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Abstract. In this article, we analyze several discontinuous Galerkin methods (DG) for the
Stokes problem under the minimal regularity on the solution. We assume that the velocity
u belongs to [H1

0 (Ω)]d and the pressure p ∈ L2
0(Ω). First, we analyze standard DG methods

assuming that the right hand side f belongs to [H−1(Ω) ∩ L1(Ω)]d. A DG method that is
well defined for f belonging to [H−1(Ω)]d is then investigated. The methods under study
include stabilized DG methods using equal order spaces and inf-sup stable ones where the
pressure space is one polynomial degree less than the velocity space.

1. Introduction

Let Ω ⊂ Rd be a bounded polyhedral domain with boundary ∂Ω. Let V = [H1
0 (Ω)]d and

Q = L2
0(Ω) := {q ∈ L2(Ω) : (q, 1) = 0}. Here and throughout (·, ·) denotes the L2(Ω) inner

product. We also use the notation (·, ·) to denote the inner product on [L2(Ω)]d.
For a given f ∈ [H−1(Ω)]d, the Stokes problem consists to find [u, p] ∈ V ×Q such that

a(u,v) + b(v, p) = f(v) ∀v ∈ V,(1.1)

b(u, q) = 0 ∀q ∈ Q,(1.2)

where

a(w,v) = (∇w,∇v) ∀w, v ∈ V,(1.3)

b(v, q) = −(∇ · v, q) ∀v ∈ V, q ∈ Q.(1.4)

The space V is endowed with the norm ‖ · ‖V defined by ‖v‖V = (∇v,∇v)1/2.
Existence and uniqueness of the velocity u follows from the Lax-Milgram lemma in the

space Z = {v ∈ V : b(v, q) = 0 ∀q ∈ Q}. Existence of a pressure is obtained by the
well-known inf-sup condition

β‖q‖L2(Ω) ≤ sup
v∈V,v 6=0

b(v, q)

‖v‖V ∀q ∈ Q.(1.5)

The discrete analog of the inf-sup condition leads to stable numerical methods; see for
example [6]. However, in order to satisfy the discrete inf-sup condition the discrete pressure
and velocity spaces are dependent on each other. For example, as is well known, equal
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order spaces are not inf-sup stable. On the other hand, stabilized methods allows one to use
discrete spaces that are not inf-sup stable.

There are now many DG methods for Stokes’ flow using the velocity-pressure formulation;
see for example [24, 12, 21]. Error analysis have been performed for most DG methods in
the literature. However, they often assume sufficient regularity of the exact solution. In this
paper we perform an error analysis of some DG methods for the Stokes problem where we
only assume minimal regularity [u, p] ∈ V×Q. Moreover, we assume f ∈ [H−1(Ω)∩L1(Ω)]d.
We note that DG methods are not well-defined for functions f only belonging to [H−1(Ω)]d

since DG test functions do not belong to [H1(Ω)]d. However, we show how to modify the
right hand side of the DG method so that we can define a method for f ∈ [H−1(Ω)]d. The
approach we take in this paper is the one used by Gudi [19, 20] for elliptic problems where
residual estimates are used in the analysis.

Di Pietro and Ern [17] were the first to address convergence of DG methods for problems
with minimal regularity. There they considered solutions [u, p] ∈ V × Q and f ∈ [Lp(Ω)]d

for p > 1 when d = 2 and p ≥ 6/5 when d = 3 (these restrictions are due to Sobolev
embeddings). Their approach was to use discrete compactness arguments. Shortly after,
Gudi [19] considered elliptic problems where he assumed the solution u to be in H1

0 (Ω) and
proved error estimates which give rates of convergence in the case of smoothness. There
he assumed that the right hand side belongs to L2(Ω). Finally, Rivière and proved optimal
error estimates for the Laplace problem in two dimensions using W 2,p elliptic regularity for
p > 1.

As mentioned above, we will apply the techniques in [19] to give error estimates for the
Stokes problem. Here we show, following the argument of Gudi [19], that if one is a bit
more careful one only needs data belonging to [H−1(Ω)∩L1(Ω)]d. Our estimates will depend
on an oscillation term measuring the sum of local H−1 norms of the difference between f
and its L2 projection onto piecewise polynomials; see Theorem 3.1. Similar oscillation terms
were considered by Cohen et al. [15] when dealing with data in [H−1(Ω)]d. Using Sobolev
embeddings we can prove convergence results under the assumptions used in [17] while also
showing convergence rates when slightly more regular data is used. We stress that our
a-priori analysis does not depend on elliptic regularity.

