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Abstract. We analyze existing discontinuous Galerkin methods on quasi-
uniform meshes for singularly perturbed problems. We prove weighted L2

error estimates. We use the weighted estimates to prove L2 error estimates
in regions where the solution is smooth. We also prove pointwise estimates in
these regions.

1. Introduction

We consider the problem

−ε∆u+ b · ∇u+ c(x)u = f in Ω,
u = 0 on ∂Ω.

(1.1)

Here Ω ⊂ R2 is a domain with smooth boundary, f is smooth , ε > 0 is a small
constant, b is a non-zero constant vector and c(x) ≥ 0 with c ∈ L∞(Ω).

As we know the solution to this problem might develop layers. The standard
continuous Galerkin discretization of this problem propagates error through out the
domain. The streamline diffusion (SD) method developed by Brooks and Hughes [3]
does much better in resolving layers. In fact, the numerical outflow boundary layers
for the streamline diffusion method are contained an O(log(1/h)h) neighborhood
of the outflow boundary.

In this paper we show that some discontinuous Galerkin (DG) methods will
perform as well as the SD method in resolving layers. The DG method for the pure
hyperbolic problem proposed by Reed et. al. [11] which was further analyzed in [8]
and [6], showed good results for the pure hyperbolic problem. The error in L2 was
shown to be O(hk+1/2) assuming the solution is smooth and polynomials of degree
k are used. In fact, Peterson [10] argued that this result is sharp . A strategy
that has been used for singularly perturbed problems is to use [11] to discretize
the convection-reaction part and use different discontinuous discretizations for the
diffusion part [12] [4], [2]. In [12] and [4] they proved global error estimates assuming
the solution is smooth. If uh denotes the DG approximation to (1.1), then their
estimates take on the following form:

||u− uh||Ω ≤ Chk+1/2||u||Hk+1(Ω).

However, in general ||u||Hk+1(Ω) is large and depends on ε. Therefore, in this paper
we prove error estimates in subdomains where the solution is smooth. That is, we
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consider a subdomain Ω0 ⊂ Ω where u is smooth and prove that

||u− uh||Ω0 ≤ C log(1/h)hk+1/2,

where now C does not depend on ε. Moreover, we show that ∂Ω0 can be chosen
to be O(log(1/h)h) distance up to the outflow boundary of Ω. These estimates are
exactly the estimates that were obtained in [5], [7] for the SD method. However,
the estimates in [5], [7] assumed that infx c(x) > 0. Here we show that we can
remove this assumption. We also prove suboptimal max-norm error estimates.

The paper is organized as follows: In the next section we present the numerical
methods. Then, in Section 3 we present some preliminary results. In Section 4 we
give the L2 error analysis. Finally, in section 5 we prove max-norm estimates.

2. DG Methods

Suppose we have a family of edge to edge triangulations {Th} of Ω , h =
supT∈Th

hT with hT = diam(T ). Vh will denote the finite dimensional space of
functions that are polynomials of degree at most k on each element. We define
E∂

h as the collection of boundary edge, E0
h as the collection of interior edges corre-

sponding to Th , and Eh = E0
h

⋃
E∂

h . We further decompose our boundary edges as
E∂

h = E+
h

⋃
E−h where E−h , E+

h are the collection of edges that belong to the inflow,
outflow part of the boundary, respectively. Se will denote the union of elements
that have e as an edge. On each edge, as in [1] we define the average and jump
operators as follows: For e ∈ E0

h, q vector valued and φ scalar valued

< q >= 1
2 (q1 + q2), [q] = q1 · n1 + q2 · n2,

< φ >= 1
2 (φ1 + φ2), [φ] = φ1n1 + φ2n2,

where Se = T1

⋃
T2, qi = q|T1 , φi = φ|Ti and ni is the exterior normal to Ti, i = 1, 2.

