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Abstract. We propose and analyze a new family of nonconforming elements for the
Brinkman problem of porous media flow. The corresponding finite element methods are
robust with respect to the limiting case of Darcy flow, and the discretely divergence-free
functions are in fact divergence-free. Therefore, in the absence of sources and sinks, the
method is strongly mass conservative. We also show how the proposed elements are part
of a discrete de Rham complex.

1. Introduction

Let Ω ⊂ R
d (d = 2, 3) be a bounded, connected, polyhedral domain. We consider the

following Brinkman model of porous flow:

−div (νgradu) + αu + grad p = f in Ω,(1.1a)

div u = g in Ω,(1.1b)

u = 0 on ∂Ω.(1.1c)

Here, u is the velocity, p is the pressue, α > 0 is the dynamic viscosity divided by the
permeability, ν > 0 is the effective viscosity, and f ∈ L2(Ω) := L2(Ω)d and g ∈ L2(Ω) are
two forcing terms. Problem (1.1) models creeping flow in a highly porous media, and arise
in various physical models, e.g., subsurface flow problems [16, 31], heat & mass transfer
in pipes [24, 28], liquid composite molding [21], the behavior and influence of osteonal
structures [30], and computational fuel cell dynamics [39].

To simplify the mathematical analysis, we assume that the coefficients in (1.1) are con-
stant. Furthermore, we assume that g satisfies the following compatibility criterion through-
out the paper:

∫

Ω
g dx = 0.

Defining the velocity space and pressure space, respectively, as

V = H1
0(Ω) := H1

0 (Ω)d and W = L2
0(Ω) :=

{

w ∈ L2(Ω) : (w, 1) = 0
}

,
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a pair of functions (u, p) ∈ V × W are defined to be a solution to (1.1) if for all (v, w) ∈
V × W there holds

a(u, v) − b(v, p) = (f , v),(1.2a)

b(u, w) = (g, w).(1.2b)

Here the bilinear forms a(·, ·) : V × V → R and b(·, ·) : V × W → R are defined as

a(v, w) = (ν grad v, gradw) + (αv, w),(1.3)

b(v, w) = (div v, w),(1.4)

and (·, ·) := (·, ·)Ω denotes the L2 inner product over Ω.
As the inf-sup condition

sup
v∈V

b(v, w)

‖v‖H1(Ω)
≥ C‖w‖L2(Ω)(1.5)

is known to hold [19], it follows from standard theory from saddle point problems [10] that
there exists a unique solution (u, p) ∈ V × W to problem (1.2).

For ν of moderate size and g ≡ 0, equation (1.1) is a standard Stokes problem with an
additional (non-harmful) positive zero–th order term. Thus, to compute the solution, it
is quite natural to apply any of the standard Stokes finite elements (e.g. [14, 38, 1]) for
problem (1.1). Unfortunately, as the effective viscosity ν tends to zero (the Darcy limit), and
for f ≡ 0, the model tends to a mixed formulation of Poisson’s equation with homogeneous
Neumann boundary conditions. As a result, many of the popular Stokes elements are not
robust with respect to the parameter ν [29].

To make this last statement more precise, we state the framework given in [39] giving
necessary and sufficient conditions to ensure robustness (with respect to ν) of finite element
methods of the Brinkman problem (1.1) using stable finite element pairs. To this end,
assume that the finite element method for (1.1) takes the following form: find (uh, ph) ∈
V h × Wh such that

ah(uh, v) − bh(v, ph) = (f , v) ∀v ∈ V h,(1.6a)

bh(uh, w) = (g, w) ∀w ∈ Wh.(1.6b)

Here, ah(·, ·) and bh(·, ·) are the discrete analogues of the bilinear forms (1.3)–(1.4) given by

ah(v, w) =
∑

K∈Ωh

(ν gradv, gradw)K + (αv, w),

bh(v, w) =
∑

K∈Ωh

(div v, w)K,

and V h ⊂ L2(Ω) and Wh ⊂ L2
0(Ω) are a pair of finite element spaces (not necessarily

conforming) assumed to satisfy the following inf-sup condition:

sup
v∈V h

bh(v, w)

‖v‖1,h
≥ C‖w‖L2(Ω) ∀w ∈ Wh,(1.7)

where ‖ · ‖2
1,h =

∑

K∈Ωh
‖ · ‖2

H1(K) denotes the piecewise H1 norm. The precise definition of

the notation used is given below.
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Defining the discretely divergence-free space Zh as

Zh =
{

v ∈ V h : bh(v, w) = 0 ∀w ∈ Wh

}

,(1.8)

we have the following result given in [39] (also see [29]).

Theorem 1.1. (Theorem 3.1, [39]) Define the norm

|||v|||2h := ah(v, v) + M
∑

K∈Ωh

‖div v‖2
L2(K),(1.9)

where M = max{ν, α}. Then finite element pairs V h × Wh satisfying the inf-sup condition
(1.7) are uniformly stable with respect to the norm (1.9) for the model problem (1.1) if and
only if

Zh =
{

v ∈ V h : div v
∣

∣

K
= 0 ∀K ∈ Ωh

}

.(1.10)

Essentially Theorem 1.1 says that in order to obtain robust finite element methods, the
discrete divergence-free velocities of a stable finite element pair must be divergence free
almost everywhere. Note that (1.10) holds provided the following stronger (and easier to
verify) condition is satisfied:

div V h ⊆ Wh.(1.11)

In light of Theorem 1.1, it is then reasonable to try to apply any family of H(div; Ω)
elements (e.g. BDM or RT [35, 32, 33, 8]) as these elements are known to satisfy both the
inf-sup condition (1.7) as well as the inclusion (1.11). However, such a strategy does not
lead to a convergent method as these are nonconforming approximations with no tangental
continuity across interior edges. Again, to make this last statement more precise we state
a theorem that is similar to a result stated in [37].

Theorem 1.2. Let V h ⊂ H0(div; Ω) and assume that (1.7) and (1.11) are satisfied. Then
(1.6) admits a unique solution (uh, ph) ∈ V h × Wh such that

‖u− uh‖a,h ≤ C

[

inf
v∈Zh(g)

‖u− v‖a,h + sup
w∈V h\{0}

Eh(u, w)

‖w‖a,h

]

,(1.12a)

‖p − ph‖L2(Ω) ≤ C

[

inf
w∈Wh

‖p − w‖L2(Ω)(1.12b)

+ M1/2 inf
v∈Zh(g)

‖u − v‖a,h + sup
w∈V h\{0}

Eh(u, w)

‖w‖1,h

]

,

where M is defined in Theorem 1.1,

Zh(g) : =
{

v ∈ V h : bh(v, w) = (g, w) ∀w ∈ Wh

}

,(1.13)

‖v‖2
a,h : = ah(v, v),(1.14)

and the consistency error Eh is given as

Eh(u, v) =

{

∑

F∈Eh

〈

ν curl u, [v × n]
〉

F
d = 3,

∑

F∈Eh

〈

ν curl u, [v · t]
〉

F
d = 2,

(1.15)
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where [v × n] (and [v · t]) is the tangential jump of v across the face F .

