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Abstract. In this article, we prove some weighted pointwise estimates for
three discontinuous Galerkin methods with lifting operators appearing in their
corresponding bilinear forms. We consider a Dirichlet problem with a general
second order elliptic operator.

1. Introduction

Discontinuous Galerkin (DG) methods for elliptic problems have received con-
siderable attention in the last few years. A unified analysis of L2-based global
estimates was given by Arnold et. al. [2] for nine DG Methods. In that article, in
order to do the unified analysis, they cast all the methods in their primal forms (al-
though some methods are more natural in their mixed forms). Four of the methods
were shown to be consistent, to be adjoint consistent and to have coercive bilinear
forms for the Laplacian. With these properties, they were able to show optimal
convergence rates for the gradient and function values. For these four methods,
a natural question arises: How do these methods behave pointwise? Kanschat
and Rannacher [8] gave a quasi-optimal convergence result in L∞ for the interior
penalty (IP) method, and Chen and Chen [6] gave weighted pointwise estimates for
the same method, which implies the result in [8]. In this paper, we show weighted
pointwise error estimates for the three remaining methods.

One main difference between the IP method and the three methods considered
here is that the latter have terms with lifting operators appearing in their bilinear
forms. As pointed out in [2], the IP method can be problematic since the penalty
parameters must be chosen sufficiently large to make the method stable. The three
remaining methods do not have this problem.

Once one has local H1 estimates, weighted pointwise estimates are easily ob-
tained following the pointwise estimates proof of Schatz [12] for the standard con-
tinuous Galerkin method or a similar proof in [6] for the IP method. Therefore, our
main contribution is to prove local H1 estimates for these methods. The local H1

analysis becomes more difficult because of the presence of lifting operators. Here
we define one of the lifting operators. Let e be the edge shared by triangles T1 and
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T2, and let q ∈ [L2(e)]2. We define rM,e : [L2(e)]2 → [Vh]2 by the following identity:∫
T1

S
T2

rM,e(q)TMτdx = −
∫

e

qT 〈Mτ〉 ds, ∀τ ∈ [Vh]2.

Here M is a symmetric, uniformly positive definite matrix, 〈·〉 is the average oper-
ator across e and Vh denotes our subspace of discontinuous functions. One of the
difficulties that we overcame is determining proper bounds for terms of the form:
||ω2rM,e([uh])−r(ω2[uh])||L2(T1

S
T2), where ω is a cut-off function and [uh] denotes

the jump of our approximation across the edge e. In order to do this, we use L2-
type projection operators and a modification of super-approximation (see Lemmas
2.2 and 2.3).

Chen [5] proved some localH1 error estimates for the local discontinuous Galerkin
(LDG) method in its mixed formulation. In this paper, we do the analysis for the
LDG method in its primal form, and we repeat the analysis for two other methods.
Lifting operators do not appear in the mixed formulation for the LDG method.
Therefore, using the mixed formulation avoids the difficulties of analyzing lifting
operators. However, one cannot avoid these difficulties in the remaining two meth-
ods, because lifting operators also appear in their mixed formulations.

The pointwise estimates obtained here and in [6] are modeled on the pointwise
estimates obtained for the standard continuous Galerkin method in [12] . Let Vh

be the space of discontinuous functions such that the restriction of a function to
an element is a polynomial of degree r − 1. The pointwise estimates take on the
following forms (compare to Theorems 2.1, 3.1 in [12] and Theorems 5.1, 5.2 in [6]
):

(1.1) |(u− uh)(x)| ≤ Ch inf
χ∈Vh

|||u− χ|||W 1,∞
h (Ω),x,s, 0 ≤ s < r − 2

and

(1.2) |∇h(u− uh)(x)| ≤ C inf
χ∈Vh

|||u− χ|||W 1,∞
h (Ω),x,s, 0 ≤ s < r − 1.

Here, ∇hφ denotes the piecewise defined function such that ∇hφ = ∇φ on each
element of the triangulation. The weighted norm appearing on the right-hand sides
of (1.1),(1.2) are precisely defined in Section 2.3, and it will be clear that we can
bound that norm by the weighted norm defined in [12] if χ is continuous. More
precisely, |||u−χ|||W 1,∞

h (Ω),x,s ≤ C(||σs
x(u−χ)||L∞(Ω) + ||σs

x∇(u−χ)||L∞(Ω)), where
σx(y) = h/(|x − y| + h). Therefore, if s = 0 (no weight) we get estimates in the
L∞-norm. However, if s > 0 our error will be localized around x. Consequently, we
can also show expansion inequalities ([12]) for these DG methods. The inequalities
(1.1), (1.2) will hold if s = r − 2 and s = r − 1, respectively, as long as we add a
logarithmic factor to the right hand side of the inequalities (see Theorems 4.1, 4.2).

The rest of this paper is organized as follows: In the next section, we present
some preliminaries. We define the problem in a precise way, and we introduce our
bilinear forms. Then, in Section 2.4 we develop some important approximation
results. We end the preliminaries by proving some estimates for lifting operators
and by bounding the bilinear forms. In Section 3, we prove local H1 estimates.
Finally, in Section 4, we state our pointwise estimates.
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2. Preliminaries

2.1. Dirichlet Problem. Let Ω ⊂ R2 be bounded with smooth boundary. We
consider the following Dirichlet problem:

Lu ≡ −∇ · (A(x)∇u) + b(x) · ∇u+ c(x)u = f in Ω,
u = 0 on ∂Ω.

(2.1)

The components of A = (aij)1≤i,j≤2, b = (bi)1≤i≤2 and c are assumed to be smooth
and bounded. Furthermore, we assume that A is symmetric and uniformly positive
definite in Ω. That is, there exists a constant Cell > 0 such that

ψTA(x)ψ ≥ Cell|ψ|2, ∀ x ∈ Ω and ψ ∈ R2.

We assume that (2.1) has a unique solution in H1
0 (Ω) for all f ∈ L2(Ω).

In this paper we are not going to trace the dependence of constants on the
ellipticity factor Cell and upper bounds for A(x), b(x) or c(x).

