shu et al. in a series of
papers [10, 9, 8, 6, 11]; see also the monographs [4, 5] and the review [12]. Most a priori
and a posteriori error analyzes of discontinuous Galerkin (DG) methods for hyperbolic
problems have been carried out for either the semidiscrete version of the method or
for DG methods using space-time elements; see [7], where the development of the DG
methods up to the end of last century is described. To the knowledge of the authors,
the only a priori error analysis for the RKDG method is due to Shu and Zhang [19]
who proved, among other things, that the same method considered here (but applied
to nonlinear scalar conservation laws in several space dimensions) converges with order
two in the L∞(0, T ;L2(Rd))-norm provided that the solution is smooth. In this paper,
we continue this effort to understand the RKDG method and analyze it in case of
solutions that have discontinuities. As a stepping stone towards the goal of solving
the much more complicated case of nonlinear scalar conservation laws in several space
dimensions, we consider here the simpler model problem (1.1) and find, for each time
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Fig. 1.1. The two parts of the region RT containing the numerical layer of the RKDG method:
To the left (top) and to the right (bottom) of the discontinuity of the exact solution u. The approx-
imate solution uh was obtained by using h = 1/100 and k/h = 0.3. The time T is 0.5.

T , the region RT around the discontinuity of the exact solution U(·, T ) such that the
approximate solution uh(·, T ) given by the RKDG method converges with the optimal
order of two in the L2(R \ RT )-norm.

To do that, we use an approach which is a modification of the classical L2-
argument to obtain error estimates in the L∞(0, T ;L2(Rd))-norm, see, for example,
subsection 2.7 of [5], where the semidiscrete case is treated. The modification has
three main features. The first is the use of the decomposition of the error of the
approximation given by the RKDG method proposed by Shu and Zhang [19]. The
second, the use of special projections that allow us to obtain the full order of con-
vergence of the approximation; see [3]. In our technique, without these projections,
the order of convergence is reduced by 1/2. The third, the introduction of suitably
chosen weights thanks to which we can localize the estimates and make the difference
between the region to the left of the discontinuity and that to the right of it.

Similar weights were originally used by Johnson et al. [16] to prove local L2 error
estimates for a singularly perturbed reaction-convection-diffusion problem approxi-
mated by the streamline diffusion (SD) method; see [17] for L∞ results. Recently,
Guzmán [13] proved similar results for a DG method. Moreover, if one approximates
(1.1) with either the standard SD or DG method and linear space-time elements, one
can show using techniques in [16], [13] that the numerical layer resulting from dis-
continuous initial data is contained in a region whose size is at most O(log(1/h)h1/2)
from either side of the discontinuity. In this article we show that in one side of the
discontinuity, the size of the numerical layer can be reduced to O(log(1/h)h2/3) for
the RKDG method. We accomplish this by taking advantage of the monotonicity of
one of the two weight functions that we use; see Theorem 4.11 below.

Results of this type were obtained many years ago for finite difference methods
for the model problem (1.1) with discontinuous initial data; see [1], [14], [2] and [15].
Indeed, by using of Fourier techniques, the size of the numerical layer to the left of
the discontinuity was shown to be different to the size of the numerical layer to its
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right for some schemes; see (1.13) in [15]. In particular, the results concerning the
size of the numerical layer for second-order accurate finite difference methods with
fourth order dissipation in [15] are exactly the same result we prove in this paper for
the RKDG method.

The organization of the paper is as follows. In section 2, we introduce the RKDG
method under consideration and state and discuss the main result, Theorem 2.1. In
section 4, we prove the theorem, and in section 5 we display numerical results showing
that the result is sharp. We end in section 6 with some concluding remarks.

2. The main result. To state our main result, we first give a precise definition
of the RKDG under consideration. The RKDG method is obtained by discretizing
the equations in space by means of the DG method and then discretizing the resulting
system of ODEs by a second-order TVD Runge-Kutta time stepping [18]; see [9].

We take uniform grids in both space and time. Let {Ij}j be a uniform partition of
the real line where Ij = (xj−1/2, xj+1/2). Denote the mesh size by h = xj+1/2−xj−1/2

and the midpoint by xj = (xj+1/2+xj−1/2)/2. Accordingly, the RKDG approximation
at each time tn = k n, where k denotes the time step, is taken in the space

Vh = {v ∈ L2(R), v|Ij
∈ P 1(Ij) ∀j ∈ Z}.

For any function v ∈ Vh, we define the jump in v at the nodal point xj+1/2 by

[v]j+1/2 = v(x+
j+1/2)− v(x−j+1/2).

The RKDG approximation {un
h }∞n=0 is defined as follows. For n ≥ 0, un+1

h is the
element of Vh such that

∑

j

(un+1
h , vh)j =

∑

j

{1
2
(un

h, vh)j +
1
2
(wn

h , vh)j}+ k H(wn
h , vh), (2.1a)

where wn
h ∈ Vh is given by

∑

j

(wn
h , vh)j =

∑

j

(un
h, vh)j + kH(un

h, vh), (2.1b)

and

H(p, q) =
∑

j

(p, qx)j + p(x−j+1/2)[q]j+1/2. (2.1c)

Here (w, v)j =
∫

Ij
w v dx. For n = 0, we set

u0
h =P−(U0). (2.1d)

Here the projection P−(v) of a function v in the space

H1
h(R) = {v : R 7→ R such that v|Ij ∈ H1(Ij) ∀j ∈ Z},

is defined as the element of Vh satisfying, on each interval Ij , j ∈ Z,

(P−(v), 1)j = (v, 1)j and P−(v)(x−j+1/2) = v(x−j+1/2).
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This projection was introduced by [20] in the framework of DG methods for ODEs
and was later used in [3] to obtain optimal error estimates for DG methods for one-
dimensional convection-diffusion problems.

We can now state our main result.
Theorem 2.1. Let U be the solution of the initial value problem (1.1) and let

uN
h be the solution of the RKDG method (2.1) at time T = N k. Suppose that λ :=

k
h ≤ 1/3 − ε for some fixed ε ∈ (0, 1/3), then there exist constants β > 0 and C > 0
such that for any s ≥ 4

‖U(T )− uN
h ‖L2(R\RT ) ≤ C T h2(1 + (

k

T ε
)1/2) +Chs + ||U(T )−P−(U(T ))||L2(R\RT ).

where the interval RT is given by

RT = T + β s log(1/h)ε−1 (−λ−7/3T 1/3 h2/3, λ−1/2T 1/2 h1/2),

and C is independent of h, k, T and ε.
A couple of remarks are in order. The first is that our hypothesis that the CFL

condition λ ≤ 1/3 − ε is reasonable since it is well known that the RKDG under
consideration is L2-stable under the CFL condition

λ ≤ 1/3,

see, for example, [9, 12]. Taking ε > 0, allows us to take advantage of the damping
properties of the RKDG method. We would have to significantly modify our approach
to deal the case ε = 0 and the result might be very different.

The second remark is that this error estimate extends the result by Shu and Zhang
[19] for smooth solutions to non-smooth solutions, in the special case considered here,
of course. Indeed, in our case such result would read

‖U(T )− uN
h ‖L2(R) ≤ C h2,

provided the initial condition U0 is smooth. Our results says that the same rate of
convergence in h holds if the region RT around the discontinuity x = t is removed
from R.

3. Idea of the Proof. Since the proof of Theorem 2.1 is very technical, we
explain here the idea it is based upon. Suppose we are interested in establishing error
estimates to the left of the line t = x, that is, suppose we want to prove

‖U(T )− uN
h ‖L2(R\R−T ) ≤ C||U(T )− P−(U(T ))||L2(R\R−T )

+C T h2(1 + (
k

T ε
)1/2) + Chs (3.1)

where R−T = (T − β s log(1/h)ε−1λ−7/3T 1/3 h2/3,−∞).
To do this, we do not bound U(T ) − uN

h directly. Instead, we compare uN
h with

a smooth approximation u of U so that

‖U(T )− uN
h ‖L2(R\R−T ) = ‖u(T )− uN

h ‖L2(R\R−T ).

We then obtain a bound of the form

‖u(T )− uN
h ‖L2(R\R−T ) ≤ C‖φ1(T )(u(T )− uN

h )‖L2(R),
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where φ1 is a suitably chosen positive weight function.
The function φ1 will be of order one in the region of interest, will satisfy

(φ1)t + (φ1)x = 0.

It will be a decreasing function in x which is exponentially small near the the line
x = t; as a consequence, it will have an internal layer. Moreover, φ1 will satisfy

|D
l
x(φ1(x, t))
φ1(x, t)

| ≤ C

M l
for all (x, t), l = 1, 2, 3, 4. (3.2)

It is clear that the parameter M is nothing but the size of the above mentioned layer.
In this way, we reduce the original problem to that of showing a weighted stability

result for the error. In solving this problem, we will try to match the size of the layer
of the weight function, M , with that of the internal layer produced by the numerical
scheme to the left of the discontinuity. Indeed, roughly speaking, we will show that if
we take M = ε−1λ−7/3T 1/3 h2/3, we obtain that

‖φ1(T )(u(T )− uN
h )‖L2(R) ≤ C‖φ1(0)(u(0)− u0

h)‖L2(R) + C T h2(1 + (
k

T ε
)1/2). (3.3)

Finally, if we take that u0 = U0 in the region of interest and since φ1(0) is
exponentially small when u0 6= U0 we would arrive at (3.1).

A similar argument is used to estimate the error to the right of the discontinuity.
In this case, however, it turns out that we cannot choose the corresponding weight
function φ2 to be a decreasing function in x. This leads to a larger numerical layer to
the right.

Most of this paper is dedicated to proving a result similar to (3.3) for the two
different weights φ1 and φ2. Next we illustrate one of the main ideas behind the
proof of such an estimate by proving a similar result for a continuous problem; the
techniques will be similar but more simple.