For completeness, we provide the proof of Theorem 1.2 in the appendix.
Taking Theorems 1.1–1.2 into account, we see that if finite element methods for the

Brinkman problem take the form (1.6), then the finite element pairs must satisfy (1.7),
(1.10) and have some sort of tangential continuity across edges of the mesh in order for
the method to be stable, robust and convergent. The continuity requirement is essential
to bound the consistency error (1.15). Although the more popular (and simpler) Stokes
elements do not satisfy this requirement (notably (1.10)), there are a few elements that
fall into this category. These include conforming elements (i.e. V h ⊂ H1

0(Ω)) such as

the P
k − P

k−1 triangular elements for k ≥ 4 on singular-vertex free meshes [36] and finite

elements of P
k−Pk−1 type on macro elements [4, 42, 41], as well as low-order nonconforming

elements given in [29, 39, 37].
Knowing that H(div; Ω) conforming elements satisfy (1.7) and (1.10), several authors [29,

37, 39] developed elements for the Brinkman problem by modifying H(div; Ω) conforming
finite elements to make them have some tangential continuity. To be more precise, their
local space when restricted to the simplex K are of the form

(1.16) M(K) + curl (bKQ(K)),

where here, M(K) is the local space corresponding to a low-order H(div; Ω) space, bK is
the element bubble that vanishes on ∂K and the space Q(K) is a subset of linear functions.
Since they are only adding divergence free functions, the resulting space will still satisfy
(1.10) and (1.7). Also note that the normal component of functions in curl (bKQ(K))
vanish on ∂K and hence, the resulting space is still H(div; Ω) conforming. Thus, the only
purpose of adding function curl (bKQ(K)) is to enforce some tangential continuity. The
result is low-order non-conforming elements for the Brinkman problem.

In this paper, we develop a family of elements (two for each k ≥ 1) in two and three
dimensions for the Brinkman problem, where our local spaces will also be of the form (1.16).
In this case, M(K) is going to be the local space of an arbitrary order H(div; Ω) conforming
space. The novelty of our spaces is that Q(K) contains face/edge bubble functions in order
to achieve some tangential continuity. In fact, our lowest order element does not coincide
with any of the low-order elements presented in [29, 37, 39], although the dimension of our
lowest-order element and the the degrees of freedom are the same as the smallest spaces in
[29, 39].

Following the ideas developed by Tai and Winther [37], we also show that our Brinkman
problem spaces are part of a discrete de Rham complex with extra smoothness. In order
to do so, we define a family of spaces which approximate the space H1

0(curl ; Ω). We also
need the recently introduced H2

0 (Ω) non-conforming spaces recently introduced in [20].
We should note that there are many convergent finite element methods for the Brinkman

problem that do not fit into the framework above, i.e., methods that do not take the form
(1.6). These include, but are not limited to, stabilization methods [12, 11, 5] and augmented
Lagrangian methods [9, 18]. We also point out that the method in [23] uses the generalized
MINI elements [1] and has the form (1.6). Although their finite element pairs do not satisfy
the criteria set in Theorem 1.1 (i.e., condition (1.10)), their method is robust with respect
to ν. This may seem contradictory to the discussion above, but Theorem 1.1 states that
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methods are robust with respect to the norm (1.9) if and only if (1.10) holds. In [23], the
authors circumvented this problem by using a different norm, in particular, by using (1.9)
without the divergence term. The price they pay is suboptimal convergence for the velocity
in the Darcy regime. Numerical experiments in [29] verify this assertion.

Recently, penalty methods using standard H(div; Ω) conforming elements have been used
for the Brinkman problem [25, 26, 27]. In these papers, the authors penalize the tangential
jumps in order to have convergent methods. Similar ideas had been previosly developed
for the Stokes problem [40, 15]. As is common for many penalty methods, the penalty
parameters have to be chosen sufficiently large to make the method stable. Nonetheless,
those methods seem to be very competitive for the Brinkman problem. The error estimates
derived here for our new elements are similar to the estimates derived in [25, 26, 27] for
the penalty methods. In some sense, the present work and the papers [25, 26, 27] achieve
the same goal of finding a family of robust methods with optimal convergence properties
by both using standard H(div; Ω) conforming spaces. Of course, we do this by adding
local basis functions that provide some tangential continuity, and they accomplish this by
penalizing the tangential components of the velocity.

The rest of the paper is outlined as follows. In the next section we introduce some no-
tation. In Section 3, we introduce a family of nonconforming elements for the Brinkman
problem in three dimensions. Here, we describe the space, its associated degrees of free-
dom, and unisolvency. We also define the canonical projection and study its stability and
approximation properties. In Section 4 we describe the analogous two dimensional elements
and study its properties. In Section 5 we study the convergence analysis of the Brinkman
problem using the framework set in [39, 37] described above. Following [37, 29], in Section 6
we show how the proposed elements fit into a discrete de Rham complex with extra smooth-
ness. As a byproduct of this discussion, we obtain new families of nonconforming methods
in H1

0 (curl ; Ω). Finally, in Section 7 we show how to find local basis for our spaces.

2. Notation

Throughout the paper, we use Hm(Ω) (m ≥ 0) to denote the set of all L2(Ω) functions
whose distributional derivatives up to order m are in L2(Ω), and Hm

0 (Ω) to denote the set
of Hm(Ω) functions whose traces vanish up to order m − 1 on ∂Ω. We also set Hm(Ω) =
Hm(Ω)d and

H(div; Ω) =
{

v ∈ L2(Ω) : div v ∈ L2(Ω)
}

,

H0(div; Ω) =
{

v ∈ H(div; Ω) : v ·n = 0 on ∂Ω},

H(curl ; Ω) =
{

v ∈ L2(Ω) : curl v ∈ L2(Ω)
}

,

where n denotes the outward unit normal of ∂Ω. We recall that the curl of a three dimen-
sional vector v = (v1, v2, v3)

T is given by

curl v =

(

∂v2

∂x3
−

∂v3

∂x2
,
∂v3

∂x1
−

∂v1

∂x3
,
∂v1

∂x2
−

∂v2

∂x1

)T

,
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and the curl of a vector v = (v1, v2)
T in 2D is given by

curlv =
∂v2

∂x1
−

∂v1

∂x2
.

We also set the curl of a scalar in 2D to be

curl v =

(

∂v

∂x2
,−

∂v

∂x1

)T

.

In three dimensions we will also need the spaces

H0(curl ; Ω) =
{

v ∈ H(curl ; Ω) : v × n = 0 on ∂Ω
}

,

H1(curl ; Ω) =
{

v ∈ H1(Ω) : curl v ∈ H1(Ω)
}

,

H1
0(curl ; Ω) =

{

v ∈ H1(curl ; Ω) ∩ H1
0(Ω) : curl v × n = 0 on ∂Ω

}

.

Let Ωh be a shape-regular simplical triangulation [6, 13] with hK = diam(K) ∀K ∈ Ωh

and h = maxK∈Ωh
hK . We denote by Eh the faces (3D) or edges (2D), by Ei

h the interior

faces (3D) or edges (2D), and by E
b
h the boundary faces (3D) or edges (2D) in Ωh. Given

K ∈ Ωh, we denote by {λF} to be the (d + 1) barycentric coordinates of K, labeled such
that λF vanishes on the face (3D) or edge (2D) F ⊂ ∂K. The element bubble and face/edge
bubbles are then given by

bK =
∏

F

λF , bF =
∏

G6=F

λG,

where the product runs over the faces/edges of K. We set ω(F ) to be the patch of the
edge/face of F defined as

ω(F ) =
{

K ∈ Ωh : F ⊂ ∂K
}

,

and use the convention

‖v‖Hm(ω(F )) =
∑

K∈ω(F )

‖v‖Hm(K).

