LOCAL ANAYLSIS OF DISCONTINUOUS GALERKIN METHODS APPLIED TO SINGULARLY PERTURBED PROBLEMS

J. GUZMÁN

Abstract

We analyze existing discontinuous Galerkin methods on quasiuniform meshes for singularly perturbed problems. We prove weighted L_{2} error estimates. We use the weighted estimates to prove L_{2} error estimates in regions where the solution is smooth. We also prove pointwise estimates in these regions.

1. Introduction

We consider the problem

$$
\begin{align*}
-\epsilon \Delta u+b \cdot \nabla u+c(x) u & =f \quad \text { in } \Omega, \\
u & =0 \quad \text { on } \partial \Omega . \tag{1.1}
\end{align*}
$$

Here $\Omega \subset R^{2}$ is a domain with smooth boundary, f is smooth,$\epsilon>0$ is a small constant, b is a non-zero constant vector and $c(x) \geq 0$ with $c \in L_{\infty}(\Omega)$.

As we know the solution to this problem might develop layers. The standard continuous Galerkin discretization of this problem propagates error through out the domain. The streamline diffusion (SD) method developed by Brooks and Hughes [3] does much better in resolving layers. In fact, the numerical outflow boundary layers for the streamline diffusion method are contained an $O(\log (1 / h) h)$ neighborhood of the outflow boundary.

In this paper we show that some discontinuous Galerkin (DG) methods will perform as well as the SD method in resolving layers. The DG method for the pure hyperbolic problem proposed by Reed et. al. [11] which was further analyzed in [8] and [6], showed good results for the pure hyperbolic problem. The error in L_{2} was shown to be $O\left(h^{k+1 / 2}\right)$ assuming the solution is smooth and polynomials of degree k are used. In fact, Peterson [10] argued that this result is sharp . A strategy that has been used for singularly perturbed problems is to use [11] to discretize the convection-reaction part and use different discontinuous discretizations for the diffusion part [12] [4], [2]. In [12] and [4] they proved global error estimates assuming the solution is smooth. If u_{h} denotes the DG approximation to (1.1), then their estimates take on the following form:

$$
\left\|u-u_{h}\right\|_{\Omega} \leq C h^{k+1 / 2}\|u\|_{H^{k+1}(\Omega)} .
$$

However, in general $\|u\|_{H^{k+1}(\Omega)}$ is large and depends on ϵ. Therefore, in this paper we prove error estimates in subdomains where the solution is smooth. That is, we
consider a subdomain $\Omega_{0} \subset \Omega$ where u is smooth and prove that

$$
\left\|u-u_{h}\right\|_{\Omega_{0}} \leq C \log (1 / h) h^{k+1 / 2}
$$

where now C does not depend on ϵ. Moreover, we show that $\partial \Omega_{0}$ can be chosen to be $O(\log (1 / h) h)$ distance up to the outflow boundary of Ω. These estimates are exactly the estimates that were obtained in [5], [7] for the SD method. However, the estimates in [5], [7] assumed that $\inf _{x} c(x)>0$. Here we show that we can remove this assumption. We also prove suboptimal max-norm error estimates.

The paper is organized as follows: In the next section we present the numerical methods. Then, in Section 3 we present some preliminary results. In Section 4 we give the L_{2} error analysis. Finally, in section 5 we prove max-norm estimates.

2. DG Methods

Suppose we have a family of edge to edge triangulations $\left\{\mathcal{T}_{h}\right\}$ of $\Omega, h=$ $\sup _{T \in \mathcal{T}_{h}} h_{T}$ with $h_{T}=\operatorname{diam}(T) . V_{h}$ will denote the finite dimensional space of functions that are polynomials of degree at most k on each element. We define $\mathcal{E}_{h}^{\partial}$ as the collection of boundary edge, \mathcal{E}_{h}^{0} as the collection of interior edges corresponding to \mathcal{T}_{h}, and $\mathcal{E}_{h}=\mathcal{E}_{h}^{0} \cup \mathcal{E}_{h}^{\partial}$. We further decompose our boundary edges as $\mathcal{E}_{h}^{\partial}=\mathcal{E}_{h}^{+} \bigcup \mathcal{E}_{h}^{-}$where $\mathcal{E}_{h}^{-}, \mathcal{E}_{h}^{+}$are the collection of edges that belong to the inflow, outflow part of the boundary, respectively. S_{e} will denote the union of elements that have e as an edge. On each edge, as in [1] we define the average and jump operators as follows: For $e \in \mathcal{E}_{h}^{0}, q$ vector valued and ϕ scalar valued

$$
\begin{aligned}
& <q>=\frac{1}{2}\left(q_{1}+q_{2}\right), \quad[q]=q_{1} \cdot n_{1}+q_{2} \cdot n_{2}, \\
& <\phi>=\frac{1}{2}\left(\phi_{1}+\phi_{2}\right), \quad[\phi]=\phi_{1} n_{1}+\phi_{2} n_{2},
\end{aligned}
$$

where $S_{e}=T_{1} \bigcup T_{2}, q_{i}=\left.q\right|_{T_{1}}, \phi_{i}=\left.\phi\right|_{T_{i}}$ and n_{i} is the exterior normal to $T_{i}, i=1,2$. For $e \in \mathcal{E}_{h}^{\partial}$

$$
<q>=q, \quad[\phi]=\phi n
$$

where n is the outward unit normal. The quantities $[q]$ and $\langle\phi\rangle$ on boundary edges are not required so they are left undefined. Note that $[q]$ is a scalar and $[\phi]$ a vector. If $e \in \mathcal{E}_{h}^{0}$, then, as in [7], $u^{ \pm}(z)=\lim _{\delta \rightarrow 0} u(z \pm \delta b)$ where $z \in e$.

Now we are ready to define our bilinear forms. First we write the classical convection-reaction discretization.

$$
\begin{aligned}
B_{1}(u, v)= & \sum_{T \in \mathcal{T}_{h}} \int_{T}(b \cdot \nabla u+c u) v d x+\sum_{e \in \mathcal{E}_{h}^{0}} \int_{e}\left(u^{+}-u^{-}\right) v^{+}|b \cdot n| d s \\
& +\sum_{e \in \mathcal{E}_{h}^{-}} \int_{e} u v|b \cdot n| d s .
\end{aligned}
$$

Using integration by parts we have the following

$$
\begin{aligned}
B_{1}(u, v)= & \sum_{T \in \mathcal{T}_{h}} \int_{T} u(-b \cdot \nabla v+c v) d x+\sum_{e \in \mathcal{E}_{h}^{0}} \int_{e} u^{-}\left(v^{-}-v^{+}\right)|b \cdot n| d s \\
& +\sum_{e \in \mathcal{E}_{h}^{+}} \int_{e} u v|b \cdot n| d s .
\end{aligned}
$$

The diffusion discretization is

$$
\begin{aligned}
B_{2}(u, v)= & \sum_{T \in \mathcal{T}_{h}} \epsilon \int_{T} \nabla u \nabla v d x \\
& -\sum_{e \in \mathcal{E}_{h}} \int_{e} \epsilon\left(<\nabla_{h} u>[v]+\gamma<\nabla_{h} v>[u]\right) d s \\
& +\sum_{e \in \mathcal{E}_{h}} \eta \frac{\epsilon}{h_{e}} \int_{e}[u][v] d s .
\end{aligned}
$$

Here $\nabla_{h} \phi$ is the piecewise defined function such that $\nabla_{h} \phi=\nabla \phi$ on each $T \in \mathcal{T}_{h}$. If $\gamma=-1$ and $\eta>0$, then we have the NIPG method which was considered in [12]. If $\gamma=1$ and η sufficiently large, gives the IP method which was considered in [4].