To this end, we have to find a continuous model for the equation satisfied by the
error e. Although the model equation for stable second-order accurate finite difference
methods with constant coefficients is of the form

et + ex = c2 h
2exxx − c3 h

3exxxx,

where c3 > 0, see [15], we are going to work with a simpler equation in order to simplify
the computations; the final result will be the same. Thus, let e be the solution of

et + ex = h2exxx in R× (0, T ), (3.4a)
e(x, 0) = e0(x) on R,

where e0 is smooth with compact support, and suppose we are interested in proving
a weighted stability result of the form

‖φ(T )e(T )‖L2(R) ≤ C‖φ(0)e0‖. (3.5)

where φ solves φt + φx = 0, is a decreasing function in x and satisfies (3.2).
In obtaining the estimate (3.5), one important question is: how to pick M in an

optimal way? To answer this question, we proceed as follows. First, we multiply both
sides of (3.4a) by φ2e and integrate in space and time and to obtain

||φ(T )e(T )||2L2(R) = ||φ(0)e(0)||2L2(R) + h2

∫ T

0

(exxx(t), φ2(t)e) dt.
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By using that exxxe = 1
2 (e2)xxx − 3

2 ((ex)2)x

h2

∫ T

0

(exxx(t), φ2(t)e) dt =
h2

2

∫ T

0

(φ2(t), (e2(t))xxx) dt− 3h2

2

∫ T

0

((φ(t))2, ((ex)2)x) dt

=
h2

2

∫ T

0

((φ2(t))xxx, e
2(t)) dt+

3h2

2

∫ T

0

((φ2(t))x, (ex)2) dt

In the last equation we used integration by parts and the fact that e has compact
support. Now we use that (φ2(t))x < 0 to get that

||φ(T )e(T )||2L2(R) ≤ ||φ(0)e(0)||2L2(R) +
h2

2

∫ T

0

((φ2(t))xxx,e
2(t)) dt

≤ ||φ(0)e(0)||2L2(R) +
Ch2

M3

∫ T

0

‖φ(t)e2(t)‖2L2(R) dt

In the last equation we used (3.4a). Finally, by Gronwall’s inequality, we have

||φ(T )e(T )||2L2(R) ≤ ||φ(0)e0||2L2(R)(1 +
CTh2

M3
e

CT h2

M3 ),

and we see that we must choose M = CT 1/3h2/3 to obtain the wanted estimate.
Note that if φ is not a decreasing function in x then M will have to be larger in

order to prove stability. This actually happens when dealing with the numerical layer
to the right of the discontinuity. This is why the layer to the left of the discontinuity
is smaller.

4. Proof. In this section we give a detailed proof of Theorem 2.1. We proceed
in several steps.

4.1. Step 1: The Error Equations. First we define a suitable approximation
u to U . The smooth approximation u will satisfy

ut + ux =0 in R× (0, T ), (4.1a)
u(x, 0) =u0(x) on R. (4.1b)

where u0 is a smooth function which agrees with U0 on (−∞,−h) ∪ (h,∞) such that

|Dlu0(x)| ≤ Ch−l for x ∈ [−h, h], l = 1, 2, 3, 4. (4.2)

We then obtain the equations satisfied by the error en
u = u(tn)− un

h. To capture
the two-step nature of the RKDG method under consideration, we follow [19] and
introduce the function

w(x, t) = u(x, t)− k ux(x, t), (4.3)

and the corresponding error, namely, en
w = w(tn) − wn

h . Finally, we write, for p = u
and p = w,

en
p = ξn

p − ηn
p , (4.4a)

ξn
p = P−(p(tn))− pn

h (projection of the error en
p ), (4.4b)

ηn
p = P−(p(tn))− p(tn) (interpolation error). (4.4c)
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In addition to the projection P−, we also have to introduce the similar projection
P+ given on Ij by

(P+(v), 1)j = (v, 1)j and P+(v)(x+
j−1/2) = v(x+

j−1/2).

The projections P± are strongly related to the bilinear form H(·, ·) defined by
(2.1c), as we can see in the next result.

Lemma 4.1. We have, for any w ∈ H1
h(R) and any vh ∈ Vh,

H(w − P−(w), vh) = 0, (4.5a)
H(vh, w − P+(w)) = 0. (4.5b)

Proof. The identity (4.5a) follows from the definitions of H and P−. Using
integration by parts we can rewrite H(p, q) as

H(p, q) = −
∑

j

{(px, q)j + q(x+
j+1/2)[p]j+1/2}.

The identity (4.5b) now follows from the above equation and the definition of P+.
The equations for the error are contained in the following result.
Lemma 4.2. We have, for any v ∈ H1

h(R),

∑

j

(ξn
w, v)j =

∑

j

(ξn
u , v)j + k H(ξn

u , v) + E2(v) + E3(v), (4.6a)

∑

j

(ξn+1
u , v)j =

∑

j

(ξn
u , v)j +

k

2
H(ξn

w, v) +
k

2
H(ξn

u , v)

+ E1(P+(v)) +
1
2
E2(v) +

1
2
E3(v) + E4(v) + E5(v), (4.6b)

where

E1(v) =
k3

6

∑

j

(uttt(ζn), v)j ,

E2(v) =
∑

j

(ξn
w − ξn

u , v − P+(v))j ,

E3(v) =
∑

j

(ηn
w − ηn

u , P+(v))j ,

E4(v) =
∑

j

(ξn+1
u − (ξn

u + ξn
w)/2, v − P+(v))j ,

E5(v) =
∑

j

(ηn+1
u − (ηn

u + ηn
w)/2, P+(v))j .

Here, ζn is a function of x lying in the interval (tn, tn+1).
Proof. Let us begin by proving the identity (4.6a). For any function v in H1

h(R),
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we have, by the definition of ξp and ηp, (4.4), that
∑

j

(ξn
w, v)j =

∑

j

{(en
w, v)j + (ηn

w, v)j}

=
∑

j

{(en
w, P+(v))j + (en

w, v − P+(v))j + (ηn
w, v)j}

=
∑

j

{(en
w, P+(v))j + (ξn

w, v − P+(v))j + (ηn
w, P+v)j}.

To suitably rewrite the first term of the right-hand side, we notice that by definition
of w, (4.3), and since u is smooth we have

∑

j

(w(tn), vh)j =
∑

j

(u(tn), vh)j + k H(u(tn), vh),

for any vh ∈ Vh. Hence, by subtracting the equation defining wn
h , (2.1b), we obtain

∑

j

(en
w, vh)j =

∑

j

(en
u, vh)j + k H(en

u, vh). (4.7)

Now, taking vh = P+(v), we immediately get
∑

j

(en
w, P+(v))j =

∑

j

(en
u, P+(v))j + k H(en

u, P+(v))

=
∑

j

(en
u, P+(v))j + k H(ξn

u , v),

since, by the properties (4.5a) and (4.5b), we have

H(en
u, P+(v)) = H(P−(en

u), P+(v)) = H(ξn
u , P+(v)) = H(ξn

u , v).

As a consequence, we get
∑

j

(ξn
w, v)j =

∑

j

(en
u, P+(v))j + k H(ξn

u , v)

+
∑

j

{(ξn
w, v − P+(v))j + (ηn

w, P+(v))j}

=
∑

j

(ξn
u , v)j + k H(ξn

u , v)

+
∑

j

{(ξn
w − ξn

u , v − P+(v))j + (ηn
w − ηn

u , P+(v))}

=
∑

j

(ξn
u , v)j + k H(ξn

u , v) + E2(v) + E3(v),

by definition of E2(v) and E3(v). This proves the identity (4.6a).
It remains to prove the identity (4.6b). For any function v in H1

h(R) we have
that,

∑

j

(ξn+1
u , v)j =

∑

j

{(ξn+1
u , P+(v))j + (ξn+1

u , v − P+(v))j}

=
∑

j

{(en+1
u , P+(v))j + (ηn+1

u , P+(v))j + (ξn+1
u , v − P+(v))j},
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by the definition of ξp and ηp, (4.4).
Next, we rewrite the first term of the right-hand side. By Taylor’s theorem

u(x, t+ k) =
1
2
u(x, t) +

1
2
w(x, t)− k

2
wx(x, t) +

k3

6
uttt(x, ζ),

where ζ depends on x and is t ≤ ζ ≤ t + k. After a simple integration by parts, we
have

∑

j

(u(tn+1), v)j =
∑

j

1
2
(u(tn), v)j +

1
2
(w(tn), v)j +

k

2
H(w(tn), v) + E1(v).

Subtracting the equation defining un+1
h , (2.1a), we get for any vh ∈ Vh

∑

j

(en+1
u , vh)j =

∑

j

1
2
(en

u, vh)j +
1
2
(en

w, vh)j +
k

2
H(en

w, vh) + E1(vh),

and using (4.7), we obtain

∑

j

(en+1
u , vh)j =

∑

j

(en
u, vh) +

k

2
H(en

w, vh) +
k

2
H(en

u, vh) + E1(vh).

Finally, taking vh = P+(v) and using (4.5b) this equation becomes

∑

j

(en+1
u , P+(v))j =

∑

j

(en
u, P+(v))j +

k

2
H(ξn

w, v)j +
k

2
H(ξn

u , v) + E1(P+(v)).

This implies

∑

j

(ξn+1
u , v)j =

∑

j

(en
u, P+(v))j +

k

2
H(ξn

w, v) +
k

2
H(ξn

u , v) + E1(P+(v))

+
∑

j

{(ηn+1
u , P+(v))j + (ξn+1

u , v − P+(v))j}

=
∑

j

(ξn
u , v)j +

k

2
H(ξn

w, v) +
k

2
H(ξn

u , v) + E1(P+(v))

+
∑

j

{(ηn+1
u − ηn

u , P+(v))j + (ξn+1
u − ξn

u , v − P+(v))j}

=
∑

j

(ξn
u , v) +

k

2
H(ξn

w, v) +
k

2
H(ξn

u , v) + E1(P+(v))

+
1
2
E2(v) +

1
2
E3(v) + E4(v) + E5(v).

4.2. Step 2: The weights. Theorem 2.1 will follow from estimates of quantities
of the form

‖φ(·, tn)(u(tn)− un
h)‖L2(R),

where φ(x, t) is a suitably chosen weight function. Here we describe the weights we
are going to work with.
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Since, as we stated in the introduction, we have different results on the left and
on the right of the discontinuity, we consider two slightly different weight functions
φ1 and φ2. The weight φ1 will be of order one in the region x < t + x1, for some
number x1 < 0, and ”small” in the region x > t+ x1 + d1 for some d1 > 0 , whereas
the weight φ2 is of order one on the region x > t+ x2, for some number x2 > 0, and
”small” in the region x < t+x2−d2 for some d2 > 0. A very important property that
will allow better results to the left of the discontinuity is that φ1(x, t) can be chosen
as a decreasing function in x.

We take the functions φi, for i = 1, 2, as solutions of

φi,t + φi,x =0 in R× (0, T ),
φi(x, 0) =bi(x) on R,

for some initial conditions b1 and b2. We choose the initial conditions b1 and b2 so
that φ1 and φ2 satisfy:

Proposition 4.3. We have

c ≤ φi(x, t) ≤ C for (x, t) ∈ Ωi(0), (4.8a)

φi(x, t) ≤ hs for (x, t) ∈ R2\Ωi(di), (4.8b)

(−1)i+1φi,x(x, t) < 0 for all (x, t), (4.8c)∣∣∣∣
Dl+1

x (φi(x, t))
(φi(x, t))x

∣∣∣∣ +
∣∣∣∣
Dl

x(φi(x, t))
φi(x, t)

∣∣∣∣ ≤
C

(K̃iT̃ 1−γihγi)l
for all (x, t), l = 1, 2, 3 (4.8d)

RO(S, φi) + RO(S, (φi)x) ≤ C for all squares S with sides

of length T̃ 1−γihγi , (4.8e)

where

Ω1(d) = {(x, t) : x ≤ t+ x1 + d},
Ω2(d) = {(x, t) : x ≥ t+ x2 − d},

di = s log(1/h)K̃iT̃
1−γihγi ,

RO(D,χ) = maxr∈D |χ(r)| /minr∈D |χ(r)| , for any domain D, and c and C are posi-
tive constants independent of h, λ and T . Here T̃ = T

λ and K̃i = Ki

λmi
. The parameters

Ki, γi and mi satisfy Ki ≥ 1, 0 ≤ γi ≤ 1 and mi ≥ 0 for i = 1, 2.
In the rest of this paper we assume that the CFL number satisfies λ ≤ 1/3.