Pressure estimates require special care. When the pressure polynomial space is one degree
less than the velocity space, one only needs to use that the discrete velocity (or the H(div; Ω)
conforming part of the space) and pressure space form a H(div; Ω)×L2(Ω) stable pair (such
ideas were used for example in [24]). In the equal order case, one needs to bound also the
higher modes of the pressure approximation. We do this by estimating the traces of the error
on faces of the simplicial decomposition. In the equal order case we consider two distinct
methods, one which penalizes the jumps of the pressure (see for example [24]) and a method
introduced in [14] and applied to DG methods in [13] that penalizes the jumps of the total
flux. Since penalizing the jumps of the pressure is inconsistent with pressure only belonging
to L2(Ω) we get best approximation results in the space Qh ∩ H1(Ω), where Qh is the DG
discrete space for the pressure. On the other hand when we use the DG method in [13] we
get best approximation in the space Qh.
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Since standard DG methods are not well defined for f ∈ [H−1(Ω)]d we modify the right-
hand side in order to consider this case with the help of enrichment operators. We show
that the proposed method converges strongly in [H1(Ω)]d × L2(Ω). Moreover, we show
that if one modifies the right-hand side appropriately (i.e. chooses the enrichment operator
appropriately), a best approximation property will hold.

All our analysis is based on the assumption that the polynomial degree of the finite ele-
ment approximation is kept constant. Thus, our results proving convergence under minimal
regularity assumptions hold in the case in which the mesh size tends to zero.

The paper is organized as follows. In Section 2 we introduce notation and some preliminary
results. We propose the methods to be analyzed in Section 3 and prove velocity error
estimates. Section 4 is devoted to pressure error estimates. The analysis for a method that
penalizes flux jumps is included in Section 5. Finally, the extension of the previous analyses
to forcing terms in [H−1(Ω)]d is carried out in Section 6.

2. Notation and Preliminaries

The following notation will be used throughout the article:

Th = face to face, shape regular simplicial triangulations of Ω

T = a simplex of Th hT = diameter of T h = max{hT : T ∈ Th}
V i

h = set of all vertices in Th that are in Ω

Vb
h = set of all vertices in Th that are on ∂Ω

Vh = V i ∪ Vb

E i
h = set of all interior edges of Th

Eb
h = set of all boundary edges of Th

Eh = E i
h ∪ Eb

h

he = |e|, the diameter of e ∈ Eh

Tz = set of all simplices sharing the vertex z

Te = patch of two simplices sharing the face e

∇h = piecewise (element-wise) gradient

Pm(T ) = space of polynomials of degree less than or equal to m ≥ 0 and defined on T

I = Identity matrix of size d× d.

Let us define the discrete spaces

Vh = {vh ∈ [L2(Ω)]d : vh|T ∈ [Pr(T )]d} and Qs
h = {qh ∈ Q : qh|T ∈ Ps(T )}.

We will consider the cases s = r − 1 and the equal order case s = r. For the sake of
convenience, let us define a broken Sobolev space

H1(Ω, Th) = {v ∈ L2(Ω) : v|T ∈ H1(T ) ∀ T ∈ Th}.
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In the problem setting, we require jump and mean definitions of discontinuous functions,
vector functions and tensors. For any e ∈ E i

h, there are two simplices T+ and T− such that
e = ∂T+ ∩ ∂T−. Let n+ be the unit normal of e pointing from T+ to T−, and n− = −n+.
For any v ∈ H1(Ω, Th), we define the jump and mean of v on e by

[[v]] = v+n+ + v−n−, and {{v}} =
1

2
(v+ + v−), respectively,

where v± = v
∣∣
T±

. We define for v ∈ [H1(Ω, Th)]
d the jump and mean of v on e ∈ E i

h by

[[v]] = v+ · n+ + v− · n−, and {{v}} =
1

2
(v+ + v−), respectively.

We also require the full jump of vector valued functions. For v ∈ [H1(Ω, Th)]
d, we define the

full jump by

[[v]] = v+ ⊗ n+ + v− ⊗ n−,

where for two vectors in Cartesian coordinates a = (ai) and b = (bj), we define the matrix
a⊗ b = [aibj]1≤i,j≤d. Similarly, for tensors τ ∈ [H1(Ω, Th)]

d×d the jump and mean on e ∈ E i
h

are defined by

[[τ ]] = τ+n+ + τ−n−, and {{τ}} =
1

2
(τ+ + τ−), respectively.

For notational convenience, we also define the jump and mean on the boundary faces e ∈ Eb
h

by modifying them appropriately. We use the definition of jump by understanding that
v− = 0 (similarly, v− = 0 and τ− = 0) and the definition of mean by understanding that
v− = v+ (similarly, v− = v+ and τ− = τ+).