For e ∈ E∂
h

< q >= q, [φ] = φn

where n is the outward unit normal. The quantities [q] and < φ > on boundary
edges are not required so they are left undefined. Note that [q] is a scalar and [φ]
a vector. If e ∈ E0

h, then, as in [7], u±(z) = limδ→0 u(z ± δb) where z ∈ e .
Now we are ready to define our bilinear forms. First we write the classical

convection-reaction discretization.
B1(u, v) =

∑
T∈Th

∫
T
(b · ∇u+ cu)vdx+

∑
e∈E0

h

∫
e
(u+ − u−)v+|b · n|ds

+
∑

e∈E−h

∫
e
uv|b · n|ds.

Using integration by parts we have the following

B1(u, v) =
∑

T∈Th

∫
T
u(−b · ∇v + cv)dx+

∑
e∈E0

h

∫
e
u−(v− − v+)|b · n|ds

+
∑

e∈E+
h

∫
e
uv|b · n|ds.

The diffusion discretization is

B2(u, v) =
∑

T∈Th
ε
∫

T
∇u∇vdx

−
∑

e∈Eh

∫
e
ε(< ∇hu > [v] + γ < ∇hv > [u])ds

+
∑

e∈Eh
η ε

he

∫
e
[u][v]ds.

Here ∇hφ is the piecewise defined function such that ∇hφ = ∇φ on each T ∈ Th.
If γ = −1 and η > 0, then we have the NIPG method which was considered in [12].
If γ = 1 and η sufficiently large, gives the IP method which was considered in [4].
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The discontinuous approximation uh is defined by

(2.1) B(uh, v) = (f, v), ∀v ∈ Vh

where B = B1 +B2.

2.1. Approximation Results. We first state trace and inverse inequalities. Let
T ∈ Th then we have

(2.2) ||ψ||∂T ≤ C(h−1/2||ψ||T + h1/2||∇ψ||T ).

where C is independent of T and ψ.
If ψ ∈ Vh, then

(2.3) ||∇ψ||T ≤ Ch−1||ψ||T ,

(2.4) ||ψ||∂T ≤ Ch−1/2||ψ||T ,
and

(2.5) ||ψ||∂T ≤ C(h
1
2 ||b · ∇ψ||T + ||ψ|b · n|1/2||∂T )

where n is the unit normal to ∂T .
The last inequality was used in [6].
Now we present a preliminary cut-off function. This function will differ from the

one in [7] in order to handle the case that c is not bounded away from zero from
below (e.g. no reaction term). One can construct a function with the following
properties:

There exist positive constants c1 and c2 such that

c1 ≤ φ(t) ≤ c2 for t ≤ 1,

φ(t) = e−t t ≥ 0,

φ(t) = 3− 1
log(|t|) + 1

t ≤ −1,

φ′(t) < 0 t ∈ (−∞,∞),

|φl(t)| ≤ c2|φ(t)| 1 ≤ l ≤ k + 1, t ∈ (−∞,∞),

|φl(t)| ≤ c2|φ
′
(t)| 2 ≤ l ≤ k + 1, t ∈ (−∞,∞),

and
|φ(t)| ≤ c2|t|(log(|t|) + 1)2|φ′(t)|, t ∈ (−∞,∞).

If we define RO(D, v) = maxx∈D |v(x)|/minx∈D |v(x)|, then for any interval I
of length 1

RO(I, φ) +RO(I, φ
′
) ≤ c2.

From now on, for simplicity, we let b = [1, 0]′ and we define our cut-off function
as

ω(x, y) = φ(
x−A

ρ
)φ(

B1 − y

σ
)φ(

y −B2

σ
).

Here ρ = Kh log(1/h) and σ = Kh1/2 log(1/h), where K is a sufficiently large
constant that will be chosen later.

From the properties above it follows that ωx < 0 and that

(2.6) |Dα
xD

β
yω| ≤ Cρ−ασ−β |ω| for α+ β ≤ k + 1
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(2.7) |Dα
xD

β
yω| ≤ Cρ−α+1σ−β |ωx| for α ≥ 1, α+ β ≤ k + 1

(2.8) |ω| ≤ C(log(1/h))2|ωx|.

RO(T, ω) and RO(T, ωx) are bounded independently of h(2.9)
on any element T.

Property (2.8) makes it possible to handle the case of no reaction term. In fact, we
can use this same cut-off function to prove error estimates for the SD method in
the absence of a reaction term.