Therefore, often we will use that 1
K̃i
≤ 1

Ki
≤ 1. Also, since T̃ 1−γihγi = (T

k )1−γih ≥ h,
we see that RO(S, φi) and RO(S, (φi)x) are bounded for squares S with sides of size
h.

The construction of b1 and b2 is very similar to the construction of weight functions
used in [16]. We include it in the appendix for completeness.

4.3. Step 3: The error in one time step. Next, we find how the weighted
error changes in a single time step. This information is captured in a key identity
contained in the following result.

Lemma 4.4. Let φ be any solution of the equation φt + φx = 0. Then we have

‖φ(tn+1)ξn+1
u ‖2L2(R) + Jh = ‖φ(tn)ξn

u‖2L2(R) +
k

2
Θ((φ2)x) + Ψh(φ) + Eh, (4.9)
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where

Jh :=
k

2

∑

j

{[φ(tn)ξn
u ]2j+1/2 + [φ(tn+1)ξn

w]2j+1/2}

Θ(v) :=
∑

j

Θj(v), Θj(v) := (ξn
w − ξn

u , v(t
n)(ξn

w − ξn
u ))j ,

Ψh(φ) :=‖φ(tn+1)(ξn+1
u − ξn

w)‖2L2(R).

Moreover,

Eh :=2E1(P+(φ2(tn+1)ξn
w)) + 2E4(φ2(tn+1)ξn

w) + 2E5(φ2(tn+1)ξn
w)

+ E2(φ2(tn)ξn
u ) + E3(φ2(tn)ξn

u )− k2

2

∑

j

(ξn
w − ξn

u , (φ
2(tn))xxξ

n
w)j

+ S1 + S2,

where

S1 =− k3

6

∑

j

(ξn
u , (φ

2)xxx(θn
1 )ξn

w)j and S2 =
k3

4

∑

j

(ξn
w, (φ

2)xxx(θn
2 )ξn

w)j .

Here θn
i , i = 1, 2, depend on x and tn ≤ θn

i ≤ tn+1.
Before proving this result, let us briefly discuss some of its salient features. Notice

that:
• This result is completely independent of the fact that the approximate solution

is piecewise linear in space. It only takes into account the nature of the Runge-Kutta
time stepping method we are considering.

• The term Jh containing the jumps across inter-element boundaries captures the
dissipative nature of the DG-space discretization. In the analysis, it will allow us to
control the terms of the right-hand side.

• The term Θ((φ2)x) will allow us to distinguish between the behavior of the
error to the right and that to the left of the discontinuity. Since Θ((φ2

1)x) ≤ 0, this
term enhances the damping properties of the method to the left of the discontinuity.
This property does not hold for for Θ((φ2

2)x) which will have to be controlled by the
jumps in Jh. This is the technicality that captures the fact that the approximation
properties to the left and to the right of the discontinuity of the exact solution are
very different. This results in a region RT whose size is significantly smaller to the
left of the discontinuity than to its right.

• If the initial condition U0 were smooth we could then take φ ≡ 1 and the above
result would be the first step in the L2-error analysis, see [19]. In such a case, the
estimates of the terms of the right-hand side play a crucial role, with the exception
of the term Θ((φ2)x), which is identically equal to zero.

• Note that this lemma also contains the first step of the L2-stability analysis of
the RKDG method under consideration, which we obtain by setting φ ≡ 1 and u = 0.
In this case, the equation (4.9) becomes

||un+1
h ||2L2(R) +

k

2

∑

j

{[un
h]2j + [wn

h ]2j} = ||un
h||2L2(R) + ||un+1

h − wn
h ||2L2(R). (4.10)

The second term of the left-hand side reflects the dissipative nature of the DG-space
discretization of the method whereas the second term of the right-hand side captures
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the anti-dissipative nature typical of explicit schemes. The condition that the dissi-
pative term dominates the anti-dissipative is nothing but the CFL condition. As we
are going to see, a sharp estimate of the term ||un+1

h −wn
h ||L2(R) allows us to see that

the method is L2 stable provided λ ≤ 1/3.
Let us now prove Lemma 4.4.
Proof. We begin by considering the trivial identity

‖φ(tn+1)ξn+1
u ‖2L2(R) =‖φ(tn+1)(ξn+1

u − ξn
w)‖2L2(R)

+ 2
∑

j

(ξn+1
u , φ2(tn+1)ξn

w)j − ‖φ(tn+1)ξn
w‖2L2(R).

If we subtract (4.6a) from two times (4.6b) we get

2
∑

j

(ξn+1
u , v)j =

∑

j

{(ξn
w, v)j + (ξn

u , v)j}+ kH(ξn
w, v)

+2E1(P+(v)) + 2E4(v) + 2E5(v).

Taking v = φ2(tn+1) ξn
w in this equation and v = φ2(tn) ξn

u in (4.6a), we obtain

2
∑

j

(ξn+1
u , φ2(tn+1)ξn

w)j = ‖φ(tn)ξn
u‖2L2(R) + ‖φ(tn+1)ξn

w‖2L2(R)

+kH(ξn
u , φ

2(tn)ξn
u ) + kH(ξn

w, φ
2(tn+1)ξn

w)
+2E1(P+(φ2(tn+1)ξn

w)) + 2E4(φ2(tn+1)ξn
w)

+2E5(φ2(tn+1)ξn
w) + E2(φ2(tn)ξn

u )

+E3(φ2(tn)ξn
u ) +

∑

j

(ξn
w, (φ

2(tn+1)− φ2(tn))ξn
u )j ,

and hence,

‖φ(tn+1)ξn+1
u ‖2L2(R) = ‖φ(tn)ξn

u‖2L2(R) + ‖φ(tn+1)(ξn+1
u − ξn

w)‖2L2(R)

+kH(ξn
u , φ

2(tn)ξn
u ) + kH(ξn

w, φ
2(tn+1)ξn

w)
+2E1(P+(φ2(tn+1)ξn

w)) + 2E4(φ2(tn+1)ξn
w)

+2E5(φ2(tn+1)ξn
w) + E2(φ2(tn)ξn

u )

+E3(φ2(tn)ξn
u ) +

∑

j

(ξn
u , (φ

2(tn+1)− φ2(tn))ξn
w)j .

Since, for any v ∈ H1
h(R)

H(v, φ2(t)v) =H(φ(t)v, φ(t)v) +
1
2

∑

j

(v, (φ2(t))xv)j

=− 1
2

∑

j

[φ(t)v]2j+1/2 +
1
2

∑

j

(v, (φ2(t))xv)j ,
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we get

‖φ(tn+1)ξn+1
u ‖2L2(R)+Jh = ‖φ(tn)ξn

u‖2L2(R) + Ψh(φ)

+
k

2

∑

j

{(ξn
u , (φ

2(tn))xξ
n
u )j + (ξn

w, (φ
2(tn+1))xξ

n
w)j}

+2E1(P+(φ2(tn+1)ξn
w)) + 2E4(φ2(tn+1)ξn

w)
+2E5(φ2(tn+1)ξn

w) + E2(φ2(tn)ξn
u )

+E3(φ2(tn)ξn
u ) +

∑

j

(ξn
u , (φ

2(tn+1)− φ2(tn))ξn
w)j . (4.11)

Using Taylor’s expansion, we see that
∑

j

(ξn
u , (φ

2(tn+1)− φ2(tn))ξn
w)j = −k

∑

j

(ξn
u , (φ

2(tn))xξ
n
w)j

+
k2

2

∑

j

(ξn
u , (φ

2(tn))xxξ
n
w)j + S1.

Here we used that (φ2)t = −(φ2)x. Similarly,

k

2

∑

j

(ξn
w, (φ

2(tn+1))xξ
n
w)j =

k

2

∑

j

{(ξn
w, (φ

2(tn))xξ
n
w)j

−k
2

2
(ξn

w, (φ
2(tn))xxξ

n
w)j}+ S2.

Therefore,

k

2

∑

j

{(ξn
u , (φ

2(tn))xξ
n
u )j + (ξn

w, (φ
2(tn+1))xξ

n
w)j}

+
∑

j

(ξn
u , (φ

2(tn+1)− φ2(tn))ξn
w)j

=
k

2

∑

j

{(ξn
u , (φ

2(tn))xξ
n
u )j + (ξn

w, (φ
2(tn))xξ

n
w)j}

−k
∑

j

(ξn
u , (φ

2(tn))xξ
n
w)j − k2

2

∑

j

(ξn
w − ξn

u , (φ
2(tn))xxξ

n
w) + S1 + S2

=
k

2
Θ((φ2)x)− k2

2

∑

j

(ξn
w − ξn

u , (φ
2(tn))xxξ

n
w) + S1 + S2.

The result follows after inserting the above identity into (4.11). This completes the
proof.

4.4. Step 4: Bound for Ψh. In order to bound Ψh we first need a bound for
||ξn+1

u − ξn
w||Ij for each interval Ij . By exploiting the fact that ξn+1

u − ξn
w is linear

on each element, we express ξn+1
u − ξn

w in terms of its mean and derivative on each
element. More precisely, if v ∈ Vh then for x ∈ Ij we have

v(x) = v̄(xj) + vx(xj)(x− xj) (4.12)
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where the average of v on Ij is v̄(xj) = 1
h (v, 1)j . The representation we are seeking

is contained in the following lemma which is proved in the appendix. For the rest of
this paper θn will denote a number satisfying tn ≤ θn ≤ tn+1 which depends on x;
the values of θn may be different in separate occurrences. It will appear in different
places when we use Taylor’s Theorem.

Lemma 4.5. For x ∈ Ij, we have

(ξn+1
u − ξn

w)(x) =
−3k2

h2
[ξn

u ]j−1/2 −
k

2h
[ξn

w − ξn
u ]j−1/2 +

k3

6h
R3,j − k

2h3
R1,j

+ (
3k
h2

[ξn
w − ξn

u ]j−1/2 +
k3

6h3
R4,j − 6

h3
R1,j +

6
h3
R2,j)(x− xj),

(4.13a)

and

(ξn
w − ξn

u )(x) =− k(ξn
u )x(xj)− k

h
[ξn

u ]j−1/2 + (6
k

h2
[ξn

u ]j−1/2 +
12
h3
R1,j)(x− xj),

(4.13b)

where

R1,j =
∫

Ij

(ηn
w − ηn

u)(x− xj)dx, R2,j =
∫

Ij

(ηn+1
u − (ηn

w + ηn
u)/2)(x− xj)dx,

R3,j =
∫

Ij

uttt(θn)dx, R4,j =
∫

Ij

uttt(θn)(x− xj)dx.