For a given simplex S in R
d and m ≥ 0, the vector-valued polynomials are defined as

P
m(S) = [Pm(S)]d, where P

m(S) is the space of polynomials defined on S of degree less
than or equal to m. We also set P

m(S) and P
m(S) to be the empty set for any negative m.

We will use the following notation for interior and boundary inner-products

(v, ρ)K =

∫

K
v · ρ dx,

〈

m, µ
〉

F
=

∫

F
mµ ds,

and nF denotes the unit outward pointing normal to a face F of K.
We will also need to define the tangential and normal jump operators. If F ∈ E

i
h is an

interior face (3D)/edge (2D) with F = K+ ∩ K−, then we set

[v × n]
∣

∣

F
= (v

∣

∣

K+ × nK+)
∣

∣

F
+ (v

∣

∣

K− × nK−)
∣

∣

F
,

[v · t]
∣

∣

F
= (v

∣

∣

K+ · tK+)
∣

∣

F
+ (v

∣

∣

K− · tK−)
∣

∣

F
,

[v · n]
∣

∣

F
= (v

∣

∣

K+ ·nK+)
∣

∣

F
+ (v

∣

∣

K− ·nK−)
∣

∣

F
,

where nK± is the outward pointing unit normal to ∂K±, and tK± is the unit tangent of
∂K±.
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If F ∈ E
b
h is a boundary face(3D)/edge (2D) with F ⊂ ∂K, then we set

[v × n]
∣

∣

F
= (v

∣

∣

K
× nK)

∣

∣

F
,

[v · t]
∣

∣

F
= (v

∣

∣

K
· tK)

∣

∣

F
,

[v · n]
∣

∣

F
= (v

∣

∣

K
·nK)

∣

∣

F
.

Finally, we use C to denote a generic constant independent of h or the parameters ν and
α.

3. Family of Finite Elements in Three Dimensions

3.1. The Local Space. Since our new elements are going to be based on H(div; Ω) finite
element spaces plus divergence free functions, we first review some well known elements.
Let K ∈ Ωh, and let Mk(K) denote either the local Brezzi-Douglas-Marini (BDM) space
of order k [7, 8, 33]

Mk(K) = P
k(K) (k ≥ 1),(3.1)

or the Raviart-Thomas (RT) space [35, 32] of order k

Mk(K) = P
k(K) + P

k+1(K)x (k ≥ 1).(3.2)

We also define the space Ak−1(K) as follows: If Mk(K) is given by the RT space (3.2),

then we set Ak−1(K) = P
k−1(K); if Mk(K) is given by the BDM space (3.1), then we

define Ak−1(K) = Nk−1(K), the Nedelec space of index k − 1 [32]:

(3.3) N k−1(K) = P
k−2(K) +

{

v ∈ P
k−1(K) : v · x = 0

}

.

It is well-known that a function v ∈ Mk(K) is uniquely determined by the following
degrees of freedom [10, 32, 33]:

(v, ρ)K for all ρ ∈ Ak−1(K),(3.4a)
〈

v · nF , µ
〉

F
for all µ ∈ P

k(F ) and faces F of K.(3.4b)

Here, nF denotes a unit normal vector to the face F .
We then defined the local space for the three dimensional Brinkman problem as

V k(K) = Mk(K) + U k−1(K),

where

U k−1(K) = curl (bKQk−1(K)),(3.5)

Qk−1(K) =
∑

F

bF Qk−1
F (K),(3.6)

and

Qk−1
F (K) =

{

q × nF ∈ P
k−1(K)× nF :(3.7)

(

q × nF , bKbF (w × nF )
)

K
= 0 for all w ∈ P

k−2(K)
}

.
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The following are the degrees of freedom that define a function v ∈ V k(K):

(v, ρ)K for all ρ ∈ Ak−1(K),(3.8a)
〈

v · nF , µ
〉

F
for all µ ∈ P

k(F ) and faces F of K,(3.8b)
〈

v × nF , κ
〉

F
for all κ ∈ P

k−1(F ) and faces F of K.(3.8c)

Before we prove unisolvency of the degrees of freedom, we first need some preliminary
results. We start by listing some key properties of the space Uk−1(K).

Lemma 3.1. Let z ∈ Uk−1(K) with z = curl
(

bK
∑

F bF (qF × nF )
)

and qF ∈ Qk−1
F (K).

Then the following identities hold:

z ·n|∂K =0,(3.9a)

z × nF |F = − aF b2
F (qF × nF ) for all faces F of K,(3.9b)

(z, w)K =0 for all w ∈ P
k−1(K),(3.9c)

where aF = |gradλF |.

Proof. Since bK vanishes on ∂K, we can use the product rule to obtain for any q ∈ Qk−1(K),

(curl (bKq) ·n)|∂K = bKcurl q ·n|∂K +
(

(grad bK × q) · n
)

|∂K

= q · (grad bK × n)|∂K = 0,

where we have used (grad bK × n)|∂K = 0. Since z ∈ U k−1(K) is of the form z =
curl (bKq), this proves (3.9a).

Next, using the product rule and the fact that bK vanishes on ∂K, we have

z|∂K =
∑

F

bF (grad bK) × (qF × nF ).

Using the fact bF vanishes on ∂K\F and that grad bK = −aF bF nF we get

z|F = −aF b2
F nF × (qF × nF ).

The identity (3.9b) now easily follows.

Next for w ∈ P
k−1(K), integration by parts gives us

(z, w)K = −
∑

F

(qF × nF , bKbFcurl w)K .

However, we can write curl w = −(curl w × nF ) × nF + (curl w · nF )nF , which gives

(z, w)K =
∑

F

(qF × nF , bKbF (curlw × nF )× nF )K .

Hence, using the definition of Qk−1
F (F ), we have (z, w)K = 0. �

Lemma 3.2. If qF × nF ∈ Qk−1
F (F ) vanishes on F , then qF × nF vanishes on K. Also,

dimQk−1
F (K) = dimP

k−1(F ),(3.10)

dimU k−1(K) = 4 dimP
k−1(F ).(3.11)
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Proof. If qF × nF vanishes on F , then we have qF × nF = λFp for some p ∈ P
k−2(K).

Noting

bK(p × nF ) = bF (qF × nF ) × nF ,

it follows that

bK(p × nF )× nF = −bF (qF × nF ).(3.12)

Therefore, by the definition of Qk−1
F (K) and (3.12), we have

0 = −
(

qF × nF , bFbK(p × nF ) × nF

)

K
=

(

qF × nF , b2
F (qF × nF )

)

K
,

and therefore qF × nF ≡ 0.

In order to count the dimension we note that P
k−1(K) × nF = 2 dimPk−1(K). Hence,

we easily see from the definition of Qk−1
F (K) that

dimQk−1
F (K) = 2

(

dimP
k−1(K)− dimP

k−2(K)
)

= dimP
k−1(F ).

In order to prove (3.11), we will show that if 0 = z = curl
(

bK
∑

F bF (qF × nF )
)

for

qF × nF ∈ Qk−1
F (F ) , then qF × nF = 0 for all faces F . Consider an arbitrary face F of

K. Then by (3.9b), we have

0 = z × nF

∣

∣

F
= −aF b2

F (qF × nF )
∣

∣

F
,

which shows that (qF × nF )
∣

∣

F
= 0, and therefore qF × n = 0 on K. This immediately

shows that dimU k−1(K) = 4 dimQk−1
F (K), and therefore (3.11) follows from (3.10). �

Theorem 3.3. We have

V k(K) = M k(K)⊕ Uk−1(K),(3.13)

dimV k(K) = dim Mk(K) + 4 dimP
k−1(F ).(3.14)

Furthermore, any function v ∈ V k(K) is uniquely determined by the degrees of freedom
(3.8).