Now we can define a weighted norm

Q(v) ≡ (
∑

T∈Th

(ε||ω∇v||2T + ||(ω|ωx|)1/2v||2T + ||ωc1/2v||2T )

+
∑
e∈E0

h

1
2
||ω(v+ − v−)|b · n|1/2||2e +

∑
e∈E∂

h

||ωv|b · n|1/2||2e

+
∑
e∈Eh

η
ε

he
||ω[v]||2e)1/2.

The following super-approximation result is similar to the super-approximation
result found in [7].

Lemma 2.1. There exists a constant C such that for v ∈ Vh and T ∈ Th

h||ω−1∇2
h((ω2v − P (ω2v))||T + ||ω−1∇h(ω2v − P (ω2v))||T(2.10)

+(1/h)||ω−1(ω2v − P (ω2v))||T + ≤ Ch−1/2K−1/2(||(ω|ωx|)1/2v||T
where P denotes the L2 projection operator into Vh.

Proof. By approximation we know that

h||∇2((ω2v − P (ω2v))||T + ||∇(ω2v − P (ω2v))||T
+(1/h)||(ω2v)− P (ω2v)||T ≤ Chk

∑
|α|+|β|+|γ|=k+1

||DαωDβωDγv||T .

Note that Dγv = 0 if |γ| = k + 1 since v is in our subspace. Therefore, we assume
that |γ| ≤ k. First suppose that α2 + β2 6= 0, where α = (α1, α2) and β = (β1, β2).
In this case, by using (2.6) and (2.3), we have

||DαωDβωDγv||T ≤ Cρ−α1−β1σ−α2−β2h−|γ|||ω2v||T .
Using the definition of ρ and σ, we have that

ρ−α1−β1σ−α2−β2h|γ| = K−|α|−|β| log(1/h)−|α|−|β|h−k−1+(1/2)(α2+β2).

Since |α|+ |β| = k + 1− |γ| ≥ 1, α2 + β2 6= 0 and by using (2.8), we have

hk||DαωDβωDγv||L2(T ) ≤ CK−1h−1/2||ω|ωωx|1/2v||T .
On the other hand, suppose α2 + β2 = 0. By (2.6) and (2.7) we have

||DαωDβωDγv||T ≤ Cρ−α1−β1+1/2h−|γ|||ω|ωωx|1/2v||T .
Again using the definition of ρ, we have

hk||DαωDβωDγv||T ≤ K−1/2h−1/2||ω|ωωx|1/2v||T .
The result now follows by multiplying through by ω−1 and using (2.9). �
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3. Main Result

We can now prove our main result.

Theorem 3.1. Let ψ = P (u)− uh where uh solves 2.1 for either the NIPG or IP
methods. Let K be sufficiently large. If ε ≤ h, then there exists a constant C such
that

Q2(ψ) ≤ C(h−1||ω(u− P (u))||2Ω + h||ω∇h(u− P (u))||2Ω + h3||ω∇2
h(u− P (u))||2Ω).

Proof. It can easily be shown that

Q2(ψ) = B(ψ, ω2ψ)− 2ε
∑

T∈Th

∫
T

ωψ∇ω∇hψdx

+(1 + γ)ε
∑

e

∫
e∈Eh

< ω∇hψ > [ωψ]ds+ 2γε
∑

e

∫
e∈Eh

< ψ∇ω > [ωψ]ds.

By (2.6), (2.9), (2.8) and (2.3), we have

|ε
∑

T∈Th

∫
T

ωψ∇ω∇ψdx| ≤ CK−1/2(ε||ω∇hψ||2Ω + ||(ω|ωx|)1/2ψ||2Ω).

Using (2.9),(2.4), and the arithmetic-geometric mean inequality we obtain
(3.1)

(1+γ)ε
∑
e∈Eh

∫
e

< ω∇hψ > [ωψ]ds ≤ (1+γ)
1
8
ε||ω∇hψ||2Ω+(1+γ)C∗

∑
e∈Eh

ε

he
||ω[ψ]||2e.