Now we calculate the term ‖(ξn+1
u − ξn

w)‖2L2(Ij)
. We are going to express it in

terms of the vector [ξn]j−1/2 := ([ξn
u ]j−1/2, [ξn

w]j−1/2).
Lemma 4.6. If λ = k

h , then

‖ξn+1
u − ξn

w‖2L2(Ij)
= k [ξn]j−1/2A[ξn]tj−1/2 + Yj , (4.14)

where

A :=
(
Q(λ) 1

2 Z(λ)
1
2 Z(λ) λ

)
, Q(λ) = 9λ3 − 3λ2 + λ, Z(λ) = 3λ2 − 2λ,

and

Yj =h(
k3

6h
R3,j − k

2h3
R1,j)2 +

h3

12
(
k3

6h3
R4,j − 6

h3
R1,j +

6
h3
R2,j)2

+ 2h(
−3k2

h2
[ξn

u ]j−1/2 −
k

2h
[ξn

w − ξn
u ]j−1/2)(

k3

6h
R3,j − k

2h3
R1,j)

+ 2
h3

12
(
3k
h2

[ξn
w − ξn

u ]j−1/2)(
k3

6h3
R4,j − 6

h3
R1,j +

6
h3
R2,j).

Proof.
By using (4.13a) and the fact that

∫
Ij

(x − xj)2 = h3

12 and
∫

Ij
(x − xj)dx = 0, we

get that

‖ξn+1
u − ξn

w‖2L2(Ij)
= h ((ξn+1

u − ξn
w)(xj))2 +

h3

12
((ξn+1

u − ξn
w)x(xj))2

= h(
−3k2

h2
[ξn

u ]j−1/2 −
k

2h
[ξn

w − ξn
u ]j−1/2 +

k3

6h
R3,j − k

2h3
R1,j)2

+
h3

12
(
3k
h2

[ξn
w − ξn

u ]j−1/2 +
k3

6h3
R4,j − 6

h3
R1,j +

6
h3
R2,j)2,
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and the result follows after a few simple algebraic manipulations.
Note that, by simply setting φ = 1 and u = 0, we obtain an identity which is used

for the L2-stability analysis, namely,

‖un+1
h − wn

h‖2L2(Ij)
= k

∑

j

[un]j−1/2 A[un]tj−1/2,

where [un]j−1/2 := ([un
h]j−1/2, [wn

h ]j−1/2). Indeed, inserting this expression in the
identity (4.10), we get

‖un+1
h ‖2L2(R) + k

∑

j

[un]j−1/2(
1
2
I− A)[un]tj−1/2 = ‖un

h ‖2L2(R),

where I is the 2× 2 identity matrix. Therefore, the method is L2-stable if the matrix
1
2 I− A is positive semi-definite. This occurs precisely for λ ≤ 1/3.

Note also that, although we do not need to take λ < 1/3 to achieve L2-stability,
we need to take this choice in our error analysis. As we are going to see, taking
λ ≤ 1/3 − ε with ε > 0 ensures that the matrix 1

2 I − A is positive definite and, as a
consequence, the terms involving the jumps of ξn

u and ξn
w in the right-hand side of the

identity (4.9) of Lemma 4.4, can be controlled by the term Jh.
We now state and prove the bound for Ψh(φi). We will need the following nota-

tion:

[φξn]j−1/2 := ([φ(tn) ξn
u ]j−1/2, [φ(tn+1) ξn

w]j−1/2).

Lemma 4.7. We have

Ψh(φi) ≤ k
∑

j

[φiξ
n]j−1/2 Bi[φiξ

n]tj−1/2

+C Ki‖φi(tn)(ηn
w − ηn

u)‖2L2(Ij)

+C Ki‖φi(tn)(ηn+1
u − (ηn

u + ηn
w)/2)‖2L2(Ij)

+C Kik
6‖φi(tn)uttt(θn)‖2L2(R),

where

Bi = A+
C

Ki
I.

Proof. To simplify the notation, we drop the subindex i. We have

Ψh(φ) = T1 + T2,

where

T1 =
∑

j

φ2(xj−1/2, t
n+1)‖(ξn+1

u − ξn
w)‖2L2(Ij)

,

T2 =
∑

j

∫

Ij

(φ2(x, tn+1)− φ2(xj−1/2, t
n+1))(ξn+1

u − ξn
w)2(x) dx.
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We first estimate the term T1. We multiply (4.14) by φ2(xj−1/2, t
n+1) and we

bound the terms of the resulting right hand side separately. Since

φ2(xj−1/2, t
n+1) =φ2(xj−1/2, t

n) + k(φ2)t(xj−1/2, θ
n)

φ(xj−1/2, t
n+1) =φ(xj−1/2, t

n) + kφt(xj−1/2, θ
n),

by using inequalities (4.8d) and (4.8e), we have

kφ2(xj−1/2, t
n+1)[ξn]j−1/2A[ξn]tj−1/2 ≤ k[φξn]j−1/2A[φξn]tj−1/2

+ k(
Ch1−γ

T̃ 1−γK̃
)[φξn]j−1/2I[φξn]tj−1/2.

Here we used that the entries of A are bounded for λ ∈ [0, 1/3].
Using (4.8e) and the Cauchy Schwarz inequality, we get from the definition of

Rl,j for l = 1, · · · , 4, that

φ(xj−1/2, t
n)(

k6

h
|R3,j |2 +

1
h3
|R1,j |2 +

k6

h3
|R4,j |2 +

1
h3
|R2,j |2)

≤ C(‖φ(tn)(ηn
w − ηn

u)‖2L2(Ij)
+ ‖φ(tn)(ηn+1

u − (ηn
u + ηn

w)/2)‖2L2(Ij)
)

+Ck6‖φ(tn)uttt(θn)‖2L2(Ij)
.

Therefore, if we again apply (4.8e), multiply and divide each term of Yj by K1/2 and
apply Young’s inequality we obtain

|φ2(xj−1/2, t
n+1)Yj | ≤ 1

K
k[φξn]j−1/2I[φξn]tj−1/2

+C K‖φ(tn)(ηn
w − ηn

u)‖2L2(Ij)

+C K‖φ(tn)(ηn+1
u − (ηn

u + ηn
w)/2)‖2L2(Ij)

+C Kk6‖φ(tn)uttt(θn)‖2L2(Ij)
.

Hence,

T1 ≤ k
∑

j

[φξn]j−1/2(A+ ((
h

T̃
)1−γ C

K̃
+
C

K
)I)[φξn]tj−1/2

+C K‖φ(tn)(ηn
w − ηn

u)‖2L2(Ij)

+C K‖φ(tn)(ηn+1
u − (ηn

u + ηn
w)/2)‖2L2(Ij)

+ C K k6‖φ(tn)uttt(θn)‖2L2(R).

To bound T2 we see from (4.14) that

T2 ≤
∑

j

‖φ2(xj−1/2, t
n+1)− φ2(tn+1)‖L∞(Ij)(k[φξn]j−1/2A[φξn]tj−1/2 + Yj).

By using the inequality

‖φ2(xj−1/2, t
n+1)− φ2(tn+1)‖L∞(Ij) ≤

Ch1−γ

T̃ 1−γK̃
‖φ2(tn+1)‖L∞(Ij),

the inequality (4.8e) and the Young’s inequality, we obtain

‖φ2(xj−1/2, t
n+1)− φ2(tn+1)‖L∞(Ij)(k[φξn]j−1/2A[φξn]tj−1/2)

≤ Ch1−γ

T̃ 1−γK̃
k[φξn]j−1/2I[φξn]tj−1/2.
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By the triangle inequality and (4.8e) we have

‖φ2(xj−1/2, t
n+1)− φ2(tn+1)‖L∞(Ij)|Yj | ≤ C|φ(xj−1/2, t

n+1)Yj |.

Therefore,

T2 ≤ k
∑

j

[φξn]j−1/2((
h

T̃
)1−γ C

K̃
+
C

K
)I[φξn]tj−1/2

+C K‖φ(tn)(ηn
w − ηn

u)‖2L2(Ij)

+C K‖φ(tn)(ηn+1
u − (ηn

u + ηn
w)/2)‖2L2(Ij)

+M(ε)k6‖φ(tn)uttt(θn)‖2L2(R).

By combining the estimates of T1 and T2 and using h
T̃
≤ 1, γ ≤ 1 and 1

K̃
≤ 1

K
concludes the proof.

4.5. Step 6: Estimates of Eh. We state two slightly different estimates for
Eh(φi). One would be applied with the weight φ1 and the other for φ2. To simplify
notation, for the rest of this section we let φ = φi, K = Ki, m = mi and γ = γi for
i = 1 or i = 2.

Lemma 4.8. If K is sufficiently large, then

Eh(φ) ≤ (1 + λm−2)
Ck

K

∑

j

[φξn]j−1/2I[φξn]tj−1/2 +
k

4
Θ(|(φ2)x|)

+{ k
4T

+ (1 + (
h

T̃
)(3−4γ) + (

h

T̃
)2−3γ)

C k

K T
}||φ(tn)ξn

u ||2L2(R)

+(1 + (
h

T̃
)2(3/2−2γ) + (

h

T̃
)2−3γ)

C T

k
||φ(tn)(ηn

w − ηn
u)||2L2(R)

+
C T

k
(||φ(tn)(ηn+1

u − ηn
u)||2L2(R) + k6||φ(tn)uttt(θn)||2L2(R)).

and

Eh(φ) ≤ Ck

K

∑

j

[φξn]j−1/2I[φξn]tj−1/2 +
k

4
Θ(|(φ2)x|)

+{ k
4T

+ (1 + (
h

T̃
)2(3/2−2γ) + (

h

T̃
)2−3γ + (

h

T̃
)1−2γ)

C k

K T
}||φ(tn)ξn

u ||2L2(R)

+(1 + (
h

T̃
)2(3/2−2γ) + (

h

T̃
)2−3γ + (

h

T̃
)1−2γ)

C T

k
||φ(tn)(ηn

w − ηn
u)||2L2(R)

+
C T

k
(||φ(tn)(ηn+1

u − ηn
u)||2L2(R) + k6||φ(tn)uttt(θn)||2L2(R)).

The proof of this lemma is contained in the appendix. Here we would like to point
out that the main tool in proving this result is super-approximation. The super-
approximation result involving are weights are similar to the ones used in [16] and [13].
For the sake of completeness we include proof of the following super-approximation
lemma in the appendix.
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Lemma 4.9. If P = P− or P = P+ and l = 0, 1, 2, then there exists C > 0
independent of h such that for all v ∈ Vh the following estimates hold:

‖φ−1(t)(φ2(t)v − P (φ2(t)v)‖L2(Ij)

+ h‖φ−1(t)(φ2(t)v − P (φ2(t)v))x‖L2(Ij)

≤ Ch2−2γ

T̃ 2(1−γ)K̃2
‖φ(t)v‖L2(Ij)

+
Ch2−γ/2

T̃ (1−γ)/2K̃1/2
‖(|φ(t)φx(t)|)1/2vx‖L2(Ij), (4.15a)

‖φ−1(t)(Dl
x(φ2(t))v − P (Dl

x(φ2(t))v)‖L2(Ij)

+ h‖φ−1(t)(Dl
x(φ2(t))v − P (Dl

x(φ2(t))v))x‖L2(Ij)

≤ (
Ch2−(l+2)γ

T̃ (1−γ)(l+2)K̃2+l
+

Ch1−(l+1)γ

T̃ (1−γ)(l+1)K̃l+1
)‖φ(t)v‖L2(Ij),

(4.15b)

Let us illustrate how we can use Lemma 4.9 to prove Lemma 4.8 by showing how we
can bound one of the terms appearing in the definition of Eh.