Proof. Suppose that v ∈ Mk(K) ∩ U k−1(K). Then by Lemma 3.1 we have

(v, ρ)K = 0 for all ρ ∈ P
k−1(K),(3.15)

〈

v · n, µ
〉

F
= 0 for all µ ∈ P

k(F ) and all faces F of K.(3.16)

It follows that v ≡ 0 since all the degrees of freedom (cf. (3.4)) of v ∈ Mk(K) vanish.
Therefore, (3.13) holds, and so by (3.11), the dimension count (3.14) holds as well.

Since dim Mk(K) = dimAk−1(K)+4 dimPk(K), it follows from Lemma 3.2 that dimV k(K)
is exactly the number of degrees of freedom given by (3.8). Hence, we only need to show

that if the degrees of freedom (3.8) vanish for v ∈ V k(K), then v ≡ 0.

To this end, let v = v0 + z where v0 ∈ Mk(K) and z ∈ Uk−1(K). Then by Lemma 3.1,
we have

(v0, ρ)K = 0 for all ρ ∈ P
k−1(K),(3.17)

〈

v0 · nF , µ
〉

F
= 0 for all µ ∈ P

k(F ) and faces F of K,(3.18)
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and so v0 = 0 since all its degrees of freedom (3.4) vanish. Hence,

v = z = curl
(

bK

∑

F

bF (qF × nF )
)

,

for some (qF × nF ) ∈ Qk−1
F (K).

Since the degrees of freedom (3.8c) vanish, we have by (3.9b) for any face F ,

0 =
〈

v × nF , qF × nF

〉

F
= −aF

〈

b2
F (qF × nF ), qF × nF

〉

F
.

This of course shows that (qF × nF ) vanishes on F , and by Lemma 3.2 we have that
(qF × nF ) = 0 on K. This completes the proof. �

3.2. The Global Space and Projection. Now that we have defined the local finite ele-
ment spaces, we can naturally define the global space as

V h =
{

v ∈ H0(div; Ω) : v|K ∈ V k(K) for all K ∈ Ωh,(3.19)
〈

[v × n], µ
〉

F
= 0 for all µ ∈ P

k−1(F ) and faces F of Ωh

}

.

We define the corresponding pressure space as

(3.20) Wh =
{

w ∈ L2
0(Ω) : w|K ∈ P

s(K), for all K ∈ Ωh

}

,

where s = k if we use the RT space (3.2) or s = k − 1 if we use BDM space (3.1).

We also define Mh (respectively, Uh) to be the associated global space of Mk(K) (re-
spectively, Uk−1(K)) as

Mh =
{

v ∈ H0(div; Ω) : v
∣

∣

K
∈ Mk(K) for all K ∈ Ωh

}

,(3.21)

Uh =
{

z ∈ H0(div; Ω) : z
∣

∣

K
∈ U k−1(K) for all K ∈ Ωh

}

.(3.22)

The degrees of freedom (3.8) naturally lead us to define the projection Πh : H1
0(Ω) → V h

given locally as follows:

(Πhv − v, ρ)K =0 for all ρ ∈ Ak−1(K),(3.23a)
〈

(Πhv − v) ·nF , µ
〉

F
=0 for all µ ∈ P

k(F ) and faces F of K,(3.23b)
〈

(Πhv − v) × nF , κ
〉

F
=0 for all κ ∈ P

k−1(F ) and faces F of K.(3.23c)

Using (3.23a) and (3.23b) we can easily show that the commutative property

(3.24) div Πhv = Phdiv v for all v ∈ H1
0(Ω)

holds, where Ph is the L2 projection onto Wh. In particular, we have Πhu ∈ Z(g), where
Z(g) is defined by (1.13).

We now discuss the approximation properties of Πh. First, we denote by ΠM : H1(Ω) →
Mh either the BDM projection or RT projection, i.e.,

(ΠMv − v, ρ)K =0 for all ρ ∈ Ak−1(K),(3.25a)
〈

(ΠMv − v) · nF , µ
〉

F
=0 for all µ ∈ P

k(F ) and faces F of K.(3.25b)

We also define ΠU : H1(Ω) → Uh locally as
〈

(ΠUv − v) × nF , κ
〉

F
for all κ ∈ P

k−1(F ) and faces F of K.(3.26)
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It is then straightforward to verify the identity

I − Πh = (I − ΠU)(I − ΠM),(3.27)

where I denotes the identity operator on H1(Ω).
We now derive some stability estimates for the projection ΠU . To this end, for v ∈ H1(Ω)

we write

ΠUv
∣

∣

K
= curl

(

bK

∑

F

bF (qF × nF )
)
∣

∣

K
with qF ∈ Qk−1

F (K).

Note that by (3.9b), we have

ΠUv × nF

∣

∣

F
= −aF b2

F (qF × nF )
∣

∣

F
,(3.28)

and therefore by (3.28) and (3.26),

aF

〈

b2
F (qF × nF ), (q × nF )

〉

F
= −

〈

ΠUv × nF , qF × nF

〉

F

= −
〈

v × nF , qF × nF

〉

F

≤ ‖v × nF‖L2(F )‖qF × nF‖L2(F ).

It then follows that

aF‖qF × nF ‖L2(F ) ≤ C‖v × nF‖L2(F ).(3.29)

Hence by a scaling argument, (3.28) and (3.29), we obtain

‖ΠUv‖L2(K) ≤ Ch
1/2
K

∑

F

‖ΠUv × nF ‖L2(F ) = Ch
1/2
K

∑

F

aF‖b
2
F (qF × nF )‖L2(F )

≤ Ch
1/2
K

∑

F

aF‖qF × nF‖L2(F ) ≤ Ch
1/2
K ‖v × n‖L2(∂K).

Using this last estimate in (3.27) , we have

‖v −Πhv‖L2(K) ≤ ‖v −ΠMv‖L2(K) + ‖ΠU(v − ΠMv)‖L2(K)

≤ ‖v −ΠMv‖L2(K) + Ch
1/2
K ‖v − ΠMv‖L2(∂K).

Thus, by standard approximation results of the projection ΠM , we have

Theorem 3.4. Let m and s be two integers satisfying 0 ≤ m ≤ s ≤ k + 1 and s ≥ 1. Then
for any v ∈ Hs(K), there holds

‖v − Πhv‖Hm(K) ≤ Chs−m
K |v|Hs(K).(3.30)

In particular, if v ∈ Hs(Ω) we have (cf. (1.14))

‖v −Πhv‖a,h ≤ C
(

ν1/2hs−1 + α1/2hs
)

|v|Hs(Ω).(3.31)
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4. Family of finite elements in two dimensions

The two dimension finite elements for the Brinkman problem are similar in nature and
and in their construction to that of the 3D case, so we only sketch the main points. In the
two dimensional case, we define the local space as

V k(K) = Mk(K) + U k−1(K),(4.1)

where

U k−1(K) = curl (bKQk−1(K)),(4.2a)

Qk−1(K) =
∑

F

bF Qk−1
F ,(4.2b)

and

Qk−1
F (K) =

{

q ∈ P
k−1(K) : (q, bKbF w)K = 0, for all w ∈ P

k−2(K)
}

.(4.2c)

The corresponding degrees of freedom that define a function v ∈ V k(K) are defined as
follows:

(v, ρ)K for all ρ ∈ Ak−1(K),(4.3a)
〈

v ·nF , µ
〉

F
for all µ ∈ P

k(F ) and all edges F of K,(4.3b)
〈

v · tF , κ
〉

F
for all κ ∈ P

k−1(F ) and all edges F of K,(4.3c)

where tF is the unit tangental of the edge F obtained by rotating nF 90 degrees counter-
clockwise.