In the analysis of next sections, we require the existence of an enriching operator Eh :
Vh → Vh ∩H1

0 (Ω) such that
(∑

T∈Th

h−2
T ‖Ehvh − vh‖2

L2(T )

)1/2

+ ‖∇h(Ehvh − vh)‖L2(Ω) ≤ C‖vh‖h,(2.1)

where

‖vh‖2
h =

∑
T∈Th

‖∇vh‖2
L2(T ) +

∑

e∈Ei
h

∫

e

1

he

[[vh]]
2.(2.2)

It is well known that this type of enriching operators can be constructed by averaging tech-
niques [7, 8].

We will also need the following inverse estimates [10].

Lemma 2.1. There exists a constant Cm such that for all v ∈ Pm(T ) one has

(2.3) ‖v‖H1(T ) ≤ Cm h−1
T ‖v‖L2(T )

and

(2.4) ‖v‖L2(∂T ) ≤ Cm h
−1/2
T ‖v‖L2(T ).
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For the next lemma we need to recall the definition of the H−1(D) norm:

‖f‖H−1(D) = sup
w∈[H1

0 (D)]d

f(w)

‖w‖H1(D)

.

For subsequent analyses, we define the restrictions of f to H1
0 (T ) by fT and to H1

0 (Te) by fe.
That is

fT (v1) = f(ṽ1) ∀v1 ∈ H1
0 (T ),(2.5)

fe(v2) = f(ṽ2) ∀v2 ∈ H1
0 (Te),(2.6)

where ṽ1(or ṽ2) is the extensions of v1(or v2) by zero outside of T (or Te).
The following residual estimates which resemble local-efficiency estimates will be crucial for
forthcoming analysis:

Lemma 2.2. Let fh ∈ Vh,vh ∈ Vh and qh ∈ Qh be arbitrary. Then, it holds that

hT‖fh + ∆vh −∇qh‖L2(T ) ≤ C
(‖∇(u− vh)‖L2(T ) + ‖p− qh‖L2(T ) + ‖fT − fh‖H−1(T )

)
,

‖h1/2
e [[∇hvh − qhI]]‖L2(e) ≤ C

(‖∇h(u− vh)‖L2(Te) + ‖p− qh‖L2(Te) + ‖fe − fh‖H−1(Te)

)
.

Proof. We begin by proving the first estimate. Let bT ∈ H1
0 (T ) be the polynomial bubble

function that takes unit value at the barycenter of T . Then it is obvious that

‖bT (fh + ∆vh −∇qh)‖L2(T ) ≤ ‖fh + ∆vh −∇qh‖L2(T ),

where fh ∈ Vh is an arbitrary polynomial on T . Using the fact that all norms are equivalent
on a finite dimensional space and a scaling argument, there exists a positive constant C1

such that

C1‖fh + ∆vh −∇qh‖2
L2(T ) ≤ ‖b1/2

T (fh + ∆vh −∇qh)‖2
L2(T ).

The constant C1 depends on the shape of T and the polynomial order, but not on the
diameter of T . Let wh = bT (fh + ∆vh −∇qh). Clearly wh ∈ [H1

0 (T )]d. Then

C1

∫

T

(fh + ∆vh −∇qh)
2 ≤

∫

T

wh · (fh + ∆vh −∇qh)

= fT (wh) +

∫

T

wh · (∆vh −∇qh) + (fh − fT )(wh),

where fh(wh) =
∫

T
fh ·wh. Let w̃h be the extension of wh by zero outside of T . Then using

(2.5), (1.1) and integration by parts,

fT (wh) +

∫

T

wh · (∆vh −∇qh) = f(w̃h) +

∫

T

wh · (∆vh −∇qh)

=

∫

Ω

∇u : ∇w̃h −
∫

Ω

∇ · w̃h p

−
∫

T

∇vh : ∇wh +

∫

T

∇ ·wh qh
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=

∫

T

∇(u− vh) : ∇wh −
∫

T

∇ ·wh (p− qh).

Therefore

C1h
2
T‖fh + ∆vh −∇qh‖2

L2(T ) ≤ h2
T‖∇(u− vh)‖L2(T )‖∇wh‖L2(T )

+ h2
T‖∇ ·wh‖L2(T )‖p− qh‖L2(T ) + h2

T‖wh‖H1(T )‖fT − fh‖H−1(T ).

Using an inverse inequality,

ChT‖fh + ∆vh −∇qh‖L2(T ) ≤ ‖∇(u− vh)‖L2(T ) + ‖p− qh‖L2(T ) + ‖fT − fh‖H−1(T ).