Lemma 4.10. Let tn ≤ t ≤ tn+1 and vh ∈ Vh, then for l = 0, 1, 2,

hl|E2(Dl
x(φ2(t))vh)|+ hl|E4(Dl

x(φ2(t))vh)|
≤ C k

Kl+1

∑

j

[φξn]j−1/2I[φξn]tj−1/2

+(1 + (
h

T̃
)2(l+1/2−(l+1)γ) + (

h

T̃
)2(l+3/2−(l+2)γ))

C k

Kl+1 T
‖φ(tn)vh‖2L2(R) (4.16)

+
CT

k
(‖φ(tn)(ηn

w − ηn
u)‖2L2(R) + ‖φ(tn)(ηn+1

u − ηn
u)‖2L2(R) + k6‖uttt(θn)‖2L2((R)).

If we take l = 0, vh = ξn
u and t = tn, then we get the E2 term appearing in the

definition of Eh.
Proof. Using (4.13b) and the properties of P+ we get that

hl|E2(Dl
x(φ2(t))vh)| = hl|

∑

j

(ξn
w − ξn

u , D
l
x(φ2(t))vh − P+(Dl

x(φ2(t))vh))j |

= hl|
∑

j

(
6k
h2

[ξn
u ]j−1/2 +

12
h3
R1,j)×

(x− xj , D
l
x(φ2(t))vh − P+(Dl

x(φ2(t))vh))j |.

By multiplying and dividing the last equation by φ(tn, xj−1/2) and using (4.8e) we
get

hl|E2(Dl
x(φ2(t))vh)|

≤ hl+3/2
∑

j

(
6k
h2
|[φ(tn)ξn

u ]j−1/2|+
12
h3
|R1,jφ(tn, xj−/2)|)×

||φ−1(t)(Dl
x(φ2(t))vh − P+(Dl

x(φ2(t))vh))||L2(Ij), (4.17)
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where we used that ||x− xj ||L2(Ij) ≤ Ch3/2. If we use (4.15b) we see that

khl−1/2
∑

j

|[φ(tn)ξn
u ]j−1/2| ||φ−1(t)(Dl

x(φ2(t))vh − P+(Dl
x(φ2(t))vh))||L2(Ij)

≤ (
C

Kl+1
+

C

Kl+2
)k

∑

j

[φ(tn)ξn
u ]2j−1/2

((
h

T̃
)2(l+1/2−(l+1)γ) C

Kl+1
+ (

h

T̃
)2(l+3/2−(l+2)γ) C

Kl+2
)
k

T
‖φ(tn)vh‖2L2(R). (4.18)

By the Cauchy-Schwarz inequality we get that |R1,j | ≤ Ch3/2‖ηn
w− ηn

u‖L2(Ij). Hence,

hl−3/2
∑

j

|R1,jφ(tn, xj−1/2)| ||φ−1(t)(Dl
x(φ2(t))vh − P+(Dl

x(φ2(t))vh))||L2(Ij)

≤ (
C

K2(l+1)
+

C

K2(l+2)
)
k

T
‖φ(tn)vh‖2L2(R)

+((
h

T̃
)2(1−γ)(l+1) + (

h

T̃
)2(1−γ)(l+2))

C T

k
‖ηn

w − ηn
u‖2L2(Ij)

. (4.19)

Therefore, if we plug (4.18) and (4.19) into (4.17) and use h
T̃
≤ 1, γ ≤ 1 and K ≥ 1 we

can bound hl|E2(Dl
x(φ2(t))vh)| by the right hand side of (4.16). In a similar fashion

we can bound hl|E4(Dl
x(φ2(t))vh)| to conclude the proof.

4.6. Step 7: Estimates for Θ((φ2)x) and the final estimates for the error
in one time step.

4.6.1. Case 1: The weight φ1. In this case, the only estimate we need for
Θ((φ2

1)x) is simply

Θ((φ2
1)x) < 0, (4.20)

which follows from (4.8c). Collecting the estimates for Ψh and Eh and Θ((φ2
1)x) we

can give the right bound for the weighted φ1 error produced after one time step.
Theorem 4.11. Let 0 < ε < 1

3 and suppose that λ ≤ 1/3 − ε. If γ1 = 2/3,
m1 = 2 and

1
K1

= c ε, (4.21)

for a sufficiently small fixed constant c > 0, then

‖φ1(tn+1)ξn+1
u ‖2L2(R) ≤ (1 +

k

T
)‖φ1(tn)ξn

u‖2L2(R)

+C(
T

k
+ ε−1)‖φ1(tn)(ηn+1

u − ηn
u)‖2L2(R)

+C(
T

k
+ ε−1) ‖φ1(tn)(ηn

w − ηn
u)‖2L2(R)

+C(
T

k
+ ε−1) k6 ‖φ1(tn)uttt(θn)‖2L2(R).
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Proof. To simplify notation we let φ = φ1, γ = γ1, m1 = m and K = K1. If we
insert (4.20), the result of Lemma 4.7 and (4.15) into Lemma 4.4 we get

‖φ(tn+1)ξn+1
u ‖L2(R) +

k

4
Θ(|(φ2)x|)

+k
∑

j

[φξn]j−1/2((
1
2
− C

K
(1 + λm−2))I− A)[φξn]tj−1/2

+{1 +
k

4T
+ (1 + (

h

T̃
)2(3/2−2γ) + (

h

T̃
)2−3γ)

C k

K T
}||φ(tn)ξn

u ||2L2(R)

+{CK + (1 + (
h

T̃
)2(3/2−2γ) + (

h

T̃
)2−3γ)

C T

k
}||φ(tn)(ηn

w − ηn
u)||2L2(R)

+{CK +
C T

k
}(||φ(tn)(ηn+1

u − ηn
u)||2L2(R) + k6||φ(tn)uttt(θn)||2L2(R)),

where we used that |(φ2)x| = −(φ2)x in this case where φ = φ1. We see from the term

(
h

T̃
)2−3γ C k

K T
‖φ(tn)ξn

u‖2L2(R)

that we are forced to take γ = 2/3. Substituting γ = 2/3 and m = 2 and using our
hypothesis (4.21) we see that

‖φ(tn+1)ξn+1
u ‖L2(R) + k

∑

j

[φξn]j−1/2D[φξn]tj−1/2

≤ (1 +
k

T
)‖φ(tn)ξn

u‖2L2(R)

+(
CT

k
1 + Cε−1)(‖φ(tn)(ηn

w − ηn
u)‖2L2(R) + ‖φ(tn)(ηn+1

u − (ηn
u + ηn

w)/2)‖2L2(R))

+(
CT

k
1 + Cε−1)k6 ‖φ(tn)uttt(θn)‖2L2(R).

where

D = ((
1
2
− ε)I− A). (4.22)

Here we used that h
T̃
≤ 1.

The proof will be complete if we can show that

k
∑

j

[φξn]j−1/2D[φξn]tj−1/2 ≥ 0.

This occurs when D is positive semi-definite. This is guaranteed by our hypothesis
λ ≤ 1/3− ε.

4.6.2. Case 2: The weight φ2. In this case we do not have that Θ((φ2
2)x) < 0,

therefore we must find an appropriate bound for this term. The bound actually is
true for both φ1 and φ2.
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Lemma 4.12. Let φ = φi, K = Ki, γ = γi for either i = 1 or i = 2. Then,

kΘ((φ2)x) ≤ Ck

K

∑

j

[φξn]j−1/2I[φξn]tj−1/2

+{ k

4T
+ (1 + (

h

T̃
)(1−2γ) + (

h

T̃
)(3−4γ) + (

h

T̃
)(5−6γ))

C k

K T
}‖φ(tn)ξn

u‖2L2(R)

+(1 + (
h

T̃
)2(1/2−γ) + (

h

T̃
)(3−4γ) + (

h

T̃
)(5−6γ))

C T

k
‖φ(tn)(ηn

w − ηn
u)‖2L2(R)

+
C T

k
(‖φ(tn)(ηn+1

u − ηn
u)‖2L2(R) + ‖φ(tn)uttt(θn)‖2L2(R)).

Proof. By using (4.6a), we have

k

2

∑

j

(ξn
w − ξn

u , (φ
2(tn))x(ξn

w − ξn
u ))j =

k2

2
H(ξn

u , (φ
2(tn))x(ξn

w − ξn
u ))

+
k

2
E2((φ2(tn))x(ξn

w − ξn
u )) +

k

2
E3((φ2(tn))x(ξn

w − ξn
u )).

The result now follows if we apply Lemmas 7.9, 4.10, 7.7, and 7.3.
Now we can bound the weighted φ2 error in one time step.
Theorem 4.13. Let 0 < ε < 1

3 and suppose that λ ≤ 1/3 − ε. If γ2 = 1/2,
m2 = 0 and

1
K2

= c ε, (4.23)

for a sufficiently small fixed constant c > 0, then

‖φ2(tn+1)ξn+1
u ‖2L2(R) ≤ (1 +

k

T
)‖φ2(tn)ξn

u‖2L2(R)

+C(
T

k
+ ε−1)‖φ2(tn)(ηn+1

u − ηn
u)‖2L2(R)

+C(
T

k
+ ε−1) ‖φ2(tn)(ηn

w − ηn
u)‖2L2(R)

+C(
T

k
+ ε−1) k6 ‖φ2(tn)uttt(θn)‖2L2(R).

Proof. Again, to simplify notation we let φ = φ2, γ = γ2, m = m2 and K = K2.
If we insert (4.15) and the results of Lemmas 4.12, 4.7 into Lemma 4.4, we get

‖φ(tn+1)ξn+1
u ‖L2(R) + k

∑

j

[φξn]j−1/2((
1
2
− C

K
)I− A)[φξn]tj−1/2

≤ (1 +
k

2T
+
C k

K T
)‖φ(tn)ξn

u‖2L2(R)

+(C K +
C T

k
)(‖φ(tn)(ηn

w − ηn
u)‖2L2(R) + ‖φ(tn)(ηn+1

u − ηn
u)‖2L2(R))

+(C K +
C T

k
)k6‖φ(tn)uttt(θn)‖2L2(R),
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where we used h
T̃
≤ 1 and our hypothesis γ = 1/2 and m = 0. In fact, we only needed

our original assumption m ≥ 0 for this inequality. We choose m = 0 which minimizes
the numerical layer. If we now use our hypothesis (4.23), we see that

‖φ2(tn+1)ξn+1
u ‖2L2(R) + k

∑

j

[φξn]j−1/2D[φξn]tj−1/2

≤ (1 +
k

T
)‖φ2(tn)ξn

u‖2L2(R)

+(
C T

k
+ Cε−1) ‖φ(tn)(ηn+1

u − ηn
u)‖2L2(R)

+(
C T

k
+ Cε−1) ‖φ(tn)(ηn

w − ηn
u)‖2L2(R)

+(
C T

k
+ Cε−1)k6 ‖φ(tn)uttt(θn)‖2L2(R),

where D is defined in (4.22). By our hypothesis λ ≤ 1/3 − ε, D is positive definite.
This proves Theorem 4.13.