The discontinuous approximation u_{h} is defined by

$$
\begin{equation*}
B\left(u_{h}, v\right)=(f, v), \quad \forall v \in V_{h} \tag{2.1}
\end{equation*}
$$

where $B=B_{1}+B_{2}$.
2.1. Approximation Results. We first state trace and inverse inequalities. Let $T \in \mathcal{T}_{h}$ then we have

$$
\begin{equation*}
\|\psi\|_{\partial T} \leq C\left(h^{-1 / 2}\|\psi\|_{T}+h^{1 / 2}\|\nabla \psi\|_{T}\right) . \tag{2.2}
\end{equation*}
$$

where C is independent of T and ψ.
If $\psi \in V_{h}$, then

$$
\begin{align*}
& \|\nabla \psi\|_{T} \leq C h^{-1}\|\psi\|_{T} \tag{2.3}\\
& \|\psi\|_{\partial T} \leq C h^{-1 / 2}\|\psi\|_{T} \tag{2.4}
\end{align*}
$$

and

$$
\begin{equation*}
\|\psi\|_{\partial T} \leq C\left(h^{\frac{1}{2}}\|b \cdot \nabla \psi\|_{T}+\left\|\psi|b \cdot n|^{1 / 2}\right\|_{\partial T}\right) \tag{2.5}
\end{equation*}
$$

where n is the unit normal to ∂T.
The last inequality was used in [6].
Now we present a preliminary cut-off function. This function will differ from the one in [7] in order to handle the case that c is not bounded away from zero from below (e.g. no reaction term). One can construct a function with the following properties:

There exist positive constants c_{1} and c_{2} such that

$$
\begin{gathered}
c_{1} \leq \phi(t) \leq c_{2} \text { for } t \leq 1 \\
\phi(t)=e^{-t} \quad t \geq 0 \\
\phi(t)=3-\frac{1}{\log (|t|)+1} \quad t \leq-1 \\
\phi^{\prime}(t)<0 \quad t \in(-\infty, \infty) \\
\left|\phi^{l}(t)\right| \leq c_{2}|\phi(t)| \quad 1 \leq l \leq k+1, \quad t \in(-\infty, \infty) \\
\left|\phi^{l}(t)\right| \leq c_{2}\left|\phi^{\prime}(t)\right| \quad 2 \leq l \leq k+1, \quad t \in(-\infty, \infty)
\end{gathered}
$$

and

$$
|\phi(t)| \leq c_{2}|t|(\log (|t|)+1)^{2}\left|\phi^{\prime}(t)\right|, \quad t \in(-\infty, \infty)
$$

If we define $R O(D, v)=\max _{x \in D}|v(x)| / \min _{x \in D}|v(x)|$, then for any interval I of length 1

$$
R O(I, \phi)+R O\left(I, \phi^{\prime}\right) \leq c_{2} .
$$

From now on, for simplicity, we let $b=[1,0]^{\prime}$ and we define our cut-off function as

$$
\omega(x, y)=\phi\left(\frac{x-A}{\rho}\right) \phi\left(\frac{B_{1}-y}{\sigma}\right) \phi\left(\frac{y-B_{2}}{\sigma}\right) .
$$

Here $\rho=K h \log (1 / h)$ and $\sigma=K h^{1 / 2} \log (1 / h)$, where K is a sufficiently large constant that will be chosen later.

From the properties above it follows that $\omega_{x}<0$ and that

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{y}^{\beta} \omega\right| \leq C \rho^{-\alpha} \sigma^{-\beta}|\omega| \text { for } \alpha+\beta \leq k+1 \tag{2.6}
\end{equation*}
$$

$$
\begin{gather*}
\left|D_{x}^{\alpha} D_{y}^{\beta} \omega\right| \leq C \rho^{-\alpha+1} \sigma^{-\beta}\left|\omega_{x}\right| \text { for } \alpha \geq 1, \alpha+\beta \leq k+1 \tag{2.7}\\
|\omega| \leq C(\log (1 / h))^{2}\left|\omega_{x}\right| . \tag{2.8}\\
R O(T, \omega) \text { and } R O\left(T, \omega_{x}\right) \quad \tag{2.9}\\
\quad \begin{array}{l}
\text { are bounded independently of } h \\
\text { on any element } T .
\end{array}
\end{gather*}
$$

Property (2.8) makes it possible to handle the case of no reaction term. In fact, we can use this same cut-off function to prove error estimates for the SD method in the absence of a reaction term.

Now we can define a weighted norm

$$
\begin{aligned}
Q(v) \equiv & \left(\sum_{T \in \mathcal{T}_{h}}\left(\epsilon\|\omega \nabla v\|_{T}^{2}+\left\|\left(\omega\left|\omega_{x}\right|\right)^{1 / 2} v\right\|_{T}^{2}+\left\|\omega c^{1 / 2} v\right\|_{T}^{2}\right)\right. \\
& +\sum_{e \in \mathcal{E}_{h}^{0}} \frac{1}{2}\left\|\omega\left(v^{+}-v^{-}\right)|b \cdot n|^{1 / 2}\right\|_{e}^{2}+\sum_{e \in \mathcal{E}_{h}^{\partial}}\left\|\omega v|b \cdot n|^{1 / 2}\right\|_{e}^{2} \\
& \left.+\sum_{e \in \mathcal{E}_{h}} \eta \frac{\epsilon}{h_{e}}\|\omega[v]\|_{e}^{2}\right)^{1 / 2} .
\end{aligned}
$$

The following super-approximation result is similar to the super-approximation result found in [7].
Lemma 2.1. There exists a constant C such that for $v \in V_{h}$ and $T \in \mathcal{T}_{h}$

$$
\begin{align*}
& h \| \omega^{-1} \nabla_{h}^{2}\left(\left(\omega^{2} v-P\left(\omega^{2} v\right)\right)\left\|_{T}+\right\| \omega^{-1} \nabla_{h}\left(\omega^{2} v-P\left(\omega^{2} v\right)\right) \|_{T}\right. \tag{2.10}\\
& +(1 / h)\left\|\omega^{-1}\left(\omega^{2} v-P\left(\omega^{2} v\right)\right)\right\|_{T}+\leq C h^{-1 / 2} K^{-1 / 2}\left(\left\|\left(\omega\left|\omega_{x}\right|\right)^{1 / 2} v\right\|_{T}\right.
\end{align*}
$$

where P denotes the L_{2} projection operator into V_{h}.
Proof. By approximation we know that

$$
\begin{aligned}
& h \mid \| \nabla^{2}\left(\left(\omega^{2} v-P\left(\omega^{2} v\right)\right)\left\|_{T}+\right\| \nabla\left(\omega^{2} v-P\left(\omega^{2} v\right)\right) \|_{T}\right. \\
& +(1 / h)\left\|\left(\omega^{2} v\right)-P\left(\omega^{2} v\right)\right\|_{T} \leq C h^{k} \sum_{|\alpha|+|\beta|+|\gamma|=k+1}\left\|D^{\alpha} \omega D^{\beta} \omega D^{\gamma} v\right\|_{T}
\end{aligned}
$$