Here C∗ depends on the constant arising from inverse estimates.
Again, by (2.6), (2.9), (2.8) and (2.4), we see that

|ε
∑
e∈Eh

∫
e

< ψ∇ω > [ωψ]ds|

≤ CK−1/2(
∑
e∈Eh

ε

he
||[ωψ]||2e + ||(ω|ωx|)1/2ψ||2Ω).

If we have γ = −1 (NIPG), then both sides of (3.1) will be zero. In this case, by
making K large enough we have that

(3.2) Q2(ψ) ≤ CB(ψ, ω2ψ).

On the other hand if, γ = 1 (IP) then as long as η > 2C∗ and K large enough
we again have (3.2).

Using the orthogonality property, we see that

(3.3) B(ψ, ω2ψ) = B(ψ,E) +B(u− P (u), P (ω2ψ)),

where E = ω2ψ − P (ω2ψ). We first bound B(ψ,E) = B1(ψ,E) +B2(ψ,E).
Since ψx ∈ Vh,

B1(ψ,E) =
∑
e∈E0

h

∫
e

(ψ+ − ψ−)E+|b · n|ds+
∑

e∈E−h

∫
e

ψE|b · n|ds

+
∫

Ω

cψEdx.
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By using the Cauchy-Schwarz inequality, (2.2), (2.10), and the boundedness of c,
we get

B1(ψ,E) ≤ C
∑
e∈E0

h

||ω(ψ+ − ψ−)|n · b|1/2||eK−1/2||(ω|ωx|)1/2ψ||Se

+ Ch1/2K−1/2||ωc1/2ψ||L2(Ω)||(ω|ωx|)1/2ψ||L2(Ω).

Therefore,

(3.4) B1(ψ,E) ≤ CK−1/2Q2(ψ).

Using (2.2) and (2.10), we see that

(3.5) |B2(ψ,E)| ≤ CK−1/2Q2(ψ).

We bound only one of the terms of |B2(ψ,E)| to illustrate this.∑
e∈Eh

ε

∫
e

< ∇hE > [ψ]ds

≤ Cε
∑
e∈Eh

(h−1/2||ω−1∇hE||Se + h1/2||ω−1∇2
hE||Se)||[ωψ]||e

≤ C
∑
e∈Eh

K−1/2||(ω|ωx|)1/2ψ||Se(
ε

he
)1/2||[ωψ]||e

≤ CK−1/2Q2(ψ).

Now we bound B(u− P (u), P (ω2ψ)). Since P (ω2ψ) ∈ Vh, we have that

B1(u− P (u), P (ω2ψ)) =
∑
e∈E0

h

∫
e

(u− P (u))−(P (ω2ω)− − P (ω2ψ)+)|b · n|ds

+
∑

e∈E+
h

∫
e

(u− P (u))P (ω2ψ)|b · n|ds

+
∫

Ω

c(u− P (u))P (ω2ψ)dx.

Applying (2.4), the triangle inequality, (2.10) and the arithmetic-geometric mean
inequality, we have∑

e∈E0
h

∫
e

(u− P (u))−(P (ω2ψ)− − P (ω2ψ)+)|b · n|ds

≤
∑
e∈E0

h

{(h−1/2||ω(u− P (u))||Se + h1/2||ω∇h(u− P (u))||Se)

(||ω−1((ω2ψ)+ − (ω2ψ)−)|b · n|1/2||e + ||ω−1(E+ − E−)|b · n|1/2||e)}
≤ C(h−1||ω(u− P (u))||2Ω + h||ω∇h(u− P (u))||2Ω)

+δ
∑
e∈E0

h

||ω(ψ− − ψ+)|b · n|1/2||2e +K−1Q2(ψ)
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where δ > 0 will be chosen later. After similar arguments for the last terms in
B1(u− P (u), P (ω2ψ)), we conclude that

B1(u− P (u), P (ω2ψ)) ≤ C(h−1||ω(u− P (u))||2Ω + h||ω∇h(u− P (u))||2Ω)
δQ2(ψ) +K−1Q2(ψ).(3.6)

We now bound the terms of B2(u − P (u), P (ω2ψ)). By the Cauchy-Schwarz
inequality , the triangle inequality , (2.6) and (2.10), we see that∑

T∈Th

ε

∫
T

∇(u− P (u))∇P (ω2ψ)dx

≤
∑

T∈Th

ε||ω∇(u− P (u))||T (||ω−1∇E||T + ||ω−1∇(ω2ψ)||T )

≤ Cε||ω∇h(u− P (u))||2Ω + δ(ε||ω∇hψ||2Ω + ||(ω|ωx|)1/2ψ||L2(T )) +K−1Q2(ψ).