It completes the proof of the first inequality.
To prove the second inequality, let be ∈ H1

0 (Te) be the face bubble function that takes
unit value at the barycenter of the face e. Let ψ be the extension of [[∇hvh − qhI]] to Te by
constants along the lines orthogonal to the edge e. Let wh = beψ. Then by scaling

‖wh‖L2(Te) ≤ C‖h1/2
e [[∇hvh − qhI]]‖L2(e).(2.7)

Using again a scaling argument,

C‖[[∇hvh − qhI]]‖2
L2(e) ≤ ‖b1/2

e [[∇hvh − qhI]]‖2
L2(e) =

∫

e

wh · [[∇hvh − qhI]]

=
∑
T⊂Te

∫

T

∇vh : ∇wh −
∑
T⊂Te

∫

T

∇ ·wh qh

+
∑
T⊂Te

∫

T

(∆vh −∇qh) ·wh

=
∑
T⊂Te

∫

T

∇(vh − u) : ∇wh −
∑
T⊂Te

∫

T

∇ ·wh (qh − p)

+
∑
T⊂Te

∫

T

(∆vh −∇qh + fh) ·wh + (fe − fh)(wh),

where fh(wh) =
∫
Te

fh ·wh. Using the Cauchy-Schwarz inequality and an inverse inequality,

he‖[[∇hvh − qhI]]‖2
L2(e) ≤ C

(‖∇h(vh − u)‖L2(Te) + ‖p− qh‖L2(Te)

) ‖wh‖L2(Te)

+ C

( ∑
T⊂Te

h2
T‖∆vh −∇qh + fh‖2

L2(T )

)1/2

‖wh‖L2(Te)

+ C ‖fe − fh‖H−1(Te)‖wh‖L2(Te).

Using (2.7) and the first inequality of this lemma, we complete the proof. ¤
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3. Discontinuous Galerkin Methods

We now describe the DG methods we will consider. For simplicity we only consider the
symmetric interior penalty formulation for the Laplace operator (see the form Ah below),
but the analysis can readily be applied to other methods found in [3]. Define

Ah(wh,vh) =
∑
T∈Th

∫

T

∇wh : ∇vh −
∑
e∈Eh

∫

e

{{∇hwh}} : [[vh]](3.1)

−
∑
e∈Eh

∫

e

{{∇hvh}} : [[wh]] +
∑
e∈Eh

∫

e

η

he

[[wh]] : [[vh]],

where η is a stabilization (algorithmic) parameter, and

Bh(vh, qh) = −
∑
T∈Th

∫

T

∇ · vh qh +
∑
e∈Eh

∫

e

{{qh}}[[vh]].(3.2)

The DG method we consider is to find [uh, ph] ∈ Vh ×Qh such that

Ah(uh,vh) + Bh(vh, ph) = f(vh) ∀vh ∈ Vh,(3.3a)

Bh(uh, qh)− Sh(ph, qh) = 0 ∀qh ∈ Qh,(3.3b)

where Sh is a semi-positive definite bilinear form, i.e., Sh(qh, qh) ≥ 0 for all qh ∈ Qh. In the
case Qh = Qr−1

h we set Sh ≡ 0. In the case Qh = Qr
h (i.e. equal order case) we set

Sh(q, p) =
∑

e∈Ei
h

he

∫

e

[[q]] · [[p]].

The reason why extra stabilization is needed for the equal order case is to control the higher
modes of the approximate pressure. In a later section we describe the method were we
penalize the total flux. The error estimates will be slightly different.

Note that we are implicitly assuming that f(vh) makes sense for all vh ∈ Vh. This is
certainly not the case if we only assume that f ∈ [H−1(Ω)]d. From now on we assume that
f ∈ [H−1(Ω) ∩ L1(Ω)]d.

For the rest of the analysis, we define Zh = {vh ∈ Vh : Bh(vh, qh) = 0 ∀qh ∈ Qh}. We
note that ΠRTu belongs to Zh where ΠRT : [H1

0 (Ω)]d → Vh ∩ H0(div; Ω) is the Raviart-
Thomas projection of index r; see for example [22]. Therefore, if u ∈ [H1+s(Ω)]d for any
s ≥ 0 we have

(3.4) inf
vh∈Zh

‖u− vh‖h ≤ C‖u− ΠRTu‖h ≤ C hs‖u‖H1+s(Ω).

We also need the following coercivity estimate. For a sufficiently large stabilizing param-
eter η > 0, it holds that

C‖vh‖2
h ≤ Ah(vh,vh) ∀vh ∈ Vh.(3.5)
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In order to describe the error for the velocity we need to define Osc(f , Ω). Let P :
[L1(Ω)]d → Vh be the L2 orthogonal projection onto Vh. That is,

∫

Ω

(P f − f) ·w = 0 w ∈ Vh.