Note that $D^{\gamma} v=0$ if $|\gamma|=k+1$ since v is in our subspace. Therefore, we assume that $|\gamma| \leq k$. First suppose that $\alpha_{2}+\beta_{2} \neq 0$, where $\alpha=\left(\alpha_{1}, \alpha_{2}\right)$ and $\beta=\left(\beta_{1}, \beta_{2}\right)$. In this case, by using (2.6) and (2.3), we have

$$
\left\|D^{\alpha} \omega D^{\beta} \omega D^{\gamma} v\right\|_{T} \leq C \rho^{-\alpha_{1}-\beta_{1}} \sigma^{-\alpha_{2}-\beta_{2}} h^{-|\gamma|}\left\|\omega^{2} v\right\|_{T}
$$

Using the definition of ρ and σ, we have that

$$
\rho^{-\alpha_{1}-\beta_{1}} \sigma^{-\alpha_{2}-\beta_{2}} h^{|\gamma|}=K^{-|\alpha|-|\beta|} \log (1 / h)^{-|\alpha|-|\beta|} h^{-k-1+(1 / 2)\left(\alpha_{2}+\beta_{2}\right)} .
$$

Since $|\alpha|+|\beta|=k+1-|\gamma| \geq 1, \alpha_{2}+\beta_{2} \neq 0$ and by using (2.8), we have

$$
h^{k}\left\|D^{\alpha} \omega D^{\beta} \omega D^{\gamma} v\right\|_{L_{2}(T)} \leq C K^{-1} h^{-1 / 2}\left\|\omega\left|\omega \omega_{x}\right|^{1 / 2} v\right\|_{T}
$$

On the other hand, suppose $\alpha_{2}+\beta_{2}=0$. By (2.6) and (2.7) we have

$$
\left\|D^{\alpha} \omega D^{\beta} \omega D^{\gamma} v\right\|_{T} \leq C \rho^{-\alpha_{1}-\beta_{1}+1 / 2} h^{-|\gamma|}\left\|\omega\left|\omega \omega_{x}\right|^{1 / 2} v\right\|_{T} .
$$

Again using the definition of ρ, we have

$$
h^{k}\left\|D^{\alpha} \omega D^{\beta} \omega D^{\gamma} v\right\|_{T} \leq K^{-1 / 2} h^{-1 / 2}\left\|\omega\left|\omega \omega_{x}\right|^{1 / 2} v\right\|_{T}
$$

The result now follows by multiplying through by ω^{-1} and using (2.9).

3. Main Result

We can now prove our main result.
Theorem 3.1. Let $\psi=P(u)-u_{h}$ where u_{h} solves 2.1 for either the NIPG or IP methods. Let K be sufficiently large. If $\epsilon \leq h$, then there exists a constant C such that
$Q^{2}(\psi) \leq C\left(h^{-1}\|\omega(u-P(u))\|_{\Omega}^{2}+h\left\|\omega \nabla_{h}(u-P(u))\right\|_{\Omega}^{2}+h^{3}\left\|\omega \nabla_{h}^{2}(u-P(u))\right\|_{\Omega}^{2}\right)$.
Proof. It can easily be shown that

$$
\begin{aligned}
Q^{2}(\psi)= & B\left(\psi, \omega^{2} \psi\right)-2 \epsilon \sum_{T \in \mathcal{T}_{h}} \int_{T} \omega \psi \nabla \omega \nabla_{h} \psi d x \\
& +(1+\gamma) \epsilon \sum_{e} \int_{e \in \mathcal{E}_{h}}<\omega \nabla_{h} \psi>[\omega \psi] d s+2 \gamma \epsilon \sum_{e} \int_{e \in \mathcal{E}_{h}}<\psi \nabla \omega>[\omega \psi] d s .
\end{aligned}
$$

By (2.6), (2.9), (2.8) and (2.3), we have

$$
\left|\epsilon \sum_{T \in \mathcal{T}_{h}} \int_{T} \omega \psi \nabla \omega \nabla \psi d x\right| \leq C K^{-1 / 2}\left(\epsilon| | \omega \nabla_{h} \psi\left\|_{\Omega}^{2}+\right\|\left(\omega\left|\omega_{x}\right|\right)^{1 / 2} \psi \|_{\Omega}^{2}\right)
$$

Using (2.9),(2.4), and the arithmetic-geometric mean inequality we obtain
$(1+\gamma) \epsilon \sum_{e \in \mathcal{E}_{h}} \int_{e}<\omega \nabla_{h} \psi>[\omega \psi] d s \leq(1+\gamma) \frac{1}{8} \epsilon\left\|\omega \nabla_{h} \psi\right\|_{\Omega}^{2}+(1+\gamma) C^{*} \sum_{e \in \mathcal{E}_{h}} \frac{\epsilon}{h_{e}}\|\omega[\psi]\|_{e}^{2}$.
Here C^{*} depends on the constant arising from inverse estimates.
Again, by (2.6), (2.9), (2.8) and (2.4), we see that

$$
\begin{aligned}
& \left|\epsilon \sum_{e \in \mathcal{E}_{h}} \int_{e}<\psi \nabla \omega>[\omega \psi] d s\right| \\
& \leq C K^{-1 / 2}\left(\sum_{e \in \mathcal{E}_{h}} \frac{\epsilon}{h_{e}}\|[\omega \psi]\|_{e}^{2}+\left\|\left(\omega\left|\omega_{x}\right|\right)^{1 / 2} \psi\right\|_{\Omega}^{2}\right)
\end{aligned}
$$

If we have $\gamma=-1$ (NIPG), then both sides of (3.1) will be zero. In this case, by making K large enough we have that

$$
\begin{equation*}
Q^{2}(\psi) \leq C B\left(\psi, \omega^{2} \psi\right) \tag{3.2}
\end{equation*}
$$

On the other hand if, $\gamma=1$ (IP) then as long as $\eta>2 C^{*}$ and K large enough we again have (3.2).