2.2. Discontinuous Approximating Spaces and Bilinear Forms. Suppose
we have a family of triangulations Th (possibly with hanging nodes) that fit Ω
exactly, where Ω = ∪T∈Th

T . Let h = supT∈Th
hT , where hT = diam(T ). Let

Vh,p denote the finite-dimensional space of functions that are polynomials of degree
at most p on each element and define Σh,p = Vh,p × Vh,p. From now on, we set
Vh = Vh,r−1 and Σh = Σh,r−1. We naturally define, the collection of interior edges
as E0

h = {∂T ∩ ∂T ′ : T, T ′ ∈ Th, T 6= T ′,meas1(∂T ∩ ∂T ′) 6= 0} and the collection of
boundary edges, in general curved, as E∂

h = {∂T ∩ ∂Ω : T ∈ Th,meas1(∂T ∩ ∂Ω) 6=
0}. The collection of all edges will be denoted by Eh = E∂

h ∪ E0
h. Se will denote the

union of elements that have e as an edge. We assume that our elements are non-
degenerate; that is, there exists a constant Cnd > 0, independent of T , such that
hT ≤ Cnd diam(BT ), where BT is the largest ball contained in T . Furthermore, we
assume the existence of a constant CE > 0, independent of h and e, with h ≤ CEhe,
where he = length(e). This is the quasi-uniform condition that was used in [6].

We say that T and T ′ are neighbors if ∂T ∩ ∂T ′ ∈ E0
h. From the quasi-uniform

condition, it follows that there exists a positive integer K independent of h such
that each T ∈ Th has at most K neighbors (if our meshes do not have hanging
nodes then K can be 3).

On each edge, as in [2], we define the average and jump operators as follows for
e ∈ E0

h:

〈q〉 = 1
2 (q1 + q2), [q] = q1 · n1 + q2 · n2,

〈φ〉 = 1
2 (φ1 + φ2), [φ] = φ1n1 + φ2n2,

for q vector valued and φ scalar valued. Here Se = T1 ∪ T2, qi = q|Ti , φi = φ|Ti ,
and ni is the exterior normal to Ti, i = 1, 2. For e ∈ E∂

h ,

〈q〉 = q, [φ] = φn

where n is the outward unit normal. Note that [q] is a scalar and [φ] a vector.
The quantities [q] and 〈φ〉 on boundary edges are not required, so they are left
undefined.

Now we present some local lifting operators as in [2]. Let M be a symmetric,
smooth, bounded and uniformly positive definite matrix in Ω. Let rM,e : [L2(e)]2 →
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Σh and lM,e : L2(e) → Σh be given by:∫
Se

rM,e(q)TMτdx = −
∫

e

qT 〈Mτ〉 ds∫
Se

lM,e(φ)TMτdx = −
∫

e

φ[Mτ ]ds, ∀τ ∈ Σh.

We set the global lifting operators to be rM (q) =
∑

e∈Eh
rM,e(q) and lM (φ) =∑

e∈E0
h
lM,e(φ).

Now, we are ready to define the bilinear forms. They are the modified BRMPS
[3], modified BMMPR [4] and local discontinuous Galerkin bilinear forms. (See
[2] for the bilinear forms for the Laplacian.) The following term is common to all
three:

θ(u, v) =
∑

T∈Th

∫
T
(∇uTA∇v + (bT∇u)v + cuv)dx

−
∑

e∈Eh

∫
e
(〈A∇hu〉 [v] + 〈A∇hv〉 [u] + bT [u] 〈v〉)ds.

Modified BRMPS

B(u, v) = θ(u, v) +
∑

e∈Eh
ηe

∫
Se
rA,e([u])TArA,e([v])dx+

∑
e∈E∂

h

1
he

∫
e
[u][v]ds.

Modified BMMPR
B(u, v) = θ(u, v) +

∫
Ω
rA([u])TArA([v])dx

+
∑

e∈Eh
ηe

∫
Se
rI,e([u])T rI,e([v])dx+

∑
e∈E∂

h

1
he

∫
e
[u][v]ds.

Local Discontinuous Galerkin
B(u, v) = θ(u, v) +

∫
Ω
(rA([u]) + lA(βT [u]))TA(rA([v]) + lA(βT [v]))dx

−
∑

e∈E0
h

∫
e
([A∇hu]βT [v] + βT [u][A∇hv])ds+

∑
e∈Eh

ηe

he

∫
e
[u][v]ds.

Here ηe is constant for each e, and is bounded for all e. If we let η = infe∈Eh
ηe,

then we require that K < η (see section 2.2 for the definition of K) for the Modified
Bassi form and 0 < η for the two remaining forms. Also, β is a constant vector on
each interior edge and is bounded component-wise for all e. Our modifications of
the first two methods is solely motivated by our analysis. It consists of adding the
last terms over the boundary edges. Without this modification we were not able to
prove Theorem 3.1 since we were unable to show (2.19) for curved edges. Whether
this modification is necessary in practice we do not know. We intend to investigate
this question in the future.

The discontinuous approximation uh solves

(2.2) B(uh, v) = (f, v), ∀v ∈ Vh.

For each method we use the corresponding bilinear form.

2.3. Discontinuous Sobolev Norms. If D ⊂ Ω, we define our discontinuous
Sobolev space as in [6]:

W l,p
h (D) = {v : v ∈W l,p(T ∩D), ∀ T ∈ Th}.

This space is equipped with the norm (1 ≤ p <∞)

||v||W l,p
h (D) = (

l∑
j=0

|v|p
W j,p

h (D)
)

1
p , |v|W j,p

h (D) = (
∑

T∈Th

|v|pW j,p(T
T

D))
1
p ,

with the appropriate modification for p = ∞. When p = 2, we set H l
h(D) =

W l,p
h (D).
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Let D ⊂ Ω and 1 ≤ p < ∞. The norms that occur in most of our analysis take
on the following form:

|||v|||p
W l,p

h (D)
= ||v||p

W l,p
h (D)

+
∑
e∈Eh

h1−p
e ||[v]||pLp(e

T
D)

+
∑
e∈Eh

he|| 〈∇hv〉 ||pLp(e
T

D) +
∑
e∈E0

h

he||[∇hv]||pLp(e
T

D).

For p = ∞,

|||v|||W l,∞
h (D) = ||v||W l,∞

h (D) + supe∈Eh

1
he
||[v]||L∞(e

T
D)

+supe∈Eh
|| 〈∇hv〉 ||L∞(e

T
D) + supe∈E0

h
||[∇hv]||L∞(e

T
D).