Note that this is well defined for functions in f ∈ [L1(Ω)]d. Let us also define

Osc(f , Ω) :=

(∑
e∈Eh

‖fe − P f‖2
H−1(Te)

)1/2

.

The following obvious estimate is useful to note for the subsequent analysis:
∑
T⊂Te

‖fT − P f‖2
H−1(T ) ≤ C‖fe − P f‖2

H−1(Te)
.

We can now prove an estimate for the velocity.

Theorem 3.1. It holds that

‖u− uh‖h + Sh(ph, ph)
1/2 ≤ C

(
inf

vh∈Zh

‖u− vh‖h + Osc(f , Ω)
)

+ C inf
qh∈Qh

(‖p− qh‖L2(Ω) + Sh(qh, qh)
1/2

)
.

Proof. Let vh ∈ Zh be arbitrary. Set wh = uh − vh. Then by using (3.5) and (3.3b),

C‖wh‖2
h ≤ Ah(uh,wh)−Ah(vh,wh)

= f(wh)− Bh(wh, ph)−Ah(vh,wh)

= f(wh)− Bh(wh, qh)−Ah(vh,wh)− Sh(ph, ph) + Sh(ph, qh).

Therefore,

C‖wh‖2
h + Sh(ph, ph) = f(wh)− Bh(wh, qh)−Ah(vh,wh) + Sh(ph, qh)

= f(wh − Ehwh)− Bh(wh − Ehwh, qh)−Ah(vh,wh − Ehwh)

+ f(Ehwh)− Bh(Ehwh, qh)−Ah(vh, Ehwh) + Sh(ph, qh)

= f(wh − Ehwh)− Bh(wh − Ehwh, qh)−Ah(vh,wh − Ehwh)

+ a(u, Ehwh) + b(Ehwh, p)− Bh(Ehwh, qh)−Ah(vh, Ehwh)

+ Sh(ph, qh).

First note that

|a(u, Ehwh)−Ah(vh, Ehwh)| ≤ C‖u− vh‖h‖wh‖h(3.6)

|b(Ehwh, p)− Bh(Ehwh, qh)| ≤ C‖p− qh‖L2(Ω)‖wh‖h(3.7)

|Sh(ph, qh)| ≤ Sh(ph, ph)
1/2Sh(qh, qh)

1/2.(3.8)
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Using integration by parts,

−Bh(wh − Ehwh, qh) = −
∑
T∈Th

∫

T

∇qh · (wh − Ehwh) +
∑

e∈Ei
h

∫

e

[[qh]] · {{wh − Ehwh}}(3.9)

and

−Ah(vh,wh − Ehwh) =
∑
T∈Th

∫

T

∆vh · (wh − Ehwh)−
∑

e∈Ei
h

∫

e

[[∇hvh]] · {{wh − Ehwh}}

+
∑
e∈Eh

∫

e

{{∇h(wh − Ehwh)}} : [[vh]]−
∑
e∈Eh

∫

e

η

he

[[vh]] : [[wh − Ehwh]].(3.10)

Hence,

f(wh − Ehwh)− Bh(wh − Ehwh, qh)−Ah(vh,wh − Ehwh)

=
∑
T∈Th

∫

T

(P f + ∆vh −∇qh) · (wh − Ehwh)

−
∑

e∈Ei
h

∫

e

[[∇hvh − qhI]] · {{wh − Ehwh}}

+
∑
e∈Eh

∫

e

{{∇h(wh − Ehwh)}} : [[vh]]−
∑
e∈Eh

∫

e

η

he

[[vh]] : [[wh − Ehwh]].

By using Cauchy-Schwarz, inequality (2.1) and Lemma 2.2, we find

|f(wh − Ehwh)− Bh(wh − Ehwh, qh)−Ah(vh,wh − Ehwh)|(3.11)

≤ C
(‖u− vh‖h + ‖p− qh‖L2(Ω) + Osc(f , Ω)

) ‖wh‖h.

Altogether, we complete the proof. ¤
A few remarks are in order. In the equal order case we see that

‖u− uh‖h + Sh(ph, ph)
1/2 ≤ C

(
inf

vh∈Zh

‖u− vh‖h + Osc(f , Ω)
)

+ C inf
qh∈Qh∩H1(Ω)

‖p− qh‖L2(Ω).(3.12)

Notice that in the last term we are taking the infimum over Qh ∩ H1(Ω). In the case
Qh = Qr−1

h we can take the infimum over Qh. In the next section we modify the method in
the equal order case in order to improve this result.