4.7. Step 9: Conclusion of the proof of Theorem 2.1. Let K1 and φ1 be
as in Theorem 4.11. Choose x1 = −2sK1 log(1/h)λ−7/3T 1/3h2/3 for some s > 0,
where x1 appears in the definition of φ1. We choose s sufficiently large below. Since
x1 < −h

‖U(T )− uN
h ‖L2(−∞,T+x1) = ‖u(T )− uN

h ‖L2(−∞,T+x1)

≤ ‖ηN
u ‖L2(−∞,T+x1) + ‖ξN

u ‖2L2(−∞,T+x1)

= ||P−(U(T ))− U(T )||L2(−∞,T+x1) + ‖ξN
u ‖L2(−∞,T+x1).

By (4.8a), we have ‖ξN
u ‖L2(−∞,T+x1) ≤ C‖φ1(tN )(ξN

u )‖L2(R). Hence, we only need to
bound ‖φ1(tN )ξN

u ‖L2(R). Now we apply Theorem 4.11 for n ≤ N

‖φ1(tn)ξn
u‖2L2(R) ≤ (1 +

k

T
)‖φ1(tn−1)ξn−1

u ‖2L2(R)

+(
C T

k
+ C ε−1)(‖φ1(tn−1)(ηn

u − ηn−1
u )‖2L2(R)

+‖φ1(tn−1)(ηn−1
w − ηn−1

u )‖2L2(R))

+(
C T

k
+ C ε−1) k6 ‖φ1(tn−1)uttt(θn−1)‖2L2(R).

We decompose the real line as R = Sn ∪ Sc
n where Sn = (−∞, tn + x1 +

sK1 log(1/h)λ−7/3T 1/3h2/3) = (−∞, tn − sK1 log(1/h)λ−7/3T 1/3h2/3). Notice that
u(·, tn) = U(·, tn) in Sn. Hence, by approximation properties of the projection oper-
ator P−, we have

(
C T

k
+ C ε−1)‖φ1(tn−1)(ηn

u − ηn−1
u )‖2L2(Sn−1)

+(
C T

k
+ C ε−1)‖φ1(tn−1)(ηn−1

w − ηn−1
u )‖2L2(Sn−1)

+(
C T

k
+ C ε−1)k6 ‖φ1(tn−1)uttt(θn)‖2L2(Sn−1)

≤ (
C T

k
+ C ε−1) k2 h4.
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It follows from (4.8b) that φ(x, tn−1) ≤ hs for x ∈ R\Sn−1. By using (4.2) and
choosing s ≥ 4, we can easily show that

(
C T

k
+ C ε−1)‖φ(tn−1)(ηn

u − ηn−1
u )‖2L2(R\Sn−1)

+(
C T

k
+ C ε−1)‖φ(tn−1)(ηn−1

w − ηn−1
u )‖2L2(R\Sn−1)

+(
C T

k
+ C ε−1)k6 ‖φ(tn−1)uttt(θn)‖2L2(R\Sn−1)

≤ (
C T

k
+ C ε−1)k2 h4.

Hence,

‖φ1(tn)ξn
u‖2L2(R) ≤ (1 +

k

T
)‖φ1(tn−1)ξn−1

u ‖2L2(R) + (
C T

k
+ C ε−1)k2 h4,

and it follows by Gronwall’s inequality that

‖φ1(T )ξN
u ‖2L2(R) ≤ (1 + e)‖φ1(0)ξ0u‖2L2(R) + (

C T

k
+ C ε−1)T k h4

= (1 + e)‖φ1(0)(P−(U0)− P−(u0))‖2L2(R) + (
C T

k
+ C ε−1)T k h4.

Again, using that U0 = u0 in (−∞,−h) and using the decay properties of φ1(0), we
have

‖φ1(tN )ξN
u ‖2L2(R) ≤ (

C T

k
+ C ε−1)T k h4 + Chs.

Therefore, using this result and (4.8a) we get that

‖U(T )− uN
h ‖L2(−∞, T−2 s K1 log(1/h)λ−7/3T 1/3h2/3) ≤ CTh2 + C(

Tk

ε
)1/2h2 + Chs

+‖P−(U(T ))− U(T )‖L2(−∞, T−2 s K1 log(1/h)λ−7/3T 1/3h2/3)

Since K1 = 1
c ε , we can choose β = 2

c to obtain

‖U(T )− uN
h ‖L2(−∞, T−β s log(1/h)λ−7/3ε−1T 1/3h2/3) ≤ CTh2 + C(

Tk

ε
)1/2h2 + Chs

+‖P−(U(T ))− U(T )‖L2(−∞, T−β s log(1/h)λ−7/3ε−1T 1/3h2/3)

The estimate in the region x > T + β s log(1/h)λ−1/2ε−1T 1/2h1/2 can be estab-
lished in a similar fashion.

5. Numerical Experiments. The purpose of this section is to verify our main
result, Theorem 2.1, and to present numerical evidence suggesting that it is sharp.

5.1. L2 errors. To verify the estimate of Theorem 2.1, we consider the problem
(1.1) with periodic initial condition U0(x) = sin(2πx) + χ(x) for x ∈ [0, 1] where χ
is the characteristic function of the interval ( 1

4 ,
3
4 ). We use uniform spatial meshes,

uniform time stepping and take CFL = λ = k/h = 0.33.
We will investigate the error at time T = 1. The mesh ` will denote a mesh with

size hl = 2−`

1000 . We compute the L2 error to the left and right of the singularity x = 1
4

and T = 1. Specifically, we compute the following errors

eL` :=‖U(T )− uh(T )‖
L2(0, 1

4−5h
2/3
l )

eR` :=‖U(T )− uh(T )‖
L2( 1

4+5h
1/2
l , 7

10 )
.



24 B. Cockburn and J. Guzmán

We then compute the orders of convergence defined by

oL` :=
log( eL`

eL`+1
)

log(2)

oR` :=
log( eR`

eR`+1
)

log(2).

We list the results in Table 5.1. As we can see, the optimal orders of convergence
are realized; this confirms the prediction of Theorem (2.1). Note that we did not use
a logarithmic factor in this computational experiment. We simply took the region
around the discontinuity as RT = 1

4 + (−5h2/3, 5h1/2).

Table 5.1
Error to the left and to the right of the singularity

` eL` oL` eR` oR`

1 .44e-8 - .58e-8 -
2 .11e-8 1.98 .15e-8 1.96
3 .28e-9 1.99 .38e-9 1.98
4 .70e-10 1.99 .95e-10 1.99
5 .18e-10 2.00 .24e-10 1.99
6 .44e-11 2.00 .60e-11 1.99
7 .20e-11 2.00 .15e-11 2.00

5.2. Behavior of the error near discontinuities. To show that our results
are sharp, we explore a very precise form of the error near the discontinuity for the
special periodic initial condition U0(x) = χ(x) for x ∈ [0, 1].

We would study the error near the discontinuity x = 1/4 and T = 1. We do this
by scaling the error near the discontinuity and plotting the results for different h. To
the left of the discontinuity, for each fix mesh size h we plot the scaled error

errorL(y, h) :=
∣∣∣U(1/4 + h2/3 y, T )− uh(1/4 + h2/3 y, T )

∣∣∣ .

Note that here y ≤ 0. The results are given in the top of Figure 5.1. Note that as we
decrease h the graphs seem to be converging. This reflects the fact that the scaling
h2/3 is the correct one and that our results are sharp.

Similarly, to the right of the discontinuity we define, for y ≥ 0,

errorR(y, h) :=
∣∣∣U(1/4 + h1/2 y, T )− uh(1/4 + h1/2 y, T )

∣∣∣ .

Since the above function is very oscillatory, we are going to consider its “envelope”
which we denote by “envelopeR(y, h)”; see the middle of Figure 5.1. In the bottom
of Figure 5.1, we plot those envelopes for various h in Figure 5.1. Notice that the
graphs seem to be converging as we decrease h. Again, this reflects the fact that the
scaling h1/2 is the correct one and that our results are sharp.
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Fig. 5.1. History of convergence of the scaled error to the left of the discontinuity (top) and of
the “envelope” of the scaled error to the right of the discontinuity (bottom) for different values of
the meshsize h. In the middle, we see an example of the scaled error to the right of the discontinuity
and its “envelope”.
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6. Concluding remarks. The approach developed in this paper could be ap-
plied to the study of general RKDG methods for the model problem under consid-
eration. The only difficulty in carrying out such a task is that the use of high-order
accurate Runge-Kutta methods quickly complicates the calculations. If we solve ex-
actly in time, however, a characterization of the region containing the numerical layer
should be fairly easy to obtain for any given polynomial degree p for the DG dis-
cretization in space. This constitutes the subject of ongoing work.

7. Appendix.

7.1. Construction of weights. To finish the construction of the weights φ1

and φ2 we only need to construct the initial conditions b1 and b2.

b1(x) = ψ
(
(x− x1)/K̃1T̃

1−γ1 hγ1

)
, and b2(x) = ψ

(
(x2 − x)/K̃2T̃

1−γ2 hγ2

)
.

The function ψ is given by

ψ(r) =
∫ ∞

r

e−g(s)ds,

where g ∈ C5(R) and is such that g(s) = |s| for |s| ≥ 1.
Now we can prove Proposition 4.3
Proof. Since we have the following representation of φ for i = 1, 2:

φ1(x, t) = b1(x− t) = ψ
(
(x− t)− x1)/K̃1T̃

1−γ1 hγ1

)
,

φ2(x, t) = b2(x− t) = ψ
(
(x2 − (x− t))/K̃2T̃

1−γ2 hγ2

)
,

it is not difficult to show that these results can be easily obtained by using the following
properties of ψ:

c ≤ ψ(r) ≤ C for r ≤ 1,
ψ′(x) < 0 for x ∈ R
ψ(r) = e−r for r > 1,

|ψ′(r)|+ |ψ′′(r)|+ |ψ′′′(r)| ≤ C|ψ(r)| for r ∈ R,
|ψ′′(r)|+ |ψ′′′(r)|+ |ψ′′′′(r)| ≤ C|ψ′(r)| for r ∈ R,

and that, for any interval I of unit length, RO(I, ψ)+RO(I, ψ′) ≤ C. This completes
the sketch of the proof.