We consider the weight σs
x(y) = ( h

|x−y|+h )s as in [12]. If we let ||v||p
W l,p

h (Ω),x,s
=

||σs
xv||

p
Lp(Ω) + ||σs

x∇hv||pLp(Ω) for 1 ≤ p <∞, then for fixed x we define the norms

|||v|||p
W l,p

h (Ω),x,s
= ||v||p

W l,p
h (Ω),x,s

+
∑

e∈Eh
h1−p

e ||σs
x[v]||pLp(e)

+
∑

e∈Eh
he||σs

x 〈∇hv〉 ||pLp(e) +
∑

e∈E0
h
he||σs

x[∇hv]||pLp(e),

again with the appropriate modification for p = ∞.

2.4. Approximation. We start by stating well-known trace inequalities. Let e be
an edge of T ∈ Th and φ be either a scalar- or vector-valued function. Then, for
1 ≤ p ≤ ∞, we have

(2.3) ||φ||Lp(e) ≤ C(h−
1
p ||φ||Lp(T ) + h1− 1

p |φ|W 1,p(T )).

If we restrict φ to Vh,i or Σh,i, for some fixed i > 0, we can state some inverse
inequalities that are also well-known:

(2.4) ||φ||W l,t(T ) ≤ Ch[ 2l −
2
q ]+s−t||φ||W q,s(T ),

(2.5) ||φ||Lp(e) ≤ Ch−
1
p ||φ||Lp(T ),

where C does not depend on φ, h, e, or T .
The following is a standard elementwise approximation result. Let v ∈

W j,p
h (Ω)([W j,p

h (Ω)]2) with 0 ≤ i ≤ j ≤ r. Then, there exists a φ ∈ Vh(Σh) with

(2.6) ||v − φ||W i,p(T ) ≤ Chj−i|v|W j,p(T ), ∀T ∈ Th,

where C does not depend on v, h, or T .
We present some function spaces, as in [13], that will help us in stating further

approximation results. If S ⊂ R ⊂ Ω, let ∂<(S,R) = dist(∂S \ ∂Ω, ∂R \ ∂Ω). The
spaces are defined as follows:

V <
h (A) = {v ∈ Vh : ∂<(supp(v), A) > 0},

and
C∞

< (A) = {v ∈ C∞ : ∂<(supp(v), A) > 0}.

The following lemma follows from trace inequalities and elementwise approxima-
tion. (See section 4.3 in [2] for a similar result.)
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Lemma 2.1. Let D0 ⊂ Dd with ∂<(D0, Dd) = d ≥ κh (for a fixed κ > 1 sufficiently
large). Let v ∈ Hr

h(Dd). Then, there exists ψ ∈ Vh such that

(2.7) |||v − ψ|||H1
h(D0) ≤ Chr−1|v|Hr

h(Dd),

where C is independent of v, h,D0 and Dd. Furthermore, if supp(v) ⊂ D0, then
ψ ∈ V <

h (Dd).

Throughout this paper, we are going to be estimating functions of the form
v = ωχ or v = ω2χ, where χ ∈ Vh or Σh and ω is a cut-off function. Hence, we
develop some approximation results for these functions.

Lemma 2.2. Let χ ∈ Vh, and let ω be a smooth function. Suppose there exist
constants C > 0 and d ≥ κh for some constant κ > 1 such that |ω|W l,∞(Ω) ≤ Cd−l

for l = 0, 1, · · · , r + 1. Then,

(2.8) |ω2χ|Hr(T ) ≤ C
1

hr−2
(d−1|ωχ|H1(T ) + d−2||χ||L2(T )),

(2.9) |ω2χ|Hr(T ) ≤ C
1

hr−2
(d−1h−1||ωχ||L2(T ) + d−2||χ||L2(T )),

(2.10) |ω∇(ωχ)|Hr(T ) ≤ C
1

hr−1
(d−1||∇(ωχ)||L2(T ) + d−2||χ||L2(T )),

(2.11) |ωχ|Hk(T ) ≤ C
1

hk−1
(|ωχ|H1(T ) + d−1||χ||L2(T )) for k = 1, · · · , r − 1,

and

(2.12) |ωχ|Hr(T ) ≤ C
1

hr−1
d−1||χ||L2(T ).

Here C is independent of ω, χ,T, and h.

Proof. By Leibniz’s rule, the fact that the rth derivatives of χ vanish in T and
inverse estimates, we get that

(2.13)

|ω2χ|Hr(T ) ≤ C(
r∑

l=2

hl−r|ω2|W l,∞(T ))||χ||L2(T ) +
∑

|α|=1,|β|=r−1

||Dαω2Dβχ||L2(T )).

By the decay properties of ω and the fact that hd−1 < 1, we see that

(
r∑

l=2

hl−r|ω2|W l,∞(T ))||χ||L2(T ) ≤ Cd−2h2−r||χ||L2(T ).

Now we handle the second sum in (2.13). Note that Dαω2 = 2ωDαω since
|α| = 1. Therefore,∑

|α|=1,|β|=r−1

||Dαω2Dβχ||L2(T ) ≤ Cd−1
∑

|β|=r−1

||ωDβχ||L2(T ).

Now we let ω̂ = 1
|T |

∫
T
ωdx. By the triangle inequality, we have that

||ωDβχ||L2(T ) ≤ ||(ω − ω̂)Dβχ||L2(T ) + ||ω̂Dβχ||L2(T ).
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Using approximation properties, we see that

||(ω − ω̂)Dβχ||L2(T ) ≤ Ch|ω|W 1,∞(T )||Dβχ||L2(T ).

Using inverse estimates and decay properties of ω, we have

||(ω − ω̂)Dβχ||L2(T ) ≤ Cd−1h2−r||χ||L2(T ).

To handle the next term we again use an inverse estimate, to get

||ω̂Dβχ||L2(T ) ≤ Ch2−r|ω̂χ|H1(T ).

Using the triangle inequality, we have

|ω̂χ|H1(T ) ≤ |(ω̂ − ω)χ|H1(T ) + |ωχ|H1(T ).

By using the product rule, approximation properties, and inverse estimates, we
obtain

|(ω̂ − ω)χ|H1(T ) ≤ Cd−1||χ||L2(T ).

Therefore,

|ω̂χ|H1(T ) ≤ C(d−1||χ||L2(T ) + |ωχ|H1(T )).