In order to prove convergence of the DG methods under consideration we will have to
argue that Osc(f , Ω) approaches zero as h tends to zero. We however, are not able to show
this under the assumption that f ∈ [H−1(Ω) ∩ L1(Ω)]d. Therefore, we prove convergence
requiring more regularity on f .

To this end, we establish the following inequality:

(3.13) Osc(f , Ω) ≤ C‖f − P f‖H−1(Ω).
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A similar result was proved in [15]. Here we give an alternative proof for completeness. In
order to prove (3.13), we recall the following Theorem [18]:

Theorem 3.2. For f̃ ∈ [H−1(Ω)]d, there exists F = [Fij] ∈ [L2(Ω)]d×d such that

f̃(v) =

∫

Ω

F : ∇v ∀v ∈ V,

with

‖f̃‖H−1(Ω) = ‖F‖L2(Ω).

Proof. (of (3.13)) Let v ∈ H1
0 (Te) and let ṽ be the extension of v by zero outside of Te.

Using Theorem 3.2 with f̃ = f − P f ,

(fe − P f)(v) = (f − P f)(ṽ) =

∫

Ω

F : ∇ṽ =

∫

Te

F : ∇v ∀v ∈ [H1
0 (Te)]

d,

we find

‖fe − P f‖2
H−1(Te)

≤ ‖F‖2
L2(Te)

.

Therefore, the proof of (3.13) follows by summing over e ∈ Eh and using Theorem 3.2. ¤
Below we prove that ‖f − P f‖H−1(Ω) → 0 as h → 0 whenever f ∈ [Lp(Ω)]d for p > 1 if

d = 2, and p ≥ 6/5 if d = 3; these are exactly the assumptions made in [17].
First of all note that ‖P f‖Lp(Ω) ≤ C ‖f‖Lp(Ω). Then

‖f − P f‖H−1(Ω) = sup
v∈[H1

0 (Ω)]d,v 6=0

(f − P f)(v)

‖v‖H1
0 (Ω)

and

(f − P f)(v) = (f − P f)(v − Pv) ≤ ‖f − P f‖Lp(Ω)‖v − Pv‖Lq(Ω)

≤ C‖f − P f‖Lp(Ω)h
1−d(1/2−1/q)‖v‖H1

0 (Ω),

where p and q are such that 1/p + 1/q = 1. Therefore

‖f − P f‖H−1(Ω) ≤ C h1−d(1/2−1/q)‖f − P f‖Lp(Ω).

Thus,

Osc(f , Ω) ≤ Ch1−d(1/2−1/q)‖f − P f‖Lp(Ω).(3.14)

The following corollary is a simple consequence of the previous results.

Corollary 3.3. Assume f ∈ [Lp(Ω)]d for p > 1 if d = 2, and p > 6/5 when d = 3. Then,
‖u − uh‖h + Sh(ph, ph)

1/2 converges to zero as h approaches zero. Moreover, if we assume
[u, p] ∈ H1+s(Ω)×Hs(Ω) for 0 ≤ s ≤ r and f ∈ W `,p(Ω) for an integer 0 ≤ ` ≤ r + 1, then
we have

(3.15) ‖u−uh‖h +Sh(ph, ph)
1/2 ≤ C hs(‖u‖H1+s(Ω) +‖p‖Hs(Ω))+C h1+`−d(1/2−1/q)‖f‖W `,p(Ω).
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Proof. Using (3.12) and (3.14) we have

‖u− uh‖h + Sh(ph, ph)
1/2 ≤C inf

vh∈Zh

‖u− vh‖h

+ C inf
qh∈Qh

(‖p− qh‖L2(Ω) + Sh(qh, qh)
1/2)

+ C h1−d(1/2−1/q)‖f − P f‖Lp(Ω).

The inequality (3.15) follows using approximation properties of Vh and Qh (or Qh∩H1
0 when

Qh = Qr
h). ¤

4. Pressure Error Estimates

Next, we derive the error estimate in the approximation of pressure.

Theorem 4.1. If Qh = Qr−1
h it holds

(4.1) ‖p− ph‖L2(Ω) ≤ C

(
inf

v∈Zh

‖u− vh‖h + ‖p− P r−1p‖L2(Ω) + Osc(f , Ω)

)

and if Qh = Qr
h it holds

‖p− ph‖L2(Ω) ≤C

(
inf

v∈Zh

‖u− vh‖h + ‖p− P r−1p‖L2(Ω) + Osc(f , Ω)

)

+ C inf
qh∈Qh

(‖p− qh‖L2(Ω) + Sh(qh, qh)
1/2

)
,(4.2)

where P r−1 is the L2 projection onto the space of piecewise polynomials of degree r − 1.