Using the orthogonality property, we see that

$$
\begin{equation*}
B\left(\psi, \omega^{2} \psi\right)=B(\psi, E)+B\left(u-P(u), P\left(\omega^{2} \psi\right)\right) \tag{3.3}
\end{equation*}
$$

where $E=\omega^{2} \psi-P\left(\omega^{2} \psi\right)$. We first bound $B(\psi, E)=B_{1}(\psi, E)+B_{2}(\psi, E)$.
Since $\psi_{x} \in V_{h}$,

$$
\begin{aligned}
B_{1}(\psi, E) & =\sum_{e \in \mathcal{E}_{h}^{0}} \int_{e}\left(\psi^{+}-\psi^{-}\right) E^{+}|b \cdot n| d s+\sum_{e \in \mathcal{E}_{h}^{-}} \int_{e} \psi E|b \cdot n| d s \\
& +\int_{\Omega} c \psi E d x
\end{aligned}
$$

By using the Cauchy-Schwarz inequality, (2.2), (2.10), and the boundedness of c, we get

$$
\begin{aligned}
B_{1}(\psi, E) & \leq C \sum_{e \in \mathcal{E}_{h}^{0}}\left\|\omega\left(\psi^{+}-\psi^{-}\right)|n \cdot b|^{1 / 2}\right\| K_{e}^{-1 / 2}\left\|\left(\omega\left|\omega_{x}\right|\right)^{1 / 2} \psi\right\|_{S_{e}} \\
& +C h^{1 / 2} K^{-1 / 2}\left\|\omega c^{1 / 2} \psi\right\|_{L_{2}(\Omega)}\left\|\left(\omega\left|\omega_{x}\right|\right)^{1 / 2} \psi\right\|_{L_{2}(\Omega)}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
B_{1}(\psi, E) \leq C K^{-1 / 2} Q^{2}(\psi) \tag{3.4}
\end{equation*}
$$

Using (2.2) and (2.10), we see that

$$
\begin{equation*}
\left|B_{2}(\psi, E)\right| \leq C K^{-1 / 2} Q^{2}(\psi) \tag{3.5}
\end{equation*}
$$

We bound only one of the terms of $\left|B_{2}(\psi, E)\right|$ to illustrate this.

$$
\begin{aligned}
& \sum_{e \in \mathcal{E}_{h}} \epsilon \int_{e}<\nabla_{h} E>[\psi] d s \\
& \leq C \epsilon \sum_{e \in \mathcal{E}_{h}}\left(h^{-1 / 2}\left\|\omega^{-1} \nabla_{h} E\right\|_{S_{e}}+h^{1 / 2}\left\|\omega^{-1} \nabla_{h}^{2} E\right\|_{S_{e}}\right)\|[\omega \psi]\|_{e} \\
& \leq C \sum_{e \in \mathcal{E}_{h}} K^{-1 / 2}\left\|\left(\omega\left|\omega_{x}\right|\right)^{1 / 2} \psi\right\|_{S_{e}}\left(\frac{\epsilon}{h_{e}}\right)^{1 / 2}\|[\omega \psi]\|_{e} \\
& \leq C K^{-1 / 2} Q^{2}(\psi)
\end{aligned}
$$

Now we bound $B\left(u-P(u), P\left(\omega^{2} \psi\right)\right)$. Since $P\left(\omega^{2} \psi\right) \in V_{h}$, we have that

$$
\begin{aligned}
B_{1}\left(u-P(u), P\left(\omega^{2} \psi\right)\right)= & \sum_{e \in \mathcal{E}_{h}^{0}} \int_{e}(u-P(u))^{-}\left(P\left(\omega^{2} \omega\right)^{-}-P\left(\omega^{2} \psi\right)^{+}\right)|b \cdot n| d s \\
& +\sum_{e \in \mathcal{E}_{h}^{+}} \int_{e}(u-P(u)) P\left(\omega^{2} \psi\right)|b \cdot n| d s \\
& +\int_{\Omega} c(u-P(u)) P\left(\omega^{2} \psi\right) d x
\end{aligned}
$$

Applying (2.4), the triangle inequality, (2.10) and the arithmetic-geometric mean inequality, we have

$$
\begin{aligned}
& \sum_{e \in \mathcal{E}_{h}^{0}} \int_{e}(u-P(u))^{-}\left(P\left(\omega^{2} \psi\right)^{-}-P\left(\omega^{2} \psi\right)^{+}\right)|b \cdot n| d s \\
& \leq \sum_{e \in \mathcal{E}_{h}^{0}}\left\{\left(h^{-1 / 2}\|\omega(u-P(u))\|_{S_{e}}+h^{1 / 2}\left\|\omega \nabla_{h}(u-P(u))\right\|_{S_{e}}\right)\right. \\
& \left.\quad\left(\left\|\omega^{-1}\left(\left(\omega^{2} \psi\right)^{+}-\left(\omega^{2} \psi\right)^{-}\right)|b \cdot n|^{1 / 2}\right\|_{e}+\left\|\omega^{-1}\left(E^{+}-E^{-}\right)|b \cdot n|^{1 / 2}\right\|_{e}\right)\right\} \\
& \leq C\left(h^{-1}\|\omega(u-P(u))\|_{\Omega}^{2}+h\left\|\omega \nabla_{h}(u-P(u))\right\|_{\Omega}^{2}\right) \\
& +\delta \sum_{e \in \mathcal{E}_{h}^{0}}\left\|\omega\left(\psi^{-}-\psi^{+}\right)|b \cdot n|^{1 / 2}\right\|_{e}^{2}+K^{-1} Q^{2}(\psi)
\end{aligned}
$$

where $\delta>0$ will be chosen later. After similar arguments for the last terms in $B_{1}\left(u-P(u), P\left(\omega^{2} \psi\right)\right)$, we conclude that

$$
\begin{align*}
B_{1}\left(u-P(u), P\left(\omega^{2} \psi\right)\right) \leq & C\left(h^{-1}\|\omega(u-P(u))\|_{\Omega}^{2}+h\left\|\omega \nabla_{h}(u-P(u))\right\|_{\Omega}^{2}\right) \\
6) & \delta Q^{2}(\psi)+K^{-1} Q^{2}(\psi) \tag{3.6}
\end{align*}
$$

We now bound the terms of $B_{2}\left(u-P(u), P\left(\omega^{2} \psi\right)\right)$. By the Cauchy-Schwarz inequality , the triangle inequality , (2.6) and (2.10), we see that

$$
\begin{aligned}
& \sum_{T \in \mathcal{T}_{h}} \epsilon \int_{T} \nabla(u-P(u)) \nabla P\left(\omega^{2} \psi\right) d x \\
& \leq \sum_{T \in \mathcal{T}_{h}} \epsilon\|\omega \nabla(u-P(u))\|_{T}\left(\left\|\omega^{-1} \nabla E\right\|_{T}+\left\|\omega^{-1} \nabla\left(\omega^{2} \psi\right)\right\|_{T}\right) \\
& \leq C \epsilon\left\|\omega \nabla_{h}(u-P(u))\right\|_{\Omega}^{2}+\delta\left(\epsilon\left\|\omega \nabla_{h} \psi\right\|_{\Omega}^{2}+\left\|\left(\omega\left|\omega_{x}\right|\right)^{1 / 2} \psi\right\|_{L_{2}(T)}\right)+K^{-1} Q^{2}(\psi)
\end{aligned}
$$

Again, applying the Cauchy-Schwarz, the triangle inequality, (2.2), (2.10) and the arithmetic-geometric mean inequality, we get that

$$
\begin{aligned}
& \sum_{e \in \mathcal{E}_{h}} \epsilon \int_{e}<\nabla_{h}(u-P(u))>\left[P\left(\omega^{2} \psi\right)\right] d s \\
& \left.\leq \frac{\epsilon}{h}\left(h^{1 / 2}\left\|\omega \nabla_{h}(u-P(u))\right\|_{S_{e}}+h^{3 / 2}\left\|\omega \nabla_{h}^{2}(u-P(u))\right\|_{S_{e}}\right)(\| \| \omega \psi]\left\|_{e}+\right\| \omega^{-1}[E] \|_{e}\right) \\
& \leq C\left(h\left\|\omega \nabla_{h}(u-P(u))\right\|_{\Omega}^{2}+h^{3}\left\|\omega \nabla_{h}^{2}(u-P(u))\right\|_{\Omega}^{2}\right)+K^{-1} Q^{2}(\psi) \\
& +\delta \sum_{e \in \mathcal{E}_{h}} \frac{\epsilon}{h_{e}}\|[\omega \psi]\|_{e}^{2} .
\end{aligned}
$$