Combining these estimates, we have that∑
|α|=1,|β|=r−1

||Dαω2Dβχ||L2(T ) ≤ d−1h2−r|ωχ|H1(T ) + d−2h2−r||χ||L2(T ).

This proves (2.8). By introducing again ω̂ we can bound |ωχ|H1(T ) by the right
hand side of (2.9). This will prove (2.9). By using the triangle inequality we see
that |ω∇(ωχ)|Hr(T ) ≤ |ω2∇(χ)|Hr(T ) + |ωχ∇ω|Hr(T ). We can then use (2.9) to
bound |ω2∇(χ)|Hr(T ) by the right hand side of (2.10), and we can use Leibniz’s
rule and inverse estimates to bound |ωχ∇ω|Hr(T ). This would prove (2.10). By
Leibniz’s rule, inverse estimates and using the decay properties of ω we can prove
(2.11) and (2.12). We omit the proofs. �

Now we can state a super-approximation result similar to that in [12]. The
differences between this approximation result and the one contained in [12] is that
ω appears in the right-hand side of our result. This will allow us to perform “kick
back” arguments. (See the proof of Theorem 3.1.)

Lemma 2.3. Let ∂<(D0, Dd) = d > κh , where ω ∈ C∞
< (D0). Suppose

|ω|W l,∞(D0) ≤ Cd−l for l = 0, 1, · · · , r + 1. Then, for all χ ∈ Vh there exists
ψ ∈ V <

h (Dd) with

|||ω2χ− ψ|||H1
h(Ω) ≤ Ch(d−1|ωχ|H1

h(Dd) + d−2||χ||L2(Dd))

where C is independent of χ and ω.

Proof. This easily follows from Lemma 2.1 and (2.8). �
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2.5. Boundedness and Consistency of the Forms. We start by defining and
stating some properties of certain projection operators that we use throughout this
paper. In this direction, let M be a symmetric, smooth, bounded matrix that is
uniformly positive definite in Ω. If g ∈ L2(Ω), we define PM (g) ∈ Σh by the
following equation:

(2.14)
∫

Ω

χTMg =
∫

Ω

χTMPM (g), ∀χ ∈ Σh.

Note that PM can be defined elementwise since Σh is a space of discontinuous
functions. If M = I, then this will simply be the vector-valued L2-projection
operator. L2-projection operators have been analyzed extensively. The proof of the
following lemma, which we omit, follows the proof for the L2-projection operator
([7]); however, it is much simpler since Vh consists of discontinuous functions.

Lemma 2.4. Let M be a symmetric, smooth and bounded matrix that is uniformly
positive definite. Let PM be defined by (2.14) and 1 ≤ p ≤ ∞. Then, for all T ∈ Th,

||PM (g)||Lp(T ) ≤ C1||g||Lp(T )

and
||g − PM (g)||Hk(T ) ≤ C2h

r−k|g|Hr(T ) for k = 1, · · · , r
where C1 and C2 are independent of g and T .

In order to show boundedness of our forms, we need some estimates for our
lifting operators. The following lemma is an extension of Lemma 2(ii) in [4].

Lemma 2.5. Let M be smooth, bounded, and uniformly positive definite in Ω.
Let 1 ≤ p, q ≤ ∞ , 1

p + 1
q = 1. Then, there exists a constant C such that for all

φ ∈ [Lp(e1)]2 and χ ∈ [Lq(e2)]2,

|
∫

Se1∩Se2

rM,e1(φ)TMrM,e2(χ)dx| + |
∫

Se1∩Se2

lM,e1(φ)TMrM,e2(χ)dx|

+ |
∫

Se1∩Se2

lM,e1(φ)TMlM,e2(χ)|dx|

≤ C
1
h
||φ||Lp(e1)||χ||Lq(e2).(2.15)

In the case that e1 and e2 do not belong to the same triangle the, left hand side of
(2.15) will be zero.

Proof. The last statement of the lemma follows by the definition of the lifting
operators. In the other case, by the boundedness of M and (2.5), we have

|
∫

Se1∩Se2

rM,e1(φ)TMrM,e2(χ)dx| = |
∫

e1

φTM 〈rM,e2(χ)〉 ds|

≤ C||φ||Lp(e1)|| 〈rM,e2(χ)〉 ||Lq(e1)

≤ Ch−
1
q ||φ||Lp(e1)||rM,e2(χ)||Lq(Se2 ).

Now we use a duality argument to bound ||rM,e2(χ)||Lq(Se2 ). If g = M−1z, then∫
Se2

rM,e2(χ)T zdx = −
∫

e2

χTM 〈PM (g)〉 ds.
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By Hölder’s inequality, (2.5), and Lemma 2.4, we easily get

−
∫

e2

χTM 〈PM (g)〉 ds ≤ Ch−
1
p ||χ||Lq(e2)||g||Lp(Se2 ).

Therefore, by duality ||rM,e2(χ)||Lq(Se2 ) ≤ Ch−
1
p ||χ||Lq(e2) since ||g||Lp(Se2 ) ≤

C||z||Lp(Se2 ). Hence, we have established the following:

(2.16) |
∫

Se1∩Se2

rM,e1(φ)TMrM,e2(χ)dx| ≤ C
1
h
||φ||Lp(e1)||χ||Lq(e2).

The last two terms can be bounded following similar steps. �

In the case that e1 and e2 belong to a common triangle, a simple exercise shows
maxy∈e1(σ

s
x(y)) ≤ 2sminy∈e2(σ

s
x(y)). Therefore,

(2.17)
1
h
||φ||Lp(e1)||χ||Lq(e2) ≤ C

1
h
||σ−sφ||Lp(e1)||σ

sχ||Lq(e2).

If we take into account that rM =
∑

e∈Eh
rM,e, lM =

∑
e∈E0

h
lM,e, make use

of Hölder’s inequality (both for the integrals and summation), apply Lemma 2.5,
and (2.17), we can show the following boundedness of our forms. (See [6],[2] for
analogous results.)

Lemma 2.6. Let 1 ≤ p, q ≤ ∞, 1
p + 1

q = 1. For all three forms, there exists a
positive constant C such that for all u ∈W 1,p

h (Ω) and v ∈W 1,q
h (Ω)

(2.18) |B(v, u)|+ |B(u, v)| ≤ C|||u|||W 1,p
h (Ω),x,s|||v|||W 1,q

h (Ω),x,−s

where C is independent of x, u and v.