Lemma 4.1. There holds

V k(K) = M k(K)⊕ Uk−1(K),(4.4)

dimV k(K) = dim Mk(K) + 3 dim(Pk−1(F )).(4.5)

Moreover, any function v ∈ V k(K) is uniquely determined by the degrees of freedom (4.3).

Proof. Suppose that v ∈ Mk(K)∩Uk−1(K). Then v can be written as v =
∑

F curl (bKbF qF )

with qF ∈ Qk−1
F (K). Therefore by (4.2c) and by integration by parts, we have for any

ρ ∈ P
k−1(K),

(v, ρ)K =
∑

F

(curl (bKbF qF ), ρ)K = −
∑

F

(bKbF qF , curlρ)K = 0.

Furthermore since bK vanishes on ∂K, we have for any µ ∈ P
k−1(F ),

〈v · nF , µ〉F =
∑

F

〈

grad (bKbFqF ) · tF , µ
〉

F
= 0.

Since the degrees of freedom (4.3a)–(4.3b) uniquely define a function in M k(K), we conclude
v ≡ 0, and the direct sum (4.4) follows.

To show (4.5), we first see that

dimQk−1
F (K) = dimP

k−1(K)− dimP
k−2(K) = dim P

k−1(F ).
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Therefore, in light of (4.4) it suffices to show that if 0 = z = curl (bK

∑

F bF qF ) with

qF ∈ Qk−1
F (K), then qF = 0 for all edges F . To this end, we note that on each edge,

0 = z · tF

∣

∣

F
= bF qFgrad (bK) · nF = −aF b2

F qF

∣

∣

F
.

It then follows that qF = λF pF for some pF ∈ Pk−2(K) for all edges F . But then by the

definition of Qk−1
F (K), we have

0 = (qF , bKbF pF )K = (pF , bKbF λF pF )K ,

and therefore pF = 0. The dimension count (4.5) immediately follows.

To show that the degrees of freedom uniquely determine a function in V k(K), we see that
by (4.5), it suffices to show that if all the degrees of freedom vanish for some v ∈ V k(K),
then v ≡ 0.

We write v = v0 + z with v0 ∈ Mk(K) and z ∈ U k−1(K) with z = curl (bK
∑

F bF qF ).

Since a function in Mk(K) is uniquely determined by the degrees of freedom (4.3a)–(4.3b),

and since functions in U k−1(K) vanish at these degrees of freedom, we have v0 ≡ 0. There-
fore by (4.3c), we have

0 =
〈

v · tF , qF

〉

F
=

〈

bFqF grad (bK) · nF , qF

〉

F
= −aF

〈

b2
FqF , qF

〉

F
.

Hence, we have qF

∣

∣

F
= 0 for all edges F . However, by the same argument given above, we

conclude that qF ≡ 0 and therefore v ≡ 0. �

Analogous to the three dimensional case (3.19), the two dimensional global vector space
for the Brinkman problem is defined as

V h =
{

v ∈ H0(div; Ω) : v
∣

∣

K
∈ V k(K) for all K ∈ Ωh,(4.6)

〈

[v · t], µ
〉

F
= 0 for all µ ∈ P

k−1(F ) and edges F in Ωh

}

.

The pressure space Wh is the same as the three dimension case, that is, Wh is defined by
(3.20).

Similar to the three dimensional case we can define the canonical projection, given locally
by

(Πhv − v, ρ)K =0 for all ρ ∈ Ak−1(K)
〈

(Πhv − v) ·nF , µ
〉

F
=0 for all µ ∈ P

k(F ) and edges F of K,
〈

(Πhv − v) · tF , κ
〉

F
=0 for all κ ∈ P

k−1(F ) and edges F of K.

It is easy to see that the commutative property (3.24) holds for the two dimensional projec-
tion. Furthermore, by using similar techniques as in the previous section, it can be shown
that the estimates (3.30)–(3.31) hold as well. We omit the details.

5. Convergence Analysis of the Brinkman Problem

We now turn our attention to the convergence analysis of the finite element method for
the Brinkman problem (1.1). In light of the discussion in the introduction, it suffices to
verify the inf-sup condition (1.7) as well as show that the discretely divergence-free velocities
are in fact divergence free, i.e., that (1.10) holds.
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To show the inf-sup condition (1.7), we first note that by (3.30) there holds

‖Πhv‖1,h ≤ C‖v‖H1(Ω) ∀v ∈ V ,(5.1)

where we recall that ‖ · ‖1,h is a piecewise H1 norm defined as ‖v‖2
1,h =

∑

K∈Ωh
‖v‖2

H1(K).

By (1.5), for any w ∈ Wh there exists a v ∈ V such that

C‖w‖L2(Ω) ≤
bh(v, w)

‖v‖H1(Ω)
.(5.2)

It then follows from (5.2), (3.24) and (5.1) that

C‖w‖L2(Ω) ≤
bh(v, w)

‖v‖H1(Ω)
=

bh(Πhv, w)

‖v‖H1(Ω)
≤ C

bh(Πhv, w)

‖Πhv‖1,h
≤ C sup

vh∈V h

bh(vh, w)

‖vh‖1,h
.

Furthermore, there holds

div V h ⊆ Wh

due to the construction of V h and by the properties of Mh. It then follows from Theorem
1.2 that that the estimates (1.12) hold. Therefore, in light of (3.31) it remains to estimate
the consistency error defined by (1.15).

By the definition of the finite element space, in three dimensions there holds for any
µ ∈ P

k−1(F ) and κ ∈ P
0(F ),

〈

ν curl u, [v × n]
〉

F
=

〈

ν curl u − µ, [v × n − κ]
〉

F
.

It then follows that if u ∈ Hs(Ω) for some 2 ≤ s ≤ k + 1, then for all faces F ∈ Eh,
〈

ν curl u, [v × n]
〉

F
≤ Cνhs−1 |u|Hs(ω(F ))|v|H1(ω(F )),

and therefore by (1.15) and (1.14),

Eh(u, vh) ≤ Chs−1ν|u|Hs(Ω)|v|1,h ≤ Chs−1ν1/2|u|Hs(Ω)‖v‖a,h.(5.3)

A similar estimate holds in the two dimensional case.
Combining (5.3) with (1.12) and (3.31) we have the following result.

Theorem 5.1. Let (u, p) ∈ V ×W be the solution to the Brinkman problem (1.1), and let
(uh, ph) ∈ V h × Wh solve (1.6) with the finite element spaces defined by (3.19) and (3.20).
Suppose that u ∈ Hs(Ω) × Hs−1(Ω) with 2 ≤ s ≤ k + 1. Then there holds

‖u− uh‖a,h ≤ C
(

ν1/2hs−1 + α1/2hs
)

|u|Hs(Ω).