Again, applying the Cauchy-Schwarz, the triangle inequality, (2.2), (2.10) and
the arithmetic-geometric mean inequality, we get that∑

e∈Eh

ε

∫
e

< ∇h(u− P (u)) > [P (ω2ψ)]ds

≤ ε

h
(h1/2||ω∇h(u− P (u))||Se + h3/2||ω∇2

h(u− P (u))||Se)(||[ωψ]||e + ||ω−1[E]||e)

≤ C(h||ω∇h(u− P (u))||2Ω + h3||ω∇2
h(u− P (u))||2Ω) +K−1Q2(ψ)

+δ
∑
e∈Eh

ε

he
||[ωψ]||2e.

By bounding the last two terms of B2(u − P (u), P (ω2ψ)) in a similar fashion,
we arrive at

B2(u− P (u), P (ω2ψ)) ≤ C(h−1||ω(u− P (u))||2Ω + ||ω∇(u− P (u))||2Ω(3.7)
h3||ω∇2(u− P (u))||2Ω) + 4δQ2(ψ) + 4K−1Q2(ψ).

Finally, takingK large enough in (3.4), (3.5), (3.6), (3.7), and choosing δ sufficiently
small in (3.6) and (3.7) we arrive at our result. �

Remark 3.2. By using Lemma 4.2, we can improve Theorem 3.1 so that Q2(ψ) also
contains the term

∑
T∈Th

h||ωψx||2T .

Now we can state a error estimate away from the layers.

Corollary 3.3. Let K, ρ and σ be as in Theorem 3.1. Let

Ω0 = {x ≤ A,B1 ≤ y ≤ B2} ∩ Ω

and

Ω+
s = {x ≤ A+ s log(1/h)ρ,B1 − s log(1/h)σ ≤ y ≤ B2 + s log(1/h)σ} ∩ Ω.

Let h0 and m be such that hm
0 ≥ ε. If ||u||H2(Ω) ≤ Cε−2 and ||u||Hk(Ω+

k+1+2m) <

C, then

||u− uh||Ω0 ≤ C log(1/h)hk+1/2 for h ≤ h0.
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Proof. By the triangle inequality and the properties of the L2-projection operator,
it is enough to establish

||P (u)− uh||Ω0 ≤ C log(1/h)hk+1/2 for h ≤ h0.

It follows form the properties of ω, that

||P (u)− uh||Ω0 ≤ C||ω(P (u)− uh)||Ω ≤ C log(1/h)||(ω|ωx|)1/2(P (u)− uh)||Ω.

Therefore, from Theorem 3.1 and properties of ω, we have

||P (u)− uh||Ω0 ≤ C log(1/h)(h−1/2||u− P (u)||Ω+
s

+ h1/2||∇h(u− P (u))||Ω+
s

+ h3/2||∇2
h(u− P (u))||Ω+

s
)

+ C log(1/h)hs(h−1/2||u− P (u)||Ω
+ h1/2||∇h(u− P (u))||Ω + h3/2||∇2

h(u− P (u))||Ω).

From approximation properties, we have

(h−1/2||u− P (u)||Ω+
s

+ h1/2||∇h(u− P (u))||Ω+
s

+ h3/2||∇2
h(u− P (u))||Ω+

s
) ≤ hk+1/2||u||Hk(Ω+

s ).

Using the triangle inequality and inverse estimates, we see that

(h−1/2||u− P (u)||Ω + h1/2||∇h(u− P (u))||Ω
+ h3/2||∇2

h(u− P (u))||Ω) ≤ Ch−1/2||u||H2(Ω).

The result now follows by letting s = k + 1 + 2m. �

In the next section we will need a weighted stability estimate. By following the
ideas of Theorem (3.1) we can prove the following Theorem.