The next important inequality is an extension of Lemma 2(i) in [4].

Lemma 2.7. Let M be given as in Lemma 2.5. Let e ∈ E0
h , φ ∈ [Pr−1(e)]2 and

suppose ω ∈ C∞(Ω) . Then,
(2.19)

h−1
e

∫
e

(ωφ)TM(ωφ)ds ≤ C(
∫

Se

ω2rM,e(φ)TMrM,e(φ)dx+ he|ω|2W 1,∞(Se)||φ||
2
L2(e)

).

Proof. Let v ∈ [Pp(e)]2 for some fixed p. Then, v is defined naturally on the line
containing e, call it l. As in [4], we define v ∈ [Pp(R2)]2 as the vector-valued
polynomial satisfying v = v on l and which is constant on the lines perpendicular
to l. As pointed out in [4],

(2.20) ||v||2L2(Se) ≤ Che||v||2L2(e)
.

Also, let ω̃ ≡ minS̄e
ω. It follows by the mean value theorem, possibly applying it

twice, that

(2.21) ||ω̃ − ω||L∞(Se) ≤ Ch|ω|W 1,∞(Se).

We easily see by our definitions that

(2.22)
∫

e

(ωφ)TM(ωφ)ds = E1 + E2
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where

E1 = h−1
e

∫
e

((ωφ)TM(ωφ)− (ω̃φ)TM(ω̃φ))ds

E2 = −h−1
e ω̃2

∫
Se

(φ)TMrM,e(φ)ds.

We rewrite E1,

E1 = Ch−1
e

∫
e

(ω − ω̃)(ω + ω̃)φTMφds.

By the Cauchy Schwarz inequality and the arithmetic-geometric mean inequality
we have

E1 ≤ Ch−1
e

∫
e

(ω − ω̃)2φTMφds+ εh−1
e

∫
e

(ω + ω̃)2φTMφds.

Later we will choose ε > 0 sufficiently small. Finally, using (2.21) and (ω + ω̃)2 ≤
2(ω2 + ω̃2) ≤ 2ω2, we see that

E1 ≤ Che|ω|2W 1,∞(Se)||φ||
2
L2(e)

+ 2εh−1

∫
e

ω2φTMφds.

Again, using the Cauchy Schwarz inequality and the arithmetic-geometric mean
inequality, we have

E2 ≤ ω̃2(εh−2

∫
Se

φ
T
Mφdx+ C

∫
Se

rM,e(φ)TMrM,e(φ)dx).

By using (2.20) and the positive definiteness of M, we see that

E2 ≤ C1ε

∫
e

ω2φTMφds+ C

∫
Se

ω2rM,e(φ)TMrM,e(φ)dx

where C1 is a constant independent of ε.
Finally, taking ε small enough, we arrive at our conclusion. �

The next lemma can easily be shown by applying integration by parts (see Section
3.3 in [2] for similar results).

Lemma 2.8. For all the forms we have consistency and adjoint consistency. That
is, if Lu = f or L∗w = f , with u,w ∈ H1

0 (Ω), then

(2.23) B(u, v) = (f, v) or B(v, w) = (f, v), ∀v ∈ Vh.

Until now, we have not addressed if (2.2) is well defined. Coerciveness, of course,
will not hold for a general second order elliptic operator. However, using techniques
similar to those in Section 4.2 of [2], and in addition taking care of the lower order
terms, we can show the following lemma.

Lemma 2.9. For all three forms there exists a constant C > 0 such that ∀χ ∈ Vh

(2.24) |||χ|||2H1
h(Ω) ≤ C(B(χ, χ) + ||χ||2L2(Ω)).

If we use this fact, Lemma 2.8 and use the techniques in [10], we could show that
our problem is well defined for sufficiently small h.
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3. Local H1 Estimates

We start with our main theorem.

Theorem 3.1. Let D0 ⊂ Dd ⊂ Ω with ∂<(D0, Dd) = d > κh (where κ > 1 is a
sufficiently large fixed constant). Suppose u and uh ∈ Vh satisfy

(3.1) B(u− uh, v) = 0, ∀v ∈ Vh

for any of the forms above. Then,

|||u−uh|||H1
h(D0) ≤ C inf

χ∈Vh

(|||u−χ|||H1
h(Dd)+d

−1||u−χ||L2(Dd))+Cd−1||u−uh||L2(Dd)

where C is independent of d.

Proof. Since u− uh = (u− χ)− (uh − χ), it suffices to show

|||u− uh|||H1
h(D0) ≤ C(|||u|||H1

h(Dd) + d−1||u||L2(Dd)) + Cd−1||u− uh||L2(Dd).

By the triangle inequality, it will be enough to establish

(3.2) |||uh|||H1
h(D0) ≤ C|||u|||H1

h(Dd) + Cd−1||uh||L2(Dd).

To this end, let ω ∈ C∞
< (Dd/4) with ω ≡ 1 on Dd/8 and |ω|W l,∞(Ω) ≤ Cd−l for

l = 0, 1, . . . , r + 1. For a moment, let us assume that we can show the following
inequality for all the forms:

(3.3) |||ωuh|||2H1
h(Ω) ≤ CB(uh, ω

2uh) + Cd−2||uh||2L2(Dd).

By (3.1), we can write

(3.4) B(uh, ω
2uh) = B(uh, ω

2uh − χ)−B(u, ω2uh − χ) +B(u, ω2uh)

for any χ ∈ Vh. Since our forms are bounded, we have

B(u, ω2uh) ≤ C|||u|||H1
h(Dd/2)

|||ω2uh|||H1
h(Dd/2)

≤ C|||u|||H1
h(Dd)(|||ωuh|||H1

h(Dd) + d−1||uh||L2(Dd)).

Now, applying the arithmetic-geometric mean inequality, we see that

(3.5) B(u, ω2uh) ≤ C|||u|||2H1
h(Dd) + ε|||ωuh|||2H1

h(Dd) + Cd−2||uh||2L2(Dd).

Using the boundedness of our forms and Lemma 2.3, we obtain

B(u, ω2uh − χ) ≤ C|||u|||H1
h(Dd/2)

|||ω2uh − χ|||H1
h(Dd/2)

≤ C|||u|||H1
h(Dd)(hd

−1|ωuh|H1
h(Dd) + hd−2||uh||L2(Dd)).