If p ∈ Hs−1(Ω) and Mh is taken to be the BDM space of order k, then

‖p − ph‖L2(Ω) ≤ C
(

hs−1|p|Hs−1(Ω) + M1/2
(

ν1/2hs−1 + α1/2hs
)

|u|Hs(Ω)

)

,

where M = max{ν, α}. Otherwise, if p ∈ Hs(Ω) and Mh is taken to be the RT space of
order k, we have

‖p − ph‖L2(Ω) ≤ C
(

hs|p|Hs(Ω) + M1/2
(

ν1/2hs−1 + α1/2hs
)

|u|Hs(Ω)

)

.
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6. Discrete de Rham Complexes

Following [37, 29], we show that the construction of the nonconforming elements for the
Brinkman problem are closely related to discrete de Rham complexes with extra smoothness.
In doing so, we obtain higher order nonconforming elements for a singular biharmonic
problem [34, 37, 20] and singular problems posed in H1(curl ; Ω). In particular, we show
how the three dimensional finite element space Vh is part of the discrete analog of the
complex

R
⊂

−→ H2
0

grad
−→ H1

0(curl )
curl
−→ H1

0
div
−→ L2

0 −→ 0.(6.1)

The sequence (6.1) is an exact complex provided that Ω is a convex polyhedral domain
[19, 37], that is, the range of each map is the null space of the succeeding map. The
statement that it is a complex just means that the composition of two consecutive maps is
zero.

To define the discrete analogue of (6.1) we define the following local spaces:

Xk+1(K) = P
k+1(K) + bKQk−1(K),(6.2)

Y k+1(K) = Nk+1(K) + grad
(

bKQk−1(K)
)

+ bKQk−1(K),(6.3)

where we recall that Nk+1(K) denotes the Nedelec space of index k+1 (cf. (3.3)), Qk−1(K)
is defined by (3.6), and Qk−1(K) is the three dimensional analogue of (4.2b), i.e.,

Qk−1(K) =
∑

F

bFQk−1
F (K),(6.4)

Qk−1
F (K) =

{

q ∈ P
k−1(K) : (q, bKbFp)K = 0 for all p ∈ P

k−2(K)
}

.(6.5)

We note that the space Xk+1(K) was recently introduced in [20]. In what follows, we
shall show that the global space that uses Xk+1(K) will take the place of H2

0 in (6.1), and

the global space that uses Y k+1(K) will take the place of H1
0(curl ), V h will take the place

of H1
0, while Wh will take the place of L2

0 in (6.1).
Before proving this result, we first discuss the properties of the finite element spaces

(6.2)–(6.3), their associated degrees of freedom, and unisolvency.

6.1. Properties of Xk+1(K). We define the following degrees of freedom for the local
space Xk+1(K):

w(a) for all vertices a,(6.6a)

〈w, µ〉e for all µ ∈ P
k−1(e) and edges e of K,(6.6b)

〈w, κ〉F for all κ ∈ P
k−2(F ) and faces F of K,(6.6c)

(w, ρ)K for all ρ ∈ P
k−3(K),(6.6d)

〈gradw ·nF , ω〉F for all ω ∈ P
k−1(F ) and faces F of K.(6.6e)

The following result can be found in [20].
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Lemma 6.1. There holds

Xk+1(K) = P
k+1(K) ⊕ bKQk−1(K),(6.7)

dimXk+1(K) = dimP
k+1(K) + 4P

k−1(F ),(6.8)

Furthermore, any function w ∈ Xk+1(K) is uniquely determined by the degrees of freedom
(6.6).

6.2. Properties of Y k+1(K). We define the following degrees of freedom for the local

space Y k+1(K):

〈y · te, κ〉e for all κ ∈ P
k(e) and edges e of K,(6.9a)

〈y × nF , µ〉F for all µ ∈ P
k−1(F ) and faces F of K,(6.9b)

(y, ρ)K for all ρ ∈ P
k−2(K),(6.9c)

〈y ·nF , ω〉F for all ω ∈ P
k−1(F ) and faces F of K,(6.9d)

〈curl y × nF , χ〉F for all χ ∈ P
k−1(F ) and faces F of K.(6.9e)

Lemma 6.2. There holds

Y k+1 = N k+1(K) ⊕ grad (bKQk−1(K))⊕ bKQk−1(K),(6.10)

dimY k+1(K) = dim Nk+1(K) + 4 dimP
k−1(F ) + 4 dimP

k−1(F ).(6.11)

Moreover, any function y ∈ Y k+1(K) is uniquely determined by the degrees of freedom
(6.9).

Proof. We first show that if all of the degrees of freedom vanish for y ∈ Y k+1(K), then
y ≡ 0. This fact along with (6.11) will show that the degrees of freedom uniquely determine

a function in Y k+1(K).
Suppose that y ∈ Y k+1(K) vanishes at all of the degrees of freedom (6.9). By the

definition of y, we can write y = y0 +grad (bKq)+bKp with y0 ∈ Nk+1(K), q ∈ Qk−1(K)

and p ∈ Qk−1(K). Note that grad (bKq) · te

∣

∣

e
= 0 and (bKp) · te

∣

∣

e
= 0 for all edges e, and

therefore
〈

y0 · te, κ
〉

e
for all κ ∈ P

k(e) and edges e of K.(6.12)

Furthermore, we have grad (bKq) × nF

∣

∣

F
= 0 and (bKp) × nF

∣

∣

F
= 0 for all faces F , and

therefore
〈

y0 × nF , µ
〉

F
for all µ ∈ P

k−1(F ) and faces F of K.(6.13)

Next we write q =
∑

F bF qF for qF ∈ Qk−1
F (K). Then by integration by parts and (6.5),

we have for any ρ ∈ P
k−2(K)

(

grad (bKq), ρ
)

K
= −

∑

F

(

qF , bKbF div ρ
)

K
= 0.(6.14)
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Moreover, by writing p =
∑

F bF (pF ×nF ) with (p×nF ) ∈ Qk−1
F (K) and ρ = −(ρ×nF )×

nF + (ρ · nF )nF , we have by (3.6),

(bKp, ρ)K = −
∑

F

(

(pF × nF ), bKbF (ρ× nF ) × nF

)

K
= 0.

Thus, we have

(y0, ρ)K = 0 for all ρ ∈ P
k−2(K).(6.15)

Since the degrees of freedom (6.9a)–(6.9c) uniquely determine a function in Nk+1(K), we
have by (6.12)–(6.15) that y0 ≡ 0 and so y = grad (bKq) + bKp.

Next, since bK vanishes on ∂K, we have by (6.9d),

0 =
〈

y · n, qF

〉

F
=

〈

grad (bKq) · n, qF

〉

F
=

〈

qF bFgrad (bK) · n, qF

〉

F
= −aF

〈

qF b2
F , qF

〉

F
.

Thus, qF ≡ 0 for each F , and hence qF ≡ 0 on K which in turn shows that y = bKp.
Finally, by (6.9e), we have by the product rule,

0 =
〈

curl y × nF , pF × nF

〉

F
=

〈

(grad bk × p) × nF , pF × nF

〉

F

= −aF

〈

bF (nF × p) × nF , pF × nF

〉

F

= −aF

〈

b2
F (pF × nF ), pF × nF

〉

F
.