Proof. Step 1: We first prove

‖P r−1(p− ph)‖L2(Ω) ≤ C
(‖u− uh‖h + ‖p− P r−1p‖L2(Ω) + Osc(f , Ω)

)
).(4.3)

Note that this will prove the theorem in the case of Qh = Qr−1
h (i.e. (4.1)).

To this end, let mh = P r−1p and let θh = P r−1(p − ph). Then it is well-known (see for
example [1]) that there exists v ∈ V such that

∇ · v = θh in Ω,(4.4)

‖v‖H1(Ω) ≤ C‖θh‖L2(Ω).(4.5)

Let Πh : V → Vh ∩ [H1
0 (Ω)]d be the Nedelec projection [22] defined by
∫

T

(v − Πhv) ·w = 0 ∀w ∈ Nr−1(T )(4.6)

∫

e

(v − Πhv) · n q = 0 ∀q ∈ Pr(e), ∀e ⊂ ∂T,(4.7)
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where Nr−1(T ) is the Nedelec space of index r − 1. It is well known that the commuting
property holds ∇ · Πhv = P r−1∇ · v [22] and that the following stability estimate holds

(4.8) ‖Πhv‖h ≤ C ‖v‖H1(Ω) for all v ∈ [H1
0 (Ω)]d.

We also set Ih : [H1
0 (Ω)]d → Vh ∩ [H1

0 (Ω)]d to be the Scott-Zhang interpolant of degree r
[25]. We will also use the bound

(4.9) ‖Ihv‖H1(Ω) ≤ C ‖v‖H1(Ω) for all v ∈ [H1
0 (Ω)]d.

Then,

‖θh‖2
L2(Ω) =

∫

Ω

(∇ · Πhv) θh = −Bh(Πhv, θh)

= Bh(Πhv, ph)− Bh(Πhv,mh)

= −Ah(uh, Πhv) + f(Πhv)− Bh(Πhv,mh)

= −Ah(uh, Πhv) + f(Πhv)− f(Ihv) + a(u, Ihv) + b(Ihv, p)− Bh(Πhv,mh)

= −Ah(uh, Πh v) + a(u, Ihv)− f(Ihv − Πhv)− Bh(Πh v − Ihv,mh),

where we used that b(Ihv, p−mh) = 0 since ∇·Ihv is a piecewise polynomial of degree r−1.
Using the definition of Ah we get

−‖θh‖2
L2(Ω) =

∑
T∈Th

∫

T

∇uh : ∇Πh v −
∑
e∈Eh

∫

e

{{∇huh}} : [[Πhv]]

−
∑
e∈Eh

∫

e

{{∇hΠhv}} : [[uh]] +
∑
e∈Eh

∫

e

η

he

[[uh]] : [[Πhv]]

− a(u, Ihv) + f(Ihv − Πhv) + Bh(Πhv − Ihv,mh)

=
∑
T∈Th

∫

T

∇uh : ∇(Πhv − Ihv)−
∑
e∈Eh

∫

e

{{∇huh}} : [[Πhv − Ihv]]

−
∑
e∈Eh

∫

e

{{∇hΠhv}} : [[uh]] +
∑
e∈Eh

∫

e

η

he

[[uh]] : [[Πhv]]

+ (∇h(uh − u),∇(Ihv)) + f(Ihv − Πhv) + Bh(Πhv − Ihv, mh).

Using integration by parts we see that

∑
T∈Th

∫

T

∇uh : ∇(Πhv − Ihv)−
∑
e∈Eh

∫

e

{{∇huh}} : [[Πhv − Ihv]]

+ P f(Ihv − Πhv) + Bh(Πhv − Ih v,mh)

= −
∑
T∈Th

∫

T

(P f + ∆uh −∇mh) · (Πhv − Ih v) dx
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+
∑

e∈Ei
h

∫

e

[[∇huh −mhI]] · {{Ihv − Πhv}} ds

Hence, we have

−‖θh‖2
L2(Ω) =−

∑
T∈Th

∫

T

(P f + ∆uh −∇mh) · (Πhv − Ih v) dx

+
∑

e∈Ei
h

∫

e

[[∇huh −mhI]] · {{Ihv − Πhv}} ds

−
∑
e∈Eh

∫

e

{{∇hΠhv}} : [[uh]] +
∑
e∈Eh

∫

e

η

he

[[uh]] : [[Πhv]].