By bounding the last two terms of $B_{2}\left(u-P(u), P\left(\omega^{2} \psi\right)\right)$ in a similar fashion, we arrive at

$$
\begin{aligned}
\left(3 . \mathbb{B}_{2}\left(u-P(u), P\left(\omega^{2} \psi\right)\right) \leq\right. & C\left(h^{-1}\|\omega(u-P(u))\|_{\Omega}^{2}+\|\omega \nabla(u-P(u))\|_{\Omega}^{2}\right. \\
& \left.h^{3}\left\|\omega \nabla^{2}(u-P(u))\right\|_{\Omega}^{2}\right)+4 \delta Q^{2}(\psi)+4 K^{-1} Q^{2}(\psi) .
\end{aligned}
$$

Finally, taking K large enough in (3.4), (3.5), (3.6), (3.7), and choosing δ sufficiently small in (3.6) and (3.7) we arrive at our result.

Remark 3.2. By using Lemma 4.2, we can improve Theorem 3.1 so that $Q^{2}(\psi)$ also contains the term $\sum_{T \in \mathcal{T}_{h}} h\left\|\omega \psi_{x}\right\|_{T}^{2}$.

Now we can state a error estimate away from the layers.
Corollary 3.3. Let K, ρ and σ be as in Theorem 3.1. Let

$$
\Omega_{0}=\left\{x \leq A, B_{1} \leq y \leq B_{2}\right\} \cap \Omega
$$

and

$$
\Omega_{s}^{+}=\left\{x \leq A+s \log (1 / h) \rho, B_{1}-s \log (1 / h) \sigma \leq y \leq B_{2}+s \log (1 / h) \sigma\right\} \cap \Omega
$$

Let h_{0} and m be such that $h_{0}^{m} \geq \epsilon$. If $\|u\|_{H^{2}(\Omega)} \leq C \epsilon^{-2}$ and $\|u\|_{H^{k}\left(\Omega_{k+1+2 m}^{+}\right)}<$ C, then

$$
\left\|u-u_{h}\right\|_{\Omega_{0}} \leq C \log (1 / h) h^{k+1 / 2} \text { for } h \leq h_{0} .
$$

Proof. By the triangle inequality and the properties of the L_{2}-projection operator, it is enough to establish

$$
\left\|P(u)-u_{h}\right\|_{\Omega_{0}} \leq C \log (1 / h) h^{k+1 / 2} \text { for } h \leq h_{0}
$$

It follows form the properties of ω, that

$$
\left\|P(u)-u_{h}\right\|_{\Omega_{0}} \leq C\left\|\omega\left(P(u)-u_{h}\right)\right\|_{\Omega} \leq C \log (1 / h)\left\|\left(\omega\left|\omega_{x}\right|\right)^{1 / 2}\left(P(u)-u_{h}\right)\right\|_{\Omega}
$$

Therefore, from Theorem 3.1 and properties of ω, we have

$$
\begin{aligned}
\left\|P(u)-u_{h}\right\|_{\Omega_{0}} & \leq C \log (1 / h)\left(h^{-1 / 2}\|u-P(u)\|_{\Omega_{s}^{+}}\right. \\
& \left.+h^{1 / 2}\left\|\nabla_{h}(u-P(u))\right\|_{\Omega_{s}^{+}}+h^{3 / 2}\left\|\nabla_{h}^{2}(u-P(u))\right\|_{\Omega_{s}^{+}}\right) \\
& +C \log (1 / h) h^{s}\left(h^{-1 / 2}\|u-P(u)\| \|_{\Omega}\right. \\
& \left.+h^{1 / 2}\left\|\nabla_{h}(u-P(u))\right\|_{\Omega}+h^{3 / 2}\left\|\nabla_{h}^{2}(u-P(u))\right\|_{\Omega}\right) .
\end{aligned}
$$

From approximation properties, we have

$$
\begin{aligned}
\left(h^{-1 / 2}\|u-P(u)\|_{\Omega_{s}^{+}}\right. & +h^{1 / 2}\left\|\nabla_{h}(u-P(u))\right\|_{\Omega_{s}^{+}} \\
& \left.+h^{3 / 2}\left\|\nabla_{h}^{2}(u-P(u))\right\|_{\Omega_{s}^{+}}\right) \leq h^{k+1 / 2}\|u\|_{H^{k}\left(\Omega_{s}^{+}\right)}
\end{aligned}
$$

Using the triangle inequality and inverse estimates, we see that

$$
\begin{aligned}
\left(h^{-1 / 2}\|u-P(u)\|_{\Omega}\right. & +h^{1 / 2}\left\|\nabla_{h}(u-P(u))\right\|_{\Omega} \\
& \left.+h^{3 / 2}\left\|\nabla_{h}^{2}(u-P(u))\right\|_{\Omega}\right) \leq C h^{-1 / 2}\|u\|_{H^{2}(\Omega)}
\end{aligned}
$$

The result now follows by letting $s=k+1+2 m$.
In the next section we will need a weighted stability estimate. By following the ideas of Theorem (3.1) we can prove the following Theorem.

Theorem 3.4. Let u_{h} solve 2.1 for either the NIPG or IP methods. Let K be sufficiently large. If $\epsilon \leq h$, then there exists a constant C such that

$$
Q\left(u_{h}\right) \leq C\|\omega f\|_{\Omega}
$$

Here C is independent of h, u_{h} and f.
Remark 3.5. In the case that $\inf _{x \in \Omega} c(x)>0$, we can show that $\left\|u-u_{h}\right\| \leq C h^{k+1 / 2}$. That is, we can remove the logarithmic factor.

4. Approximate Green's Function Bounds and L_{∞} Estimates

In this section we prove suboptimal L_{∞} bounds. In order to do so, we need bounds on the approximate Green's function. In this direction, for $\left(x_{0}, y_{0}\right) \in \Omega$ define the rectangle containing $\left(x_{0}, y_{0}\right)$

$$
\Omega_{0}=\left\{x \leq x_{0}+C_{1} \log (1 / h) \rho,\left|y-y_{0}\right| \leq C_{1} \log (1 / h) \sigma\right\} \cap \Omega
$$

Here C_{1} is a sufficiently large constant which we specify below. The approximate Green's function $G \in V_{h}$ with reversed wind direction satisfies

$$
B(v, G)=v\left(x_{0}, y_{0}\right) \quad \forall v \in V_{h}
$$

Using Theorem 3.4 (with the wind direction reversed) and applying the techniques used in [7] we can prove the following estimate.