Taking into account that hd−1 < 1, and applying the arithmetic-geometric mean
inequality, we have

(3.6) B(u, ω2uh − χ) ≤ C|||u|||2H1
h(Dd) + ε|ωuh|2H1

h(Dd) + Cd−2||uh||2L2(Dd).

Similarly,

B(uh, ω
2uh − χ) ≤ Ch|||uh|||H1

h(Dd/2)
(d−1|ωuh|H1

h(Dd) + d−2||uh||L2(Dd)).

Using (2.4) and (2.5), we can show the inverse inequality h|||uh|||H1
h(Dd/2)

≤
C||uh||L2(Dd). Therefore, applying the arithmetic-geometric mean inequality one
more time gives

(3.7) B(uh, ω
2uh − χ) ≤ ε|ωuh|2H1

h(Dd) + Cd−2||uh||2L2(Dd).
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Finally, using (3.3), (3.4) and making ε small enough in (3.5),(3.6), and (3.7), we
arrive at

(3.8) |||ωuh|||2H1
h(Ω) ≤ C(|||u|||2H1

h(Dd) + d−2||uh||2L2(Dd)).

This will imply (3.2), which in turn implies our theorem.
We are left to show (3.3). We first prove this for the Modified BRMPS form.

First, by applying (2.3) and (2.11), we see that∑
e∈Eh

he|| 〈∇(ωuh)〉 ||2L2(e)
+

∑
e∈E0

h

he||[∇(ωuh)]||2L2(e)
(3.9)

≤ C
∑

T∈Th

∫
T

∇(ωuh)2dx+ Cd−2||uh||2L2(Ω).

By using (3.9), the positive definiteness of A, (2.19) and (2.5), we have

(3.10) |||ωuh|||2H1
h(Ω) ≤ CI + Cd−2||uh||2L2(Dd)

where

I ≡
∑

T∈Th

∫
T

∇(ωuh)TA∇(ωuh)dx+
∑
e∈Eh

∫
Se

ω2rA,e([uh])TArA,e([uh])dx

+
∑
e∈E∂

h

1
he

∫
e

ω2[uh]2ds.

In the last two inequalities we used the fact that each element has at most K
neighbors.

Let

G ≡
∑

T∈Th

∫
T

∇(ωuh)TA∇(ωuh)dx+ 2
∑
e∈Eh

∫
Se

∇h(ωuh)T
AωrA,e([uh])dx

+
∑
e∈Eh

ηe

∫
Se

ω2rA,e([uh])TArA,e([uh])dx.

Using the arithmetic-geometric mean inequality on the middle term and the fact
that each triangle has at most K neighbors, we get

G ≥ (1− K

ε1
)

∑
T∈Th

∫
T

∇(ωuh)TA∇(ωuh)dx

+(η − ε1)
∑
e∈Eh

∫
Se

ω2rA,e([uh])TArA,e([uh])dx.

Choosing ε1 to satisfy K < ε1 < η, we see that

(3.11) I ≤ C(G+
∑
e∈E∂

h

1
he

∫
e

ω2[uh]2ds).
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Using the definition of G and adding and subtracting the terms of B(uh, ω
2uh) (for

the Modified BRMPS form) to the right hand side of (3.11), we arrive at

I ≤ C(B(uh, ω
2uh)

+
∑

T∈Th

∫
T

∇(ωuh)TA∇(ωuh)−∇(ω2uh)TA∇uhdx

+ {
∑
e∈Eh

(2
∫

Se

∇h(ωuh)TAωrA,e([uh])dx

+
∫

e

(
〈
∇h(ω2uh)

〉T
A[uh] + 〈∇huh〉T A[ω2uh])ds)}

+
∑
e∈Eh

ηe

∫
Se

(ω2rA,e([uh])TArA,e([uh])− rA,e(ω2[uh])TArA,e([uh]))dx

−
∑

T∈Th

∫
T

(c(ωuh)2 + uhb · ∇(ω2uh)dx+
∑
e∈Eh

∫
e

〈uh〉 b · [ω2uh]ds))

= C(B(uh, ω
2uh) + I1 + I2 + I3 + I4).

Note that I4 consists of the lower order terms of our bilinear form. By applying
the product rule to each term of I1, we see that

(3.12) I1 = |
∑

T∈Th

∫
T

u2
h∇ωTA∇ωdx| ≤ Cd−2||uh||2L2(Dd)

where we also used that |∇ω|L∞(Ω) ≤ Cd−1 in the last inequality.
For I2, we use the definitions of PA, (2.14) and of our lifting operator rA,e, to

rewrite it as

I2 = −(
∑
e∈Eh

∫
e

2 〈PA(ω∇h(ωuh))〉T A[uh]ds

−
∫

e

(
〈
∇h(ω2uh)

〉T
A[uh] + 〈∇huh〉T A[ω2uh])ds).

By the product rule,
〈
∇h(ω2uh))

〉
=

〈
ω2∇h(uh) + 2ω∇(ω)uh

〉
. Adding a term to

this and applying the product one more time, we see that〈
∇h(ω2uh)

〉
+

〈
ω2∇h(uh)

〉
= 2ω 〈∇h(ωuh)〉 .

Therefore, we can express I2 in the following form:

I2 = −(2
∑
e∈Eh

∫
e

〈PA(ω∇h(ωuh))− ω∇h(ωuh)〉T A[uh]ds.

By the Cauchy-Schwarz inequality, (2.3) and (2.5),

I2 ≤ C
∑
e∈Eh

h−1/2||uh||L2(Se)(h−1/2||PA(ω∇h(ωuh))− ω∇h(ωuh)||L2(Se)

+ h1/2||PA(ω∇h(ωuh))− ω∇h(ωuh)||H1
h(Se)).

Moreover, by Lemma 2.4 and (2.10),

I2 ≤ C
∑
e∈Eh

||uh||L2(Se)(d−1||∇h(ωuh)||L2(Se) + d−2||uh||L2(Se)).
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Finally, using the positive definiteness of A and the arithmetic-geometric mean
inequality, we see that

(3.13) I2 ≤ ε
∑

T∈Th

∫
T

∇(ωuh)TA∇(ωuh)dx+ Cd−2||uh||L2(Dd).

Now we bound I3. Again, using the definition of PA and rA,e, we get that

I3 = −
∑
e∈Eh

ηe

∫
e

〈
PA(ω2rA,e([uh]))− ω2rA,e([uh])

〉T
A[uh]ds.