Theorem 3.4. Let uh solve 2.1 for either the NIPG or IP methods. Let K be
sufficiently large. If ε ≤ h, then there exists a constant C such that

Q(uh) ≤ C||ωf ||Ω.

Here C is independent of h, uh and f .

Remark 3.5. In the case that infx∈Ω c(x) > 0, we can show that ||u−uh|| ≤ Chk+1/2.
That is, we can remove the logarithmic factor.

4. Approximate Green’s Function Bounds and L∞ Estimates

In this section we prove suboptimal L∞ bounds. In order to do so, we need
bounds on the approximate Green’s function. In this direction, for (x0, y0) ∈ Ω
define the rectangle containing (x0, y0)

Ω0 = {x ≤ x0 + C1 log(1/h)ρ, |y − y0| ≤ C1 log(1/h)σ} ∩ Ω.

Here C1 is a sufficiently large constant which we specify below. The approximate
Green’s function G ∈ Vh with reversed wind direction satisfies

B(v,G) = v(x0, y0) ∀v ∈ Vh.

Using Theorem 3.4 (with the wind direction reversed) and applying the tech-
niques used in [7] we can prove the following estimate.
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Corollary 4.1. There exists a constant C1 (in the definition of Ω0) independent
of h such that

||G||L∞(Ω\Ω0) + ||∇hG||L∞(Ω\Ω0) ≤ Chk+2.

In order to prove pointwise estimates, we need a global bound on G. This
requires an extra stability estimate. The following result was proving for the IP
method (reversed wind direction and c(x) ≡ 0) in Lemma A.1 in ([4]). The proof
for the NIPG method is similar.

Lemma 4.2. There exist positive constants C2 and C3 such that for every v ∈ Vh

h||vx||2Ω + ε||vy||2Ω + ||c1/2v||2Ω

+
∑
e∈E0

h

1
2
||(v+ − v−)|b · n|1/2||2e +

∑
e∈E∂

h

||v|b · n|1/2||2e

+
∑
e∈Eh

η
ε

he
||ω[v]||2e ≤ C2B(C3v − hvx, v).

We will also need the following lemma.

Lemma 4.3. Suppose v ∈ Vh and suppose that T1, T2 ∈ Th share a common edge
e. Then,

||v1 − v2||e ≤ Ch1/2(||b · ∇(v1)||T1 + ||b · ∇(v2)||T2) + C||(v1 − v2)|b · n|1/2||∂T1

where v1 = v|T1 and v2 = v|T2 .

Proof. Naturally v1 and v2 can be extended to all of R2. By (2.5), we have

||v1 − v2||e ≤ Ch1/2||b · ∇(v1 − v2)||T1 + C||(v1 − v2)|b · n|1/2||∂T1

≤ Ch1/2(||b · ∇(v1)||T1 + ||b · ∇(v2)||T1) + C||(v1 − v2)|b · n|1/2||∂T1 .

Since v2 lies in a finite dimensional space and T1 and T2 belong to a shape regular
mesh and share a common edge we have

||b · ∇(v2)||T1 ≤ C||b · ∇(v2)||T2 .

This completes the proof. �

Our proof of global estimates for G is very similar to the proof given by Niijima
[9] for the stream line diffusion method.

Theorem 4.4. There exists a constant C independent of h such that

||c1/2G||Ω ≤ C log(1/h)h−1/2,

(
∑

T∈Th

||Gx||2T )1/2 ≤ C log(1/h)h−1,

(
∑

T∈Th

||Gy||2T )1/2 ≤ C log(1/h)ε−1/2h−1/2,

(
∑
e∈E0

h

||(G+ −G−)|n · b|1/2||2e)1/2 + (
∑
e∈E∂

h

||G|n · b|1/2||2e)1/2 ≤ C log(1/h)h−1/2,

(
∑
e∈Eh

η
ε

he
||ω[G]||2e)1/2 ≤ C log(1/h)h−1/2.
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Proof. By Lemma 4.2 we have

h
∑

T∈Th

(||Gx||2T + ε||Gy||2T ) + ||c1/2G||2Ω

+
∑
e∈E0

h

1
2
||(G+ −G−)|b · n|1/2||2e +

∑
e∈E∂

h

||G|n · b|1/2||2e

+
∑
e∈Eh

η
ε

he
||ω[G]||2e ≤ CB(C2G− hGx, G) = C(C2G(x0, y0)− hGx(x0, y0)).