Corollary 4.1. There exists a constant C_{1} (in the definition of Ω_{0}) independent of h such that

$$
\|G\|_{L_{\infty}\left(\Omega \backslash \Omega_{0}\right)}+\left\|\nabla_{h} G\right\|_{L_{\infty}\left(\Omega \backslash \Omega_{0}\right)} \leq C h^{k+2}
$$

In order to prove pointwise estimates, we need a global bound on G. This requires an extra stability estimate. The following result was proving for the IP method (reversed wind direction and $c(x) \equiv 0$) in Lemma A. 1 in ([4]). The proof for the NIPG method is similar.

Lemma 4.2. There exist positive constants C_{2} and C_{3} such that for every $v \in V_{h}$

$$
\begin{aligned}
& h\left\|v_{x}\right\|_{\Omega}^{2}+\epsilon\left\|v_{y}\right\|_{\Omega}^{2}+\left\|c^{1 / 2} v\right\|_{\Omega}^{2} \\
& +\sum_{e \in \mathcal{E}_{h}^{0}} \frac{1}{2}\left\|\left(v^{+}-v^{-}\right)|b \cdot n|^{1 / 2}\right\|_{e}^{2}+\sum_{e \in \mathcal{E}_{h}^{\partial}}\left\|v|b \cdot n|^{1 / 2}\right\|_{e}^{2} \\
& +\sum_{e \in \mathcal{E}_{h}} \eta \frac{\epsilon}{h_{e}}\|\omega[v]\|_{e}^{2} \leq C_{2} B\left(C_{3} v-h v_{x}, v\right) .
\end{aligned}
$$

We will also need the following lemma.
Lemma 4.3. Suppose $v \in V_{h}$ and suppose that $T_{1}, T_{2} \in \mathcal{T}_{h}$ share a common edge e. Then,

$$
\left\|v^{1}-v^{2}\right\|_{e} \leq C h^{1 / 2}\left(\left\|b \cdot \nabla\left(v^{1}\right)\right\|_{T_{1}}+\left\|b \cdot \nabla\left(v^{2}\right)\right\|_{T_{2}}\right)+C\left\|\left(v^{1}-v^{2}\right)|b \cdot n|^{1 / 2}\right\|_{\partial T_{1}}
$$

where $v^{1}=\left.v\right|_{T_{1}}$ and $v^{2}=\left.v\right|_{T_{2}}$.
Proof. Naturally v^{1} and v^{2} can be extended to all of R^{2}. By (2.5), we have

$$
\begin{aligned}
\left\|v^{1}-v^{2}\right\|_{e} & \leq C h^{1 / 2}\left\|b \cdot \nabla\left(v^{1}-v^{2}\right)\right\|_{T_{1}}+C\left\|\left(v^{1}-v^{2}\right)|b \cdot n|^{1 / 2}\right\|_{\partial T_{1}} \\
& \leq C h^{1 / 2}\left(\left\|b \cdot \nabla\left(v^{1}\right)\right\|_{T_{1}}+\left\|b \cdot \nabla\left(v^{2}\right)\right\|_{T_{1}}\right)+C\left\|\left(v^{1}-v^{2}\right)|b \cdot n|^{1 / 2}\right\|_{\partial T_{1}}
\end{aligned}
$$

Since v^{2} lies in a finite dimensional space and T_{1} and T_{2} belong to a shape regular mesh and share a common edge we have

$$
\left\|b \cdot \nabla\left(v^{2}\right)\right\|_{T_{1}} \leq C\left\|b \cdot \nabla\left(v^{2}\right)\right\|_{T_{2}}
$$

This completes the proof.
Our proof of global estimates for G is very similar to the proof given by Niijima [9] for the stream line diffusion method.

Theorem 4.4. There exists a constant C independent of h such that

$$
\begin{aligned}
\left\|c^{1 / 2} G\right\|_{\Omega} & \leq C \log (1 / h) h^{-1 / 2}, \\
\left(\sum_{T \in \mathcal{T}_{h}}\left\|G_{x}\right\|_{T}^{2}\right)^{1 / 2} & \leq C \log (1 / h) h^{-1}, \\
\left(\sum_{T \in \mathcal{T}_{h}}\left\|G_{y}\right\|_{T}^{2}\right)^{1 / 2} & \leq C \log (1 / h) \epsilon^{-1 / 2} h^{-1 / 2}, \\
\left(\sum_{e \in \mathcal{E}_{h}^{0}}\left\|\left(G^{+}-G^{-}\right)|n \cdot b|^{1 / 2}\right\|_{e}^{2}\right)^{1 / 2}+\left(\sum_{e \in \mathcal{E}_{h}^{\partial}}\left\|G|n \cdot b|^{1 / 2}\right\|_{e}^{2}\right)^{1 / 2} & \leq C \log (1 / h) h^{-1 / 2}, \\
\left(\sum_{e \in \mathcal{E}_{h}} \eta \frac{\epsilon}{h_{e}}\|\omega[G]\|_{e}^{2}\right)^{1 / 2} & \leq C \log (1 / h) h^{-1 / 2} .
\end{aligned}
$$

Proof. By Lemma 4.2 we have

$$
\begin{aligned}
& h \sum_{T \in \mathcal{T}_{h}}\left(\left\|G_{x}\right\|_{T}^{2}+\epsilon\left\|G_{y}\right\|_{T}^{2}\right)+\left\|c^{1 / 2} G\right\|_{\Omega}^{2} \\
& +\sum_{e \in \mathcal{E}_{h}^{0}} \frac{1}{2}\left\|\left(G^{+}-G^{-}\right)|b \cdot n|^{1 / 2}\right\|_{e}^{2}+\sum_{e \in \mathcal{E}_{h}^{\partial}}\left\|G|n \cdot b|^{1 / 2}\right\|_{e}^{2} \\
& +\sum_{e \in \mathcal{E}_{h}} \eta \frac{\epsilon}{h_{e}}\|\omega[G]\|_{e}^{2} \leq C B\left(C_{2} G-h G_{x}, G\right)=C\left(C_{2} G\left(x_{0}, y_{0}\right)-h G_{x}\left(x_{0}, y_{0}\right)\right)
\end{aligned}
$$

First, by an inverse estimate and the arthimetic-geometric mean inequality, we have

$$
h G_{x}\left(x_{0}, y_{0}\right) \leq\left\|G_{x}\right\|_{\Omega} \leq \delta h\left\|G_{x}\right\|_{\Omega}^{2}+C h^{-1}
$$

where $\delta>0$ will be chosen later.
Let $\left(x_{m}, y_{0}\right) \in \Omega \backslash \Omega_{0}$ such that $\left|x_{m}-x_{0}\right| \leq C \log (1 / h) \rho$. If we now draw the line from $\left(x_{0}, y_{0}\right)$ to $\left(x_{m}, y_{0}\right)$, then this line will intersect the elements $T_{0}, T_{1}, \cdots, T_{m}$ at the points $\left(x_{1}, y_{0}\right),\left(x_{2}, y_{0}\right), \cdots,\left(x_{m}, y_{0}\right)$, respectively. By adding and subtracting the the right hand and left hand limits of G at the points (x_{i}, y_{0}) and applying the Fundamental Theorem of calculus, we have
$-G\left(x_{0}, y_{0}\right)=\sum_{i=0}^{m-1} \int_{x_{i}}^{x_{i+1}} G_{x}\left(s, y_{0}\right) d s+\sum_{i=1}^{m-1}\left(G^{+}\left(x_{i}, y_{0}\right)-G^{-}\left(x_{i}, y_{0}\right)\right)+G^{-}\left(x_{m}, y_{0}\right)$.
By an inverse estimate, we know that

$$
\int_{x_{i}}^{x_{i+1}} G_{x}\left(s, y_{0}\right) d s \leq\left(x_{i+1}-x_{i}\right)\left\|G_{x}\right\|_{L_{\infty}\left(T_{i}\right)} \leq h^{-1}\left\|G_{x}\right\|_{L_{1}\left(T_{i}\right)}
$$