We conclude from the last identity that pF × nF

∣

∣

F
= 0, and therefore, in light of Lemma

3.2, pF × nF ≡ 0 on K. It then follows that y ≡ 0.
We now show (6.10). Suppose that y ∈ grad

(

bKQk−1(K)
)

∩
(

bKQk−1(K)
)

. We then

have y · n
∣

∣

∂K
= 0. Thus, by writing y = grad (bKq) and q =

∑

F bF qF , we have on each
face F ,

0 = grad (bKq) · nF

∣

∣

F
= −aF b2

F qF

∣

∣

F
.

Therefore, qF

∣

∣

F
= 0, from which we conclude y ≡ 0.

Finally, since functions in grad (bKQk−1(K)) and bKQk−1(K) both vanish at the degrees

of freedom (6.9a)–(6.9c), and since functions in Nk+1(K) are uniquely determined by these
degrees of freedom, we conclude that (6.10) holds.

The dimension count (6.11) then follows from (6.10) and noting

dimgrad (bKQk−1(K)) = 4P
k−1(F ) and dim(bKQk−1(K)) = 4P

k−1(F ).

�

6.3. The Discrete Complex. The degrees of freedom of the local spaces Xk+1(K) and

Y k+1(K) given by (6.6) and (6.9) naturally leads us to define the global space as

Xh =
{

w ∈ H1
0 (Ω) : w

∣

∣

K
∈ Xk+1(K) for all K ∈ Ωh,(6.16)

and
〈

[gradw ·n], κ
〉

F
= 0 for all κ ∈ P

k−1(F ) and faces F
}

,

Y h =
{

y ∈ H0(curl ; Ω) : y
∣

∣

K
∈ Y k+1(K) for all K ∈ Ωh,(6.17)

and
〈

[y ·n], ω
〉

F
=

〈

[curl y × n], χ
〉

F
= 0

for all ω ∈ P
k−1(F ), χ ∈ P

k−1(F ), and faces F
}

.
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Note that Xh is a subspace of H1
0 (Ω) but not of H2

0 (Ω). However, since the normal deriva-
tives of functions in Xh are weakly continuous, Xh can be used as non-conforming approxi-
mation to H2

0 (Ω); see [20]. Similarly Y h is a non-conforming approximation to H1
0(curl ; Ω).

Theorem 6.3. Let Xh, V h, Y h, and Wh be given by (6.16), (3.19), (6.17) and (3.20),
respectively. Then the sequence

R
⊂

−→ Xh
grad
−→ Y h

curl
−→ V h

div
−→ Wh −→ 0(6.18)

is an exact complex.

Proof. We will need the following well known result ([33, 32, 3, 2]) that says that the
following is an exact discrete complex:

R
⊂
−→ Lh

grad
−→ Nh

curl
−→ Mh

div
−→ Wh −→ 0,(6.19)

where

Lh = {w ∈ H1
0 (Ω) : w

∣

∣

K
∈ P

k+1(K) for all K ∈ Ωh},

Nh = {v ∈ H0(curl ; Ω) : v
∣

∣

K
∈ N k+1(K) for all K ∈ Ωh},

Mh is given by (3.21) and Wh is given by (3.20).
Now suppose that curl y = 0 with y ∈ Y h. By the definition of Y h we know that y

∣

∣

K
=

y0

∣

∣

K
+ grad (bKq)

∣

∣

K
+ bKp

∣

∣

K
with y0 ∈ Nh, q

∣

∣

K
∈ Qk−1(K) and p

∣

∣

K
∈ Qk−1(K) for all

K ∈ Ωh. Then clearly we have curl (y0)
∣

∣

K
+ curl (bKp)

∣

∣

K
= 0. Since curl y0

∣

∣

K
∈ Mk(K)

and curl (bKp)
∣

∣

K
∈ U k−1(K) we have that curl y0

∣

∣

K
= 0 and curl (bKp)

∣

∣

K
= 0. However,

since functions of the form bKp are uniquely determined by the degrees of freedom (6.9e),
we must have bKp = 0. Therefore, by the exact complex (6.19), we have y0 = grad (w0)
for some w0 ∈ Lh. Thus, y

∣

∣

K
= gradw

∣

∣

K
where w

∣

∣

K
= w0

∣

∣

K
+ bKq

∣

∣

K
. Since y ∈ Y h we

have 〈[y ·n], ω〉F = 0 for all ω ∈ P
k−1(F ) and all faces F , and thus we also have w ∈ Xh.

Next, let v ∈ V h given by v
∣

∣

K
= v0

∣

∣

K
+ curl (bKq)

∣

∣

K
with v0 ∈ Mh and q

∣

∣

K
∈

Qk−1(K), and suppose that div v = 0. We then have div v0 = 0, and therefore by
(6.19), v0 = curl y0 for some y0 ∈ Nh. Therefore, we have v

∣

∣

K
= curl y

∣

∣

K
, where

y
∣

∣

K
= y0

∣

∣

K
+ bKq

∣

∣

K
+ grad (bKq)

∣

∣

K
and qK ∈ Qk−1(K) is arbitrary. Since v ∈ V h, we

know that
〈

[v × n], µ
〉

F
= 0 for all µ ∈ P

k−1(F ) and all faces F . Therefore, we have
〈

[curl y × n], µ
〉

F
= 0 for all µ ∈ P

k−1(F ) and all faces F as well. We can also choose q so

that 〈[y · n], ω〉F = 0 for all ω ∈ P
k−1(F ) and all faces F . Therefore, we have shown that

y ∈ Y h. �

Remark 6.4. Above, we considered the discrete complex with zero boundary conditions.
We would like to mention that we can easily obtain the discrete analogue of the complex

R
⊂

−→ H2 grad
−→ H1(curl )

curl
−→ H1 div

−→ L2 −→ 0.(6.20)

Indeed, to construct such a complex, we simply do not impose boundary conditions when
defining the discrete spaces Xh, Y h and V h.
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6.4. Remarks on the Two Dimensional Complex. Analogous to (6.1), the two dimen-
sional de Rham complex with extra smoothness is given by

R
⊂

−→ H2
0

curl
−→ H1

0
div
−→ L2

0 −→ 0.(6.21)

The sequence is exact provided the domain Ω is simply connected.
To introduce the corresponding discrete de Rham complex, we define Xk+1(K) in the

two dimensional case as

Xk+1(K) = P
k+1(K) + bKQk−1(K),(6.22)

with Qk−1(K) defined by (4.2b) and k ≥ 1. The associated degrees of freedom of Xk+1(K)
are defined as follows:

w(a) for all vertices a of K,(6.23a)

〈w, µ〉F for all µ ∈ P
k−1(F ) and edges F of K,(6.23b)

(w, ρ)K for all ρ ∈ P
k−2(K),(6.23c)

〈gradw · nF , ω〉F for all ω ∈ P
k−1(F ) and edges F of K.(6.23d)

The space Xk+1(K) was introduced in [20], and the following result was proved there.

Lemma 6.5. There holds

Xk+1(K) = P
k+1(K) ⊕ bKQk−1(K),(6.24)

dimXk+1(K) = dimP
k+1(K) + 3P

k−1(F ).(6.25)

Furthermore, any function w ∈ Xk+1(K) is uniquely determined by the degrees of freedom
(6.23).

The two dimensional global space Xh is defined as

Xh =
{

w ∈ H1
0 (Ω) : w

∣

∣

K
∈ Xk+1(K) for all K ∈ Ωh,(6.26)

and
〈

[gradw · n], ω
〉

F
= 0 for all ω ∈ P

k−1(F ) and all edges F
}

.