First, by an inverse estimate and the arthimetic-geometric mean inequality, we have

hGx(x0, y0) ≤ ||Gx||Ω ≤ δh||Gx||2Ω + Ch−1,

where δ > 0 will be chosen later.
Let (xm, y0) ∈ Ω\Ω0 such that |xm−x0| ≤ C log(1/h)ρ . If we now draw the line

from (x0, y0) to (xm, y0), then this line will intersect the elements T0, T1, · · · , Tm at
the points (x1, y0), (x2, y0), · · · , (xm, y0), respectively. By adding and subtracting
the the right hand and left hand limits of G at the points (xi, y0) and applying the
Fundamental Theorem of calculus, we have
(4.1)

−G(x0, y0) =
m−1∑
i=0

∫ xi+1

xi

Gx(s, y0)ds+
m−1∑
i=1

(G+(xi, y0)−G−(xi, y0)) +G−(xm, y0).

By an inverse estimate, we know that∫ xi+1

xi

Gx(s, y0)ds ≤ (xi+1 − xi)||Gx||L∞(Ti) ≤ h−1||Gx||L1(Ti).

Furthermore, since meas(T0 ∪ T1 ∪ . . . ∪ Tm) ≤ Ch(log(1/h)ρ), we have that
m−1∑
i=0

∫ xi+1

xi

Gx(s, y0)ds ≤ C log(1/h)(
m−1∑
i=1

||Gx||2Ti
)1/2.

Applying the arithmetic-geometric mean inequality, we have
m−1∑
i=0

∫ xi+1

xi

Gx(s, y0)ds ≤ δh
∑

T∈Th

||Gx||2T + C log(1/h)2h−1.

Using inverse estimates on the edges, we have

G+(xi, y0)−G−(xi, y0) ≤ Ch−1/2||(G+ −G−)||ei

where ei ⊂ ∂Ti is an edge containing (xi, y0). By Lemma 4.3, we have

G+(xi, y0)−G−(xi, y0) ≤ Ch−1/2||(G+−G−)|b ·n|1/2||∂Ti +C(||Gx||Ti + ||Gx||Ti+1).

Therefore,
m−1∑
i=1

(G+(xi, y0)−G−(xi, y0)) ≤ Ch−1/2
m−1∑
i=1

||(G+−G−)|b·n|1/2||∂Ti+C
m−1∑
i=1

||Gx||Ti

Applying the arithmetic-geometric mean inequality we have
m−1∑
i=1

(G+(xi, y0)−G−(xi, y0)) ≤ δ

m−1∑
i=1

||(G+ −G−)|n · b|1/2||2∂Ti
+ δh

m−1∑
i=1

||Gx||2Ti

+C log(1/h)2h−1.
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Here we used that m ≤ C log(1/h).
By Corollary 4.1, we have

G−(xm, y0) ≤ Chk+2.

By choosing δ sufficiently small we arrive at our result. �

Now we prove pointwise estimates.

Theorem 4.5. Assume that

||u||Ck+1(Ω0) + ||∇u||L1(Ω) + ε||u||W 2
1 (Ω) + ||u||Ω ≤ C.

If ε ≤ h, then
|(u− uh)(x0, y0)| ≤ Chk+1/4 log(1/h)2.

Proof. By the definition of G and the orthogonality property of u− uh, we have

(uh − P (u))(x0, y0) = B(uh − P (u), G) = B(u− P (u), G).

One can show using the Cauchy-Schwarz inequality, inverse estimates, and proper-
ties of the L2-projection, that

BΩ\Ω0(u− P (u), G) ≤ C(||∇u||L1(Ω) + ε||u||W 2
1 (Ω)

+(1/h)||u||Ω)(||G||L∞(Ω\Ω0) + ||∇hG||L∞(Ω\Ω0)).

Here BD(w, v) are the terms of B(w, v) with integration restricted to D. Therefore,
using our hypothesis and Theorem 4.1, we have

BΩ\Ω0(u− P (u), G) ≤ Chk+1.