Furthermore, since meas $\left(T_{0} \cup T_{1} \cup \ldots \cup T_{m}\right) \leq C h(\log (1 / h) \rho)$, we have that

$$
\sum_{i=0}^{m-1} \int_{x_{i}}^{x_{i+1}} G_{x}\left(s, y_{0}\right) d s \leq C \log (1 / h)\left(\sum_{i=1}^{m-1}\left\|G_{x}\right\|_{T_{i}}^{2}\right)^{1 / 2}
$$

Applying the arithmetic-geometric mean inequality, we have

$$
\sum_{i=0}^{m-1} \int_{x_{i}}^{x_{i+1}} G_{x}\left(s, y_{0}\right) d s \leq \delta h \sum_{T \in \mathcal{T}_{h}}\left\|G_{x}\right\|_{T}^{2}+C \log (1 / h)^{2} h^{-1}
$$

Using inverse estimates on the edges, we have

$$
G^{+}\left(x_{i}, y_{0}\right)-G^{-}\left(x_{i}, y_{0}\right) \leq C h^{-1 / 2}\left\|\left(G^{+}-G^{-}\right)\right\|_{e_{i}}
$$

where $e_{i} \subset \partial T_{i}$ is an edge containing $\left(x_{i}, y_{0}\right)$. By Lemma 4.3, we have

$$
G^{+}\left(x_{i}, y_{0}\right)-G^{-}\left(x_{i}, y_{0}\right) \leq C h^{-1 / 2}\left\|\left(G^{+}-G^{-}\right)|b \cdot n|^{1 / 2}\right\|_{\partial T_{i}}+C\left(\left\|G_{x}\right\|_{T_{i}}+\left\|G_{x}\right\|_{T_{i+1}}\right) .
$$

Therefore,

$$
\sum_{i=1}^{m-1}\left(G^{+}\left(x_{i}, y_{0}\right)-G^{-}\left(x_{i}, y_{0}\right)\right) \leq C h^{-1 / 2} \sum_{i=1}^{m-1}\left\|\left(G^{+}-G^{-}\right)|b \cdot n|^{1 / 2}\right\|_{\partial T_{i}}+C \sum_{i=1}^{m-1}\left\|G_{x}\right\|_{T_{i}}
$$

Applying the arithmetic-geometric mean inequality we have

$$
\begin{gathered}
\sum_{i=1}^{m-1}\left(G^{+}\left(x_{i}, y_{0}\right)-G^{-}\left(x_{i}, y_{0}\right)\right) \leq \delta \sum_{i=1}^{m-1}\left\|\left(G^{+}-G^{-}\right)|n \cdot b|^{1 / 2}\right\|_{\partial T_{i}}^{2}+\delta h \sum_{i=1}^{m-1}\left\|G_{x}\right\|_{T_{i}}^{2} \\
+C \log (1 / h)^{2} h^{-1}
\end{gathered}
$$

Here we used that $m \leq C \log (1 / h)$.
By Corollary 4.1, we have

$$
G^{-}\left(x_{m}, y_{0}\right) \leq C h^{k+2}
$$

By choosing δ sufficiently small we arrive at our result.
Now we prove pointwise estimates.
Theorem 4.5. Assume that

$$
\|u\|_{C^{k+1}\left(\Omega_{0}\right)}+\|\nabla u\|_{L_{1}(\Omega)}+\epsilon\|u\|_{W_{1}^{2}(\Omega)}+\|u\|_{\Omega} \leq C .
$$

If $\epsilon \leq h$, then

$$
\left|\left(u-u_{h}\right)\left(x_{0}, y_{0}\right)\right| \leq C h^{k+1 / 4} \log (1 / h)^{2}
$$

Proof. By the definition of G and the orthogonality property of $u-u_{h}$, we have

$$
\left(u_{h}-P(u)\right)\left(x_{0}, y_{0}\right)=B\left(u_{h}-P(u), G\right)=B(u-P(u), G)
$$

One can show using the Cauchy-Schwarz inequality, inverse estimates, and properties of the L_{2}-projection, that

$$
\begin{aligned}
B_{\Omega \backslash \Omega_{0}}(u-P(u), G) \leq C & \left(\|\nabla u\|_{L_{1}(\Omega)}+\epsilon\|u\|_{W_{1}^{2}(\Omega)}\right. \\
& \left.+(1 / h)\|u\|_{\Omega}\right)\left(\|G\|_{L_{\infty}\left(\Omega \backslash \Omega_{0}\right)}+\left\|\nabla_{h} G\right\|_{L_{\infty}\left(\Omega \backslash \Omega_{0}\right)}\right) .
\end{aligned}
$$

Here $B_{D}(w, v)$ are the terms of $B(w, v)$ with integration restricted to D. Therefore, using our hypothesis and Theorem 4.1, we have

$$
B_{\Omega \backslash \Omega_{0}}(u-P(u), G) \leq C h^{k+1}
$$

Now we bound $B_{\Omega_{0}}(u-P(u), G)$.

$$
\begin{aligned}
& B_{\Omega_{0}}(u-P(u), G)= \\
& \quad \sum_{T \in \mathcal{T}_{h}, T \cap \Omega_{0} \neq \emptyset} \int_{T}\left\{\epsilon \nabla(u-P(u)) \nabla(G)+(u-P(u))\left(-G_{x}+c G\right)\right\} d x \\
& -\sum_{e \in \mathcal{E}_{h}^{0}, e \cap \Omega_{0} \neq \emptyset} \int_{e}\left\{\epsilon \left(<\nabla_{h}(u-P(u))>[G]+\gamma<\nabla_{h} G>[u-P(u)]\right.\right. \\
& \left.\quad+\frac{\eta}{h_{e}}[u-P(u)][G]\right\} d s \\
& +\sum_{e \in \mathcal{E}_{h}^{0}, e \cap \Omega_{0} \neq \emptyset} \int_{e}(u-P(u))^{-}\left(G^{-}-G^{+}\right)|b \cdot n| d s
\end{aligned}
$$

By Hölders inequality , approximation properties of P, and the fact that meas $\left(\Omega_{0}\right) \leq$ $C(\log (1 / h)) h^{1 / 2}$ we have

$$
\sum_{T \in \mathcal{T}_{h}, T \cap \Omega_{0} \neq \emptyset} \int_{T}\left(\epsilon \nabla(u-P(u)) \nabla(G) \leq C \epsilon h^{k}\|u\|_{C^{k+1}\left(\Omega_{1}\right)} \log (1 / h) h^{1 / 4}\left\|\nabla_{h} G\right\|_{\Omega_{1}}\right.
$$