After using (2.5), (2.3), Lemma 2.4 and (2.9), we have

I3 ≤ C
∑
e∈Eh

||uh||L2(Se∩Dd)(d−1||ωrA,e([uh])||L2(Se) + d−2h||rA,e([uh])||L2(Se)).

By Lemma 2.5 and (2.5),

h||rA,e([uh])||L2(Se) ≤ C||uh||L2(Se).

Therefore, after applying the arithmetic-geometric mean inequality, we get

I3 ≤ Cd−2||uh||2L2(Dd) + ε
∑
e∈Eh

∫
Se

ω2rA,e([uh])TArA,e([uh])dx.

Now we handle I4. By applying the product rule and the Cauchy-Schwarz inequal-
ity, using the boundedness of c and b, the positive definiteness of A and (2.5), we
have that

I4 ≤ Cd−1||uh||2L2(Dd) + ε
∑

T∈Th

∫
T

∇(ωuh)TA∇(ωuh)dx

+ε
∑
e∈Eh

1
he

∫
e

(ω[uh])TA(ω[uh])ds.

If we apply Lemma 2.7 followed by (2.5), we see that

I4 ≤ Cd−2||uh||2L2(Dd) + ε
∑

T∈Th

∫
T

∇(ωuh)TA∇(ωuh)dx

+ C1ε
∑
e∈Eh

∫
Se

ω2rA,e([uh])TArA,e([uh])dx

where C1 does not depend on ε. Finally, by taking ε small enough to “kick back”
we arrive at

(3.14) I ≤ CB(uh, ω
2uh) + Cd−2||uh||L2(Dd).

Therefore, (3.3) holds for the Modified BRMPS form.
In order to work with the LDG form, we define R(v) = rA([v]) + lA(βT [v]). Let

us assume, for a moment, the following inequality:

(3.15)∑
e∈Eh

∫
Se

ω2rA,e([uh])TArA,e([uh])dx+
∑
e∈E0

h

∫
e

ω2lA,e(βT [uh])TAlA,e(βT [uh])dx

≤ C
∑
e∈Eh

1
he

∫
e

ω2[uh]2ds+ Cd−2||uh||L2(Dd).
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Using this inequality together with the fact that R(uh) =
∑

e rA,e([uh])+∑
e∈E0

h
lA,e(βT [uh]) and that rA,e and lA,e are both supported in Se, we have

(3.16)
∫

Ω

ω2R(uh)TAR(uh)dx ≤ C
∑
e∈Eh

1
he

∫
e

ω2[uh]2ds+ Cd−2||uh||L2(Dd).

Using (3.9), we get

|||ωuh|||2H1
h(Ω) ≤ CJ + Cd−2||uh||2L2(Dd)

where J ≡
∑

T∈Th

∫
T

∇(ωuh)TA∇(ωuh)dx+
∑
e∈Eh

1
he

∫
e

[ωuh]2ds.

Recall that for the LDG form η > 0. Using this fact, the arithmetic-geometric
mean inequality and (3.16) we have (see (4.16) in [2] for a similar inequality),

J ≤ C(
∑

T∈Th

∫
T

∇(ωuh)TA∇(ωuh)dx+ 2
∑

T∈Th

∫
T

ωR(uh)TA∇(ωuh)dx

+
∫

Ω

ω2R(uh)TAR(uh)dx+
∑
e∈Eh

ηe

he

∫
e

[ωuh]2ds) + Cd−2||uh||L2(Dd).(3.17)

Adding and subtracting the terms of B(uh, ω
2uh) from the right hand side of (3.17)

we see that

J ≤ CB(uh, ω
2uh) + C(J1 + J2 + J3 + J4) + Cd−2||uh||L2(Dd)

where

J1 = |
∑

T∈Th

∫
T

∇(ωuh)TA∇(ωuh)−∇(ω2uh)TA∇uhdx|,

J2 = |2
∑

T∈Th

∫
T

ωR(uh)TA∇(ωuh)dx

+
∑
e∈Eh

∫
e

(
〈
A(∇h(ω2uh)

〉
[uh]) + 〈A∇huh〉 [ω2uh])ds

+
∑
e∈E0

h

∫
e

([A(∇h(ω2uh)]βT [uh]) + [A∇huh]βT [ω2uh])ds|,

J3 = |
∫

Ω

ω2R(uh)TAR(uh)dx−
∫

Ω

R(ω2uh)TAR(uh)dx|,

and

J4 = |
∑

T∈Th

∫
T

(c(ωuh)2 + uhb · ∇(ω2uh)dx+
∑
e∈Eh

∫
e

〈uh〉 b · [ω2uh]ds))|.

We see that J1 is |I1| with uh now being the LDG solution. Therefore,

J1 ≤ Cd−2||uh||2L2(Dd).
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After following similar manipulations as was done to simplify I2, we get

J2 = |2
∑
e∈Eh

∫
e

〈PA(ω∇h(ωuh)− ω∇h(ωuh)〉T A[uh]ds

+2
∑
e∈E0

h

∫
e

[A(PA(ω∇h(ωuh)− ω∇h(ωuh))]βT [uh]ds|.

Using, (2.3), (2.5), Lemma 2.4, and (2.10), we have

J2 ≤ ε
∑

T∈Th

∫
T

∇(ωuh)TA∇(ωuh)dx+ Cd−2||uh||L2(Dd).

Using the definitions of our lifting operators and the projection operator, as was
done for I3, we see that

J3 = |
∑
e∈Eh

∫
e

〈
PA(ω2R(uh))− ω2R(uh)

〉T
A[uh]ds

+
∑
e∈E0

h

∫
e

[A(PA(ω2R(uh))− ω2R(uh))]βT [uh]ds|.

Using the Cauchy-Schwarz inequality, (2.3), and (2.5), we have

J3 ≤ C
∑
e∈Eh

h−1/2||uh||L2(Se)(h−1/2||PA(ω2R(uh))− ω2R(uh)||L2(Se)

+ h1/2||PA(ω2R(uh))− ω2R(uh)||H1
h(Se)).