Now we bound BΩ0(u− P (u), G).

BΩ0(u− P (u), G) =∑
T∈Th,T∩Ω0 6=∅

∫
T

{ε∇(u− P (u))∇(G) + (u− P (u))(−Gx + cG)}dx

−
∑

e∈E0
h,e∩Ω0 6=∅

∫
e

{ε(< ∇h(u− P (u)) > [G] + γ < ∇hG > [u− P (u)]

+
η

he
[u− P (u)][G]}ds

+
∑

e∈E0
h,e∩Ω0 6=∅

∫
e

(u− P (u))−(G− −G+)|b · n|ds

By Hölders inequality , approximation properties of P , and the fact that meas(Ω0) ≤
C(log(1/h))h1/2 we have∑

T∈Th,T∩Ω0 6=∅

∫
T

(ε∇(u− P (u))∇(G) ≤ Cεhk||u||Ck+1(Ω1) log(1/h)h1/4||∇hG||Ω1 .

If we apply Theorem 4.4 and our hypothesis, we get that∑
T∈Th,T∩Ω0 6=∅

∫
T

(ε∇(u− P (u))∇(G) ≤ C(ε/h)1/2 log(1/h)2hk+1/4.

Since Gx ∈ Vh we have ∑
T∈Th,T∩Ω0 6=∅

∫
T

(u− P (u))Gxdx = 0.
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It can easily be shown that∑
T∈Th,T∩Ω0 6=∅

∫
T

(u−P (u))cGdx ≤ Chk+5/4||u||Ck+1(Ω0)||c
1/2G||Ω0 ≤ C log(1/h)hk+3/4.

By applying Hölder’s inequality, approximation properties of P , the fact that
η > 0, and Theorem (4.4), we obtain

−
∑

e∈E0
h,e∩Ω0 6=∅

∫
e

(ε(< ∇h(u− P (u)) > [G])ds

εhk||u||Ck+1(Ω1)

∑
e∈E0

h,e∩Ω0 6=∅

||[G]||L1

≤ Cε
1
2hk+1(

∑
e∈E0

h,e∩Ω0 6=∅

η

h
||[G]||2e)1/2(

∑
e∈E0

h,e∩Ω0 6=∅

1)1/2 ≤ Cε
1
2 log(1/h)2hk+1/4.

In the last inequality we used that

(
∑

e∈E0
h,e∩Ω0 6=∅

1)1/2 ≤ log(
1
h

)h−3/4,

since there are at most C log2(1/h)h−3/2 triangles in Ω0.
Similarly, we obtain

−
∑

e∩Ω0 6=∅

∫
e

(ε/h)[u− P (u)][G]ds ≤ Cε
1
2 log(1/h)2hk+ 1

4 .

Using Hölders, approximation properties of P , inverse estimates and Theorem
(4.4), we see that

−
∑

e∈E0
h,e∩Ω0 6=∅

∫
e

εγ < ∇hG > [u− P (u)]ds

≤ Cε log(1/h)hk+1/4||u||Ck+1(Ω0)||∇hG||Ω0) ≤ log(1/h)2hk+1/4.

By Hölder’s inequality, approximation properties of P and Theorem (4.4), we
have that ∑

e∈E0
h,e∩Ω0 6=∅

∫
e

(u− P (u))−(G− −G+)|b · n|ds

≤ C log(1/h)hk+3/4||u||Ck+1(Ω1)(
∑

e∈E0
h,e∩Ω0 6=∅

||(G+ −G−)|b · n|1/2||2e)
1
2

≤ C log(1/h)2hk+1/4.

Our result now follows since ε ≤ h. �

Remark 4.6. In the piecewise linear case, if we add artificial crosswind diffusion,
then we can improve the pointwise estimates from log(1/h)2h5/4 to
log(1/h)2h11/8. This modification was done to the stream line diffusion method in
[7] and [9]. However, this estimate will still be suboptimal. Optimal max-norm
estimates (O(h3/2)) for these DG methods and for the stream line diffusion method
assuming general quasi-uniform meshes is still an open problem.
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