If we apply Theorem 4.4 and our hypothesis, we get that

$$
\sum_{T \in \mathcal{T}_{h}, T \cap \Omega_{0} \neq \emptyset} \int_{T}\left(\epsilon \nabla(u-P(u)) \nabla(G) \leq C(\epsilon / h)^{1 / 2} \log (1 / h)^{2} h^{k+1 / 4} .\right.
$$

Since $G_{x} \in V_{h}$ we have

$$
\sum_{T \in \mathcal{T}_{h}, T \cap \Omega_{0} \neq \emptyset} \int_{T}(u-P(u)) G_{x} d x=0
$$

It can easily be shown that
$\sum_{T \in \mathcal{T}_{h}, T \cap \Omega_{0} \neq \emptyset} \int_{T}(u-P(u)) c G d x \leq C h^{k+5 / 4}\|u\|_{C^{k+1}\left(\Omega_{0}\right)}\left\|c^{1 / 2} G\right\|_{\Omega_{0}} \leq C \log (1 / h) h^{k+3 / 4}$.
By applying Hölder's inequality, approximation properties of P, the fact that $\eta>0$, and Theorem (4.4), we obtain

$$
\begin{aligned}
& -\sum_{e \in \mathcal{E}_{h}^{0}, e \cap \Omega_{0} \neq \emptyset} \int_{e}\left(\epsilon\left(<\nabla_{h}(u-P(u))>[G]\right) d s\right. \\
& \epsilon h^{k}\|u\|_{C^{k+1}\left(\Omega_{1}\right)} \sum_{e \in \mathcal{E}_{h}^{0}, e \cap \Omega_{0} \neq \emptyset}\|[G]\|_{L_{1}} \\
& \leq C \epsilon^{\frac{1}{2}} h^{k+1}\left(\sum_{e \in \mathcal{E}_{h}^{0}, e \cap \Omega_{0} \neq \emptyset} \frac{\eta}{h}\|[G]\|_{e}^{2}\right)^{1 / 2}\left(\sum_{e \in \mathcal{E}_{h}^{0}, e \cap \Omega_{0} \neq \emptyset} 1\right)^{1 / 2} \leq C \epsilon^{\frac{1}{2}} \log (1 / h)^{2} h^{k+1 / 4}
\end{aligned}
$$

In the last inequality we used that

$$
\left(\sum_{e \in \mathcal{E}_{h}^{0}, e \cap \Omega_{0} \neq \emptyset} 1\right)^{1 / 2} \leq \log \left(\frac{1}{h}\right) h^{-3 / 4}
$$

since there are at most $C \log ^{2}(1 / h) h^{-3 / 2}$ triangles in Ω_{0}.
Similarly, we obtain

$$
-\sum_{e \cap \Omega_{0} \neq \emptyset} \int_{e}(\epsilon / h)[u-P(u)][G] d s \leq C \epsilon^{\frac{1}{2}} \log (1 / h)^{2} h^{k+\frac{1}{4}}
$$

Using Hölders, approximation properties of P, inverse estimates and Theorem (4.4), we see that

$$
\begin{aligned}
& -\sum_{e \in \mathcal{E}_{h}^{0}, e \cap \Omega_{0} \neq \emptyset} \int_{e} \epsilon \gamma<\nabla_{h} G>[u-P(u)] d s \\
& \quad \leq C \epsilon \log (1 / h) h^{k+1 / 4}\|u\|_{C^{k+1}\left(\Omega_{0}\right)}\left\|\nabla_{h} G\right\|_{\left.\Omega_{0}\right)} \leq \log (1 / h)^{2} h^{k+1 / 4}
\end{aligned}
$$

By Hölder's inequality, approximation properties of P and Theorem (4.4), we have that

$$
\begin{aligned}
& \sum_{e \in \mathcal{E}_{h}^{0}, e \cap \Omega_{0} \neq \emptyset} \int_{e}(u-P(u))^{-}\left(G^{-}-G^{+}\right)|b \cdot n| d s \\
& \leq C \log (1 / h) h^{k+3 / 4} \left\lvert\,\|u\|_{C^{k+1}\left(\Omega_{1}\right)}\left(\sum_{e \in \mathcal{E}_{h}^{0}, e \cap \Omega_{0} \neq \emptyset}\left\|\left(G^{+}-G^{-}\right)|b \cdot n|^{1 / 2}\right\|_{e}^{2}\right)^{\frac{1}{2}}\right. \\
& \leq \\
& \leq \log (1 / h)^{2} h^{k+1 / 4} .
\end{aligned}
$$

Our result now follows since $\epsilon \leq h$.
Remark 4.6. In the piecewise linear case, if we add artificial crosswind diffusion, then we can improve the pointwise estimates from $\log (1 / h)^{2} h^{5 / 4}$ to
$\log (1 / h)^{2} h^{11 / 8}$. This modification was done to the stream line diffusion method in [7] and [9]. However, this estimate will still be suboptimal. Optimal max-norm estimates $\left(O\left(h^{3 / 2}\right)\right)$ for these DG methods and for the stream line diffusion method assuming general quasi-uniform meshes is still an open problem.

The author would like to thank Lars Wahlbin and Alfred Schatz for many useful conversations.

References

[1] D.N. Arnold, F.Brezzi, B. Cockburn, and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Num. Anal., (2002)39,1749-1779.
[2] C. Baumann, An hp-Adaptive Discontinuous Galerkin FEM for Computational Fluid Dynamics. Doctoral Dissertation, TICAM, UT Austin, Texas, 1997.
[3] T.J.R Hughes and A.N. Brooks, A multidimensional upwind scheme with no crosswind diffusion. In: Analytical and Numerical Approaches to Asymptotic Problems in Analysis (Eds. O. Axelsson, L.S. Frank, and A. van der Sluis), North-Holland, Amsterdam, 1981, pp. 99-116.
[4] J. Gopalakrishnan, G. Kanschat, A multilevel discontinuous Galerkin method. Numer. Math., (2003) 95, 527-550.
[5] C. Johnson, U. Navert and J. Pitkäranta, Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Engrg., (1984) 45, 285-312.
[6] C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp., (1986) 46, 1-26.
[7] C. Johnson, A.H. Schatz, L.B. Wahlbin. Crosswind smear and pointwise error estimates in streamline diffusion finite element methods. Math. Comp., (1987) 49, 25-38.
[8] P. Lesiant and P.-A Raviart, On a finite element method for solving the neutron transport equation. In: Mathematical Aspects for Finite Elements in Partial Differential Equations(Ed. C. de Boor), Academic Press, New York, 1974.
[9] K. Niijima, Pointwise error estimates for streamline diffusion finite element scheme. Numer. Math., (1990)56, 707-719.
[10] T.E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Num. Anal., (1991) 28, 133-140.
[11] W.H. Reed, T.R. Hill, F.W. Brinkley and K.D. Lathrop, Trident : A two dimensional multigroup, triangular mesh, explicit neutron transport code. LA-6735-MS, Los Alamos Scientific Laboratory, 1977.
[12] E. Suli, CH. Scwab and P. Houston, hp-DGFEM for partial differential equations with nonnegative characteristic form. In: Discontinuous Galerkin Finite Element Methods. Lecture Notes in Computational Science and Engineering (Eds. B. Cockburn, G. Karniadakis and C.-W. Shu). Volume 11, Springer-Verlag, 2000, pp. 221-230.