Using the fact that PA is linear, the definition of R, and that the supports of
rA,e, lA,e lie in Se, we have

J3 ≤ C
∑
e∈Eh

h−1/2||uh||L2(S
′
e)(h

−1/2||PA(ω2rA,e([uh]))− ω2rA,e([uh])||L2(Se)

+h1/2||PA(ω2rA,e([uh]))− ω2rA,e([uh])||H1
h(Se))

+ C
∑
e∈E0

h

h−1/2||uh||L2(S
′
e)(h

−1/2||PA(ω2lA,e(βT [uh]))− ω2lA,e(βT [uh])||L2(Se)

+h1/2||PA(ω2lA,e(βT [uh]))− ω2lA,e(βT [uh])||H1
h(Se)).

Here S
′

e denotes Se union with the triangles that share an edge with Se. Finally,
mimicking the argument for bounding I3, we see that

J3 ≤ Cd−2||uh||2L2(Dd) + ε
∑
e∈Eh

∫
Se

(ω2rA,e([uh])TArA,e([uh])dx

+ ε
∑
e∈E0

h

∫
Se

ω2le(βT [uh])TAle(βT [uh])dx.

Furthermore, by (3.15),

(3.18) J3 ≤ Cd−2||uh||2L2(Dd) + C1ε
∑

e

1
he

∫
e

[ωuh]2ds
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where C1 is independent of ε. Again, since J4 is |I4| with uh now being the LDG
solution, we have

J4 ≡ I4 ≤ Cd−2||uh||2L2(Dd) + ε
∑

T∈Th

∫
T

∇(ωuh)TA∇(ωuh)dx

+ε
∑
e∈Eh

1
he

∫
e

[ωuh]2ds.

Finally, taking ε sufficiently small to “kick back”, we conclude that

J ≤ CB(uh, ω
2uh) + Cd−2||uh||2L2(Dd).

This, of course, implies (3.3) for the LDG form, which in turn implies our theorem
for the LDG form. We are left to show (3.15).

In bounding I3, we showed that

|
∑
e∈Eh

∫
Se

(ω2rA,e([uh])TArA,e([uh])− rA,e(ω2[uh])TArA,e([uh]))dx|(3.19)

≤ Cd−2||uh||2L2(Dd) + ε
∑
e∈Eh

∫
Se

ω2(rA,e([uh]))TA(rA,e([uh]))dx

where ε > 0 is arbitrary. Following similar steps one can show

|
∑
e∈E0

h

∫
Se

(ω2lA,e(βT [uh])TAlA,e(βT [uh])− lA,e(ω2βT [uh])TAlA,e(βT [uh]))dx|(3.20)

≤ Cd−2||uh||2L2(Dd) + ε
∑
e∈E0

h

∫
Se

ω2(lA,e(βT [uh]))TA(lA,e(βT [uh]))dx.

By an inverse estimate, (2.5), and the arithmetic-geometric mean inequality, we
have

|
∑
e∈Eh

∫
Se

rA,e(ω2[uh])TArA,e([uh])dx|(3.21)

+|
∑
e∈E0

h

∫
Se

lA,e(ω2βT [uh])TAlA,e(βT [uh])dx|

= |
∑
e∈Eh

∫
e

ω[uh]TA 〈rA,e([uh])〉 ds|+ |
∑
e∈E0

h

∫
e

ωβT [uh][ωAlA,e(βT [uh])]ds|

≤ C
∑
e∈Eh

1
he

∫
[ωuh]2ds+ ε

∑
e∈Eh

∫
Se

ω2rA,e([uh])TArA,e([uh])dx

+ε
∑
e∈E0

h

∫
Se

ω2lA,e(βT [uh])TAlA,e(βT [uh])dx.

Using (3.19), (3.20), (3.21), the triangle inequality, and taking ε sufficiently small
to “kick back” we arrive at (3.15).

Following similar techniques as above we can show (3.3) for the Modified BMMPR
form. We omit the proof. �

Using approximation properties and Theorem 3.1, we have the following Corol-
lary.
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Corollary 3.2. Let x,D0, Dd, u, and uh be as in Theorem 3.1 then

(3.22) |||u− uh|||H1
h(D0) ≤ Chr−1|u|Hr(Dd) + Cd−1||u− uh||L2(Dd).

4. Pointwise Estimates

Now we are ready to state our pointwise error estimates.

Theorem 4.1. Suppose u ∈ W 1,∞(Ω) satisfies (2.1) and uh ∈ Vh satisfies (2.2)
for any of the bilinear forms. Let x ∈ Ω̄ and s satisfy 0 ≤ s ≤ r − 2, r ≥ 2. Then,
there exists a constant C independent of x, u, uh and h such that

(4.1) |(u− uh)(x)| ≤ Ch log(1/h)s̄ inf
χ∈Vh

|||u− χ|||W 1,∞
h (Ω),x,s

where s̄ = 0 if 0 ≤ s < r − 2, and s̄ = 1 if s = r − 2.

Proof. Now that we have established Lemma 2.6 and Corollary 3.2, we can follow
the techniques of the proof for Theorem 5.1 in [6]. The main difference is that
their result does not handle hanging nodes. However, their proof can easily be
modified to allow hanging nodes by using the fact that each element has at most
K neighbors. Also, the norm appearing on the right hand side of our result has an
extra term, but that term can be handled easily throughout their proof. �

Similarly, by following the proof of Theorem 5.2 in [6], we obtain gradient point-
wise estimates.

Theorem 4.2. Suppose u ∈ W 1,∞(Ω) satisfies (2.1) and uh ∈ Vh satisfies (2.2)
for any of the bilinear forms. Let x ∈ Ω̄ and s satisfy 0 ≤ s ≤ r − 1, r ≥ 2. Then,
there exists a constant C independent of x, u, uh and h such that

(4.2) |∇h(u− uh)(x)| ≤ C log(1/h)¯̄s inf
χ∈Vh

|||u− χ|||W 1,∞
h (Ω),x,s

where ¯̄s = 0 if 0 ≤ s < r − 1, and ¯̄s = 1 if s = r − 1.

The results here carry over to higher dimensions, if we allow meshes that fit the
boundary exactly. Of course, this is not practical in higher dimensions, but it can
in principle be done. Let Ω′ satisfy Ω ⊂ Ω′ and dist(∂Ω, ∂Ω′) ≤ Ch2. If we mesh
the larger domain Ω′ with simplices such that the simplicial domian contains Ω and
then restrict the mesh to Ω, we will find our desired mesh.

The author would like to thank Lars Wahlbin and Alfred Schatz for many valu-
able discussions.
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