7.2. Proof of Lemma 4.9. The proof is very similar to the super-approximation
proofs contained in [16] and [13].

Proof. To simplify notation we drop t. By approximation properties of P , we
have that

‖Dl
x(φ2)v − P (Dl

x(φ2)v)‖L2(Ij) + h‖(Dl
x(φ2)v)x − P (Dl

x(φ2)v)x‖L2(Ij)

≤ Ch2‖(Dl
x(φ2)v)xx‖L2(Ij).

Since vxx = 0, we have that

h2‖(Dl
x(φ2)v)xx‖L2(Ij) ≤ h2‖Dl+2

x (φ2)v‖L2(Ij) + 2h2‖Dl+1
x (φ2)vx‖L2(Ij).
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Using (4.8d), we obtain

‖Dl
x(φ2)v − P (Dl

x(φ2)v)‖L2
h(Ij) + h‖(Dl

x(φ2)v)x − P (Dl
x(φ2)v)x‖L2(Ij)

≤ Ch2−(l+1)γ

T̃ (1−γ)(l+2)K̃l+2
‖φ2v‖L2(Ij) +

h2− 1
2 (l+1)γ

T̃ (1−γ)(l+1/2)K(l+1/2)
‖φ|φφx|1/2vx‖L2(Ij).(7.1)

If we multiply both sides by φ−1 (here we use (4.8e)) and set l = 0 we arrive at
(4.15a). The inequality (4.15b) follows from (7.1), (4.8d), (4.8e) and (7.4).

7.3. Proof of Lemma 4.5. We start by proving (4.13b). If χj is the character-
istic function of Ij , then

ξn
w − ξn

u (xj) =
1
h

(ξn
w − ξn

u , 1)j =
k

h
H(ξn

u , χj) +
1
h

(E2(χj) + E3(χj)).

Since χj ∈ Vh, E2(χj) = 0. By the properties of P− we have that E3(χj) = 0. Also,
from the definition of H we have H(ξn

u , χj) = −h(ξn
u )x(xj) − [ξn

u ]j−1/2. This shows
that

ξn
w − ξn

u (xj) = −k(ξn
u )x(xj)− k

h
[ξn

u ]j−1/2. (7.2)

Using (4.12), we have

(ξn
w − ξn

u )x(xj) = (ξn
w − ξn

u , x− xj)j/

∫

Ij

(x− xj)2dx

=
12
h3
{kH(ξn

u , χj(x− xj)) + E2(χj(x− xj)) + E3(χj(x− xj))}.

We used that
∫

Ij
(x− xj)2 = h3

12 .
Again, since χj(x−xj) ∈ Vh, we see that E2(χj(x−xj)) = 0. By the definition of

E3, we have E3(χj(x−xj)) = R1,j . Also, H(ξn
u , χj(x−xj)) = − ∫

Ij
(x−xj)(ξn

u )xdx−
(x − xj)(x+

j−1/2)[ξ
n
u ]j−1/2 = h

2 [ξn
u ]j−1/2 since (ξn

u )x is constant on Ij and
∫

Ij
(x −

xj)dx = 0.
Therefore,

(ξn
w − ξn

u )x(xj) =
6k
h2

[ξn
u ]j−1/2 +

12
h3
R1,j .

Equation (4.13b) now follows from (4.12), (7.2) and the above identity.
Subtracting (4.6a) from (4.6b) we have

(ξn+1
u − ξn

w, v) =
k

2
H(ξn

w − ξn
u , v) + E1(P+(v))− E2(v)/2− E3(v)/2

+E4(v) + E5(v).

Using this representation and following the techniques used to prove (4.13b) we
can easily show (4.13a).

7.4. Proof of Lemma 4.8. In order to prove Lemma 4.8 we will state and prove
a series of lemmas. Most of these lemmas are bounds for the terms of Eh. We first
state standard inverse estimates.
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Lemma 7.1. There exists a C > 0 such that for every v ∈ P 1(Ij)

|v(xj+1/2)|+ |v(xj−1/2)| ≤ Ch−1/2‖v‖L2(Ij). (7.3)

and

‖v′‖L2(Ij) ≤ Ch−1‖v‖L2(Ij). (7.4)

We also need the following preliminary estimates.
Lemma 7.2. Let tn ≤ t ≤ tn+1, then for vh ∈ Vh

‖φ−1(t)(P+(φ2(t)vh)− φ2(t)vh)‖L2(Ij) ≤
C

K
‖φ(tn)vh‖L2(Ij), (7.5)

and for K sufficiently large

‖φ−1(t)P+(φ2(t)vh)‖L2(Ij) ≤ 2‖φ(tn)vh‖L2(Ij). (7.6)

Proof. By (4.15b) we have

‖φ−1(t)(P+(φ2(t)vh)− φ2(t)vh)‖L2(Ij) ≤ ((
h

T̃
)1−γ C

K
+ (

h

T̃
)2(1−γ) C

K2
)‖φ(tn)vh‖L2(Ij).

The inequality (7.5) now follows from K ≥ 1 and h
T̃
≤ 1. The inequality (7.6) easily

follows from (7.5).
The following result compares ξn

w to ξn
u .

Lemma 7.3. If tn ≤ t ≤ tn+1 and K is sufficiently large, then

‖φ(t)ξn
w‖2L2(R) ≤ C‖φ(tn)ξn

u‖2L2(R) + C‖φ(tn)(ηn
w − ηn

u)‖2L2(R).

Proof. Using (4.6a), we have

‖φ(t)ξn
w‖2L2(R) =

∑

j

(ξn
u , φ

2(t)ξn
w)j + kH(ξn

u , φ
2(t)ξn

w) + E2(φ2(t)ξn
w) + E3(φ2(t)ξn

w).

By applying (4.8e) and the Cauchy-Schwarz inequality we get

∑

j

(ξn
u , φ

2(t)ξn
w)j ≤ C‖φ(tn)ξn

u‖2L2(R) +
1
8
‖φ(t)ξn

w‖2L2(R).

If we use (4.8e), (7.3) and (7.4) we get

kH(ξn
u , φ

2(t)ξn
w) ≤ C‖φ(tn)ξn

u‖2L2(R) +
1
8
‖φ(t)ξn

w‖2L2(R).

By using (7.5) and taking K sufficiently large we get

E2(φ2(tn)ξn
w) ≤ C‖φ(tn)ξn

u‖2L2(R) +
1
8
‖φ(t)ξn

w‖2L2(R).

If we use (7.6) we get

E3(φ2(t)ξn
w) ≤ C‖φ(tn)ξn

u‖2L2(R) +
1
8
‖φ(t)ξn

w‖2L2(R).
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Combining the last four inequalities proves Lemma 7.3.
We will need a different bound than what is given in Lemma 4.10 for the case

l = 0 and vh = ξn
u or vh = ξn

w.
Lemma 7.4. Let tn ≤ t ≤ tn+1, then

|E2(φ2(t)ξn
u )|+ |E4(φ2(t)ξn

w)|
≤ (1 + λm−2)

Ck

K

∑

j

[φξn]j−1/2I[φξn]tj−1/2 +
k

6
Θ(|(φ2)x|)

+(1 + (
h

T̃
)2(3/2−2γ))

C k

K T
||φ(tn)ξn

u ||2L2(R)

+(1 + (
h

T̃
)2(3/2−2γ))

T

k
||φ(tn)(ηn

w − ηn
u)||2L2(R)

+
C T

k
(||φ(tn)(ηn+1

u − ηn
u)||2L2(R) + k6||φ(tn)uttt(θn)||2L2(R)).

Proof. As was done in the proof of Lemma 4.10, we see that

|E2(φ2(t)ξn
u )| = |

∑

j

(
6k
h2

[ξn
u ]j−1/2(φ(t)(x− xj), φ−1(t)(φ2(t)ξn

u − P+(φ2(t)ξn
u )))j

+
∑

j

12
h3
R1,j(φ(t)(x− xj), φ−1(t)(φ2(t)ξn

u − P+(φ2(t)ξn
u )))j |

≤M1 +M2,

where

M1 :=
C k

h1/2

∑

j

|[φ(tn)ξn
u ]j−1/2| ‖φ−1(t)(φ2(t)ξn

u − P+(φ2(t)ξn
u ))‖L2(Ij)

M2 :=
C

h3/2

∑

j

|R1,jφ(tn, xj−1/2)| ‖φ−1(t)(φ2(t)ξn
u − P+(φ2(t)ξn

u ))‖L2(Ij).

We first bound M2. Using (4.19) with vh = ξn
u and l = 0 combined with the

inequalities K ≥ 1, h
T̃
≤ 1 and γ ≤ 1 we have

M2 ≤ C k

K T
‖φ(tn)ξn

u‖2L2(R) +
C T

k
‖φ(tn)(ηn

w − ηn
u)‖2L2(Ij)

. (7.7)

For the next term we use (4.8e) and (4.15a), to obtain

M1 ≤ Ckh3/2−2γ

T̃ 2(1−γ)K̃2

∑

j

|[φ(tn)(ξn
u )]j−1/2| ‖φ(tn)ξn

u‖L2(Ij)

+
Ckh3/2−γ/2

T̃ (1−γ)/2K̃1/2

∑

j

|[φ(tn)(ξn
u )]j−1/2| ‖(|φ(tn)(φ)x(tn)|)1/2(ξn

u )x‖L2(Ij).

Using Young’s inequality, we have

Ckh3/2−2γ

T̃ 2(1−γ)K̃2

∑

j

|[φ(tn)(ξn
u )]j−1/2| ‖φ(tn)ξn

u‖L2(Ij)

≤ C

K2
k

∑

j

[φ(tn)ξn
u ]2j+1/2 + (

h

T̃
)2(3/2−2γ) C k

K2 T
‖φ(tn)ξn

u‖2L2(R). (7.8)
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If we use (4.13b), the triangle inequality and the fact that |x−xj | ≤ h for x ∈ Ij ,
then

‖(|φ(tn)(φ)x(tn)|)1/2(ξn
u )x‖L2(Ij) ≤

1
k

Θj(|(φ2)x|)1/2

+
Ch−(1+γ)/2

K̃1/2T̃ (1−γ)/2
|[φ(tn)ξn

u ]j−1/2|+
Ch−γ/2

kK̃1/2T̃ (1−γ)/2
||φ(tn)(ηn

w − ηn
u)||L2(Ij),

where we also used |R1,j | ≤ h3/2||ηn
w − ηn

u ||L2(Ij), (4.8d) and (4.8e).
Therefore,

Ckh3/2−γ/2

T̃ (1−γ)/2K̃1/2

∑

j

|[φ(tn)(ξn
u )]j−1/2| ‖(|φ(tn)(φ)x(tn)|)1/2(ξn

u )x‖L2(Ij)

≤ (
Cλ−2

K̃
(
h

T̃
)1−γ +

C

K̃
(
h

T̃
)2(1−γ) +

Cλ−1

K̃2
(
h

T̃
)2(3/2−γ))k

∑

j

[φ(tn)ξn
u ]2j−1/2

+
k

12
Θ(|(φ2)x|) +

T

k
||ηn

w − ηn
u ||2L2(R)

≤ (λm−2 + λm + λ2m−1)
Ck

K

∑

j

[φ(tn)ξn
u ]2j−1/2 +

k

12
Θ(|(φ2)x|)

+
C T

k
||φ(tn)(ηn

w − ηn
u)||2L2(R).