Since the right-hand side of (6.22) is a direct sum, and by the definitions of the finite
element spaces, we can easily see that

curl Xh ⊂ V h, div V h ⊂ Wh.

Therefore, the following is a discrete de Rham complex:

R
⊂

−→ Xh
curl
−→ V h

div
−→ Wh −→ 0.(6.27)

The following theorem shows that (6.27) is exact.

Theorem 6.6. Let V h, Xh and Wh be defined by (4.6), (6.26) and (3.20), respectively.
Then (6.27) is an exact complex.

Proof. It suffices to show that if v ∈ Vh with div v = 0, then v = curl w for some w ∈ Wh.
To prove this, we use the face that the sequence given by

R
⊂

−→ Lh
curl
−→ Mh

div
−→ Wh −→ 0(6.28)
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is exact; see for example [3].
By the definition of V h, we may write v

∣

∣

K
= v0

∣

∣

K
+ curl (bKq)

∣

∣

K
for each K ∈ Ωh,

with v0 ∈ Mh and q
∣

∣

K
∈ Qk−1(K). Clearly, we have 0 = div v = div v0. Thus, since the

complex (6.28) is exact, we may write v0 = curl w0 for some w0 ∈ Lh. It can then be
readily checked that w defined by w

∣

∣

K
= w0

∣

∣

K
+ bKq

∣

∣

K
is in Xh. Thus, v = curl w with

w ∈ Xh, and therefore, the sequence (6.27) is an exact complex. �

7. Local basis for Qk
F (K)

To implement the new elements for the Brinkman problem, we need to calculate a local
basis for the space Qk

F (K). Here, we give an outline on how this can be easily done. We
start with the more difficult case of three dimensions. As a first step, we show how to find
a basis of Qk

F (K) (see (6.5)) in terms of the barycentric coordinates of K. To this end,
we let λ1, λ2, λ3, λ4 be the barycentric coordinates of K, and without loss of generality, we
assume that λ1 is the barycentric coordinate that vanishes on face F . Hence, bF = λ2λ3λ4

and bK = λ1λ2λ3λ4.
For each i = 1, 2, . . . , (k + 1)(k + 2)/2 let pi ∈ P

k−1(K) be the unique solution to

(7.1) (pi, q bF bK)K = −(ri, q bF bK)K ∀q ∈ P
k−1(K),

where ri is a function of the form λ`
2λ

m
3 λn

4 with ` + m + n = k (note that there are exactly
(k + 1)(k + 2)/2 functions of this form). Clearly, pi is well defined since (7.1) leads to a
positive definite system for pi. Moreover, we can easily solve for pi in terms of barycentric
coordinates. If we let φi = pi + ri, we see that {φ1, φ2, . . . , φ(k+1)(k+2)/2} is a basis for

Qk
F (K).
We now give some examples. Using the formula (cf. [17]),

∫

K
λα1

1 λα2

2 ...λ
αd+1

d+1 dx = d!|K|
α1!α2!...αd+1!

(|α| + d)!
,

we can easily solve for pi for any k. Of course in the case k = 0, φ1 is just a constant. In
the case k = 1 we have

φ1 = −3/11 + λ2, φ2 = −3/11 + λ3, φ3 = −3/11 + λ4.

In the case k = 2, we obtain

φ1 =
4

52
−

3

13
(λ2 + λ3) + λ2λ3, φ2 =

4

52
−

3

13
(λ2 + λ4) + λ2λ4,

φ3 =
4

52
−

3

13
(λ3 + λ4) + λ3λ4, φ4 =

1

13
−

8

13
λ2 + λ2

2,

φ5 =
1

13
−

8

13
λ3 + λ2

3, φ6 =
1

13
−

8

13
λ4 + λ2

4.

In order to calculate a basis Qk
F (K), we use the fact that

Qk
F (K) = {mttF + mssF : mt, ms ∈ Qk

F (K)},

where tF , sF are orthonormal and tangent to the face F . One can prove this by using the
definition of the space Qk

F (K) given in (3.7). Thus, once we have a basis for Qk
F (K), we

also have one for Qk
F (K).
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The two dimensional case is similar, and based on the discussion above we can easily find
a basis for Qk

F (K). Below, we give a few examples (assuming λ1 vanishes on the edge F ):
For k = 1,

φ1 = −3/8 + λ2, φ2 = −3/8 + λ3,

and for k = 2,

φ1 = −
1

10
+

3

10
(λ2 + λ3) + λ2λ3, φ2 = −

2

15
+

4

5
λ2 + λ2

2, φ3 = −
2

15
+

4

5
λ3 + λ2

3.
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[25] J. Könnö and R. Stenberg, Non-conforming finite element method for the Brinkman problem, In G.
Kreiss, P. Lötstedt, A. Malqvist, and M. Neytcheva, editors, Numerical Mathematics and Advanced
Applications 2009, pages 515522. Springer Berlin Heidelberg, 2010.
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Appendix A. Proof of Theorem 1.2

First by (1.14), (1.9) and (1.10), we have for any v ∈ Zh,

ah(v, v) = ‖v‖2
a,h = |||v|||2h .

Thus, in light of the inf-sup condition (1.7), it follows that there exists a unique pair
(uh, ph) ∈ V h × Wh satisfying (1.6) [10].
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To derive the error estimates (1.12), we first note that due to the inf-sup condition (1.7),
the space Zh(g) defined by (1.13) is non-empty. Let Php ∈ Wh be the L2 projection of p
onto Wh, let v ∈ Zh(g) be arbitrary, and set eh = uh − v and wh = ph − Php. Then by
(1.6), we have

ah(eh, eh) − bh(eh, wh) = (f, eh) − ah(v, eh),(A.1a)

bh(eh, wh) = 0.(A.1b)

Noting that the inclusion (1.11) implies bh(eh, p) = bh(eh, Php) = 0, we have by (A.1) and
(1.14),

‖eh‖
2
a,h = (f, eh) − ah(v, eh)(A.2)

= ah(u − v, eh) + (f, eh)− ah(u, eh) + bh(eh, p)

≤ ‖u − v‖a,h‖eh‖a,h + (f, eh) − ah(u, eh) + bh(eh, p).

By Green’s formula and (1.1), we have

(f, eh) − ah(u, eh) + bh(eh, p) = Eh(u, eh),(A.3)

with Eh(·, ·) defined by (1.15). Thus, the estimate (1.12a) follows from (A.2), (A.3) and the
triangle inequality.

Next by (1.7), (1.6) and (A.3), we obtain

C‖ph − Php‖L2(Ω) ≤ sup
v∈V h

bh(v, ph − Php)

‖v‖1,h

= sup
v∈V h

ah(uh, v)− b(v, Php) − (f, v)

‖v‖1,h

= sup
v∈V h

ah(uh − u, v) + ah(u, v) − bh(v, p)− (f, v)

‖v‖1,h

= sup
v∈V h

ah(uh − u, v) + Eh(u, v)

‖v‖1,h

≤ sup
v∈V h

‖uh − u‖a,h‖v‖a,h + Eh(u, v)

‖v‖1,h
.

The estimate (1.12b) then follows from (1.12a), the inequality ‖v‖a,h ≤ M1/2‖v‖1,h, the
triangle inequality, and the fact that

‖p− Php‖L2(Ω) = inf
w∈Wh

‖p− w‖L2(Ω).
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