Here we used that K̃ = λ−mK, h
T̃
≤ 1, γ ≤ 1 and K ≥ 1. Combining this inequality

with (7.8) we get

M1 ≤ (1 + λm−2)
Ck

K

∑

j

[φ(tn)ξn
u ]2j−1/2 +

k

12
Θ(|(φ2)x|)

+(
h

T̃
)2(3/2−2γ) C k

K T
‖φ(tn)ξn

u‖2L2(R)

+
C T

k
||φ(tn)(ηn

w − ηn
u)||2L2(R),

where we used thatK ≥ 1, λ ≤ 1 andm ≥ 0. Therefore, combining the estimate ofM1

and M2 gives the right bound for |E2(φ2(t)ξn
u )|. We are left to bound |E4(φ2(t)ξn

w)|.
To this end, we write

|E4(φ2(t)ξn
w)| = |E4(φ2(t)ξn

u ) + E4(φ2(t)(ξn
w − ξn

u ))|.

We can follow the proof of the bound for E2(φ2(t)ξn
u ) to obtain

|E4(φ2(t)ξn
u )| ≤ (1 + λm−2)

Ck

K

∑

j

[φ(tn)ξn
w]2j−1/2

+
k

24
Θ(|(φ2)x|) + (1 + (

h

T̃
)2(3/2−2γ))

Ck

TK
||φ(tn)ξn

u ||2L2(R)

+(1 + (
h

T̃
)2(3/2−2γ))

C T

k
||φ(tn)(ηn

w − ηn
u)||2L2(R)

+
C T

K k
(||φ(tn)(ηn+1

u − ηn
u)||2L2(R)) + k6||φ(tn)uttt(θn)||2L2(R)).
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If we use (4.13a) and (4.13b) and the properties of P+, we have

|E4(φ2(t)(ξn
w − ξn

u ))| =
∑

j

(
3k
h2

[ξn
w]j−1/2 +

k3

6h3
R4,j +

12
h3
R2,j)×

(x− xj , φ
2(t)(ξn

w − ξn
u )− P+(φ2(t)(ξn

w − ξn
u )))j

≤ Q1 +Q2 +Q3,

where

Q1 :=
C

h3/2

∑

j

|R2,jφ(tn, xj−1/2)|Dj ,

Q2 :=
C k3

h3/2

∑

j

|R4,jφ(tn, xj−1/2)|Dj ,

Q3 :=
C k

h1/2

∑

j

|[φ(tn)ξn
w]j−1/2|Dj ,

and

Dj := ‖φ−1(t)(φ2(t)(ξn
w − ξn

u )− P+(φ2(t)(ξn
w − ξn

u )))‖L2(Ij).

Following the proof of the bound for M2, we can show

Q1 ≤ C k

K T
‖φ(tn)ξn

u‖2L2(R) +
C T

k
(‖φ(tn)(ηn

w − ηn
u)‖2L2(R) + ‖φ(tn)(ηn+1

u − ηn
u)‖2L2(R)),

where in addition we used Lemma 7.3. Similarly, we can show

Q2 ≤ C k

K T
‖φ(tn)ξn

u‖2L2(R) +
C T

k
(‖φ(tn)(ηn

w − ηn
u)‖2L2(R) + k6‖φ(tn)uttt(θn)‖2L2(R)).

In order to bound Q3 we first bound Dj using (4.15a)

|Dj | ≤ Ch2−2γ

T̃ 2(1−γ)K̃2
(||φ(tn)ξn

u ||L2(Ij
+ ||φ(tn)ξn

w||L2(Ij))

Ch2−γ/2

T̃ (1−γ)/2K̃1/2
||(|φ(tn)(φ(tn))x|)1/2(ξn

w − ξn
u )x||L2(Ij)

≤ Ch2−2γ

T̃ 2(1−γ)K̃
(||φ(tn)ξn

u ||L2(Ij
+ ‖φ(tn)(ηn

w − ηn
u)‖L2(Ij))

+
Ch1−γ/2

T̃ (1−γ)/2K̃1/2
Θj(|(φ2)x|)1/2.

In the last inequality we used Lemma 7.3 and the inverse estimate (7.4). Therefore,

Q3 ≤ Ck

K

∑

j

[φ(tn+1)ξn
w]2j−1/2 + (

h

T̃
)2(3/2−2γ) C k

KT
||φξn

u ||2L2((R)

+(
h

T̃
)2(3/2−2γ)C T

k
‖φ(t)(ηn

w − ηn
u)‖2L2(R)

+
k

24
Θ(|(φ2)x|),
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where we used that γ ≤ 1, K ≥ 1, and λ ≤ 1. Hence,

|E4(φ2(t)(ξn
w − ξn

u ))| ≤ Ck

K

∑

j

[φ(tn+1)ξn
w]2j−1/2

+
k

24
Θ(|(φ2)x|) + (1 + (

h

T̃
)2(3/2−2γ))

C k

KT
||φ(tn)ξn

u ||2L2((R)

+(1 + (
h

T̃
)2(3/2−2γ))

C T

k
‖φ(tn)(ηn

w − ηn
u)‖2L2(R)

+
CT

k
(‖φ(tn)(ηn+1

u − ηn
w)‖2L2(R) + k6||φ(tn)uttt(θn)||2L2((R)).

This completes the proof of Lemma 7.4.
Lemma 7.5.

|k
2

2

∑

j

(ξn
w − ξn

u , (φ
2(tn))xxξ

n
w)j | ≤ (

h

T̃
)2−3γ C k

K3 T
‖φ(tn)ξn

u‖2L2(R) +
k

12
Θ(|(φ2)x|)

+(
h

T̃
)2−3γ C T

K3 k
‖φ(tn)(ηn

w − ηn
u)‖2L2(R). (7.9)

and

|k
2

2

∑

j

(ξn
w − ξn

u , (φ
2(tn))xxξ

n
w)j | ≤ (

h

T̃
)1−2γ C k

K2 T
‖φ(tn)ξn

u‖2L2(R)

+(
h

T̃
)1−2γ C T

K2 k
‖φ(tn)(ηn

w − ηn
u)‖2L2(R).(7.10)

Proof. The results are simple consequences of (4.8d), (4.8e), the Cauchy-Scwharz
inequality and Lemma 7.3.

Lemma 7.6. For K sufficiently large

|E1(P+(φ2(tn+1)ξn
w)| ≤ k

8T
‖φ(tn)ξn

u‖2L2(R) + CTk5‖φ(tn)uttt(θn)‖2L2(R).

Proof. By applying Cauchy-Schwarz inequality, (7.6) and Young’s inequality we
obtain Lemma 7.6.

Lemma 7.7. Let tn ≤ t ≤ tn+1 and vh = ξn
u or vh = ξn

w. For l = 0, 1, 2, we have

hl|E3(Dl
x(φ2(t))vh)|+ hl|E5(Dl

x(φ2(t))vh)|
≤ k

16T
‖φ(tn)ξn

u‖2L2(R) +
C T

k
(‖φ(tn)(ηn+1

u − ηn
u)‖2L2(R) + ‖φ(tn)(ηn

w − ηn
u)‖2L2(R)).

Proof. This result easily follows from the Cauchy-Schwarz inequality, (7.6),
Lemma 7.3, and Young’s inequality.

Lemma 7.8. We have

|S1|+ |S2| ≤ (
h

T̃
)2−3γ Ck

K3T
‖φ(tn)ξn

u‖2L2(R) + (
h

T̃
)2−3γCT

k
||φ(tn)(ηn

w − ηn
u)||2L2(R).

Proof. This follows from (4.8d), (4.8e), the Cauchy-Schwarz inequality and
Lemma 7.3.
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Now we can prove Lemma 4.8 which is a simple consequence of the lemmas of
this section.

Proof. We start with the proof of (4.15). If we apply Lemma 7.6 , Lemma 7.4,
Lemma 7.7, (7.9) and Lemma 7.8 we get (4.15).

To prove (4.15) we proceed as the proof for (4.15), but instead of using Lemma 7.4
we apply Lemma 4.10 only and we use (7.10) rather than (7.9). We also use Lemma
7.3.

7.5. Auxiliary Lemma. The following lemma is used to prove (4.12).
Lemma 7.9. Let φ = φi, γ = γi and K = Ki for i = 1 or i = 2. If tn < t < tn+1,

then

k2|H(ξn
u , (φ

2(t))x(ξn
w − ξn

u ))| ≤ Ck

K

∑

j

[φξn]j−1/2I[φξn]tj−1/2

+((
h

T̃
)2(1/2−γ) + 1)

C k

K T
‖φ(tn)ξn

u‖2L2(R)

+(1 + (
h

T̃
)2(1/2−γ))

C T

k
‖φ(tn)(ηn

w − ηn
u)‖2L2(R).

Proof.

k2|H(ξn
u , (φ

2(t))x(ξn
w − ξn

u ))|
= k2|

∑

j

(ξn
u , ((φ

2)x(t)(ξn
w − ξn

u ))x)j + ξn
u (x−j+1/2)[(φ

2)x(t)(ξn
w − ξn

u )]j+1/2|.

By applying the Cauchy-Schwarz inequality , (4.8d), (4.8e),(7.3) and Young’s
inequality we have

k2|
∑

j

ξn
u (x−j+1/2)[(φ

2)x(t)(ξn
w − ξn

u )]j+1/2|

≤ C k

K

∑

j

{[φξn]j−1/2I[φξn]tj−1/2 + (
h

T̃
)2(1/2−γ)C k

T
‖φ(tn)ξn

u‖2L2(R).

The product rule gives

|
∑

j

(ξn
u , ((φ

2)x(t)(ξn
w − ξn

u ))x)j | = |
∑

j

{(ξn
u , (φ

2)xx(t)(ξn
w − ξn

u ))j

+(ξn
u , (φ

2)x(t)(ξn
w − ξn

u )x)j |}|.

Applying the Cauchy-Schwarz inequality (4.8d), Lemma 7.3 and Young’s inequal-
ity we have

k2|
∑

j

{(ξn
u , (φ

2)xx(tn)(ξn
w − ξn

u ))j ≤ (
h

T̃
)1−2γ C k

K2T
(‖φ(tn)ξn

u‖2L2(R)

+‖φ(tn)(ηn
w − ηn

u)‖2L2(R)).

If we use (4.13b), (4.8e), (4.8d) and Young’s inequality, we see that
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k2|
∑

j

(ξn
u , (φ

2)x(t)(ξn
w − ξn

u )x)j | ≤ C k

K

∑

j

[φ(tn)ξn
u ]2j−1/2

+((
h

T̃
)2(1/2−γ) + 1)

C k

K T
‖φ(tn)ξn

u‖2L2(R)

+
C T

k
‖φ(tn)(ηn

w − ηn
u)‖2L2(R).

This concludes the proof.
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