Using inverse estimates, Lemma 2.2 and the bounds (4.8), (4.9), (4.5) we arrive at (4.3).
Step 2: We next prove that if e ∈ Eh and e ⊂ T with T ∈ Th then

h1/2
e ‖(ph − P r−1ph)|T‖L2(e) ≤C(‖∇(u− uh)‖L2(T ) +

η

hT

‖[[uh]]‖L2(∂T ))

+ C(‖p− P r−1p‖L2(T ) + ‖fe − P f‖H−1(Te))

+ C(‖p− qh‖L2(Te) + h1/2
e ‖[[ph − qh]]‖L2(e)),(4.10)

where qh ∈ Qh is arbitrary.
Fix an e ∈ Eh and find one T ∈ Th be such that e ⊂ ∂T . We define v ∈ Vh in the

following way so that v|Ω\T ≡ 0. Using the degrees of freedom of the Nedelec [22] space,
define v|T ∈ [Pr(T )]d so that

∫

e

(v · n− (ph − P r−1ph)) q =0 for all q ∈ Pr(e)

∫

e′
v · n q =0 for all q ∈ Pr(e

′) for all edges e′ ⊂ T and e′ 6= e

∫

T

v ·w =0 for all w ∈ Nr−1(T ),

where (by abuse of notation) in the integrations over ∂T we consider the traces of the
piecewise discontinuous functions taken from the interior of T .

A scaling argument gives

(4.11) ‖v‖L2(T ) ≤ Ch
1/2
T ‖ph − P r−1ph‖L2(e),

with the constant C depending on r but not on h. Note that

Bh(ph,v) =−
∫

T

ph∇ · v +

∫

e

{{ph}}v · n

=−
∫

T

P r−1ph∇ · v +

∫

e

phv · n− 1

2

∫

e

[[ph]] · n(v · n)
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=

∫

T

∇(P r−1ph) · v +

∫

e

(ph − P r−1ph)v · n− 1

2

∫

e

[[ph]] · n(v · n)

=‖ph − P r−1ph‖2
L2(e) +

∫

T

∇(P r−1ph) · v − 1

2

∫

e

[[ph]] · n(v · n).

Therefore,

‖ph − P r−1ph‖2
L2(e) =−Ah(uh,v) + f(v)−

∫

T

∇(P r−1ph) · v +
1

2

∫

e

[[ph]] · v

=

∫

T

(P f + ∆uh −∇(P r−1ph)) · v − 1

2

∫

e

[[∇huh − qhI]] · v

+

∫

∂T

{{∇hv}} : [[uh]]−
∑

g⊂∂T

∫

g

η

hg

[[v]] : [[uh]]− 1

2

∫

e

[[ph − qh]] · v,

where qh ∈ Qh is arbitrary. Applying inverse estimates we find

‖ph − P r−1ph‖2
L2(e) ≤C(‖P f + ∆uh −∇(P r−1ph)‖L2(T ) + h−1/2

e ‖[[∇huh − qhI]]‖L2(e)

+
η

h
3/2
T

‖[[uh]]‖L2(∂T ) + h−1/2
e ‖[[ph − qh]]‖L2(e))‖v‖L2(T ).

Using (4.11) and Lemma 2.2 proves (4.10).
Step 3: Now we combine the previous two steps to finish the proof. By the triangle

inequality we have

‖ph − p‖L2(T ) ≤ ‖p− P r−1p‖L2(T ) + ‖P r−1(p− ph)‖L2(T ) + ‖P r−1ph − ph‖L2(T ).

From a scaling argument we see that

‖P r−1ph − ph‖L2(T ) ≤ C h
1/2
T ‖P r−1ph − ph‖L2(e)

for any edge e of T , with the constant C depending on r but not on hT . This follows from
the fact that P r−1ph− ph ∈ Pr(T ) and that its moments up to degree r− 1 vanish. If we use
(4.3) and (4.10) we see that

‖p− ph‖L2(Ω) ≤C
(‖u− uh‖h + Sh(ph, ph)

1/2 + ‖p− P r−1p‖L2(Ω) + Osc(f , Ω)
)

+ C inf
qh∈Qh

(‖p− qh‖L2(Ω) + Sh(qh, qh)
1/2

)
.

We arrive at (4.2) if we apply Theorem 3.1. ¤

5. Stabilizing with the full flux in the equal order case

We consider the equal order case Qh = Qr
h and modify the method (3.3). Define [uh, ph] ∈

Vh ×Qh as the solution to

Ah(uh,vh) + Bh(vh, ph) +
∑

e∈Ei
h

he

∫

e

[[∇huh − ph I]] · [[∇hvh]] = f(vh) ∀vh ∈ Vh,(5.1a)
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Bh(uh, qh)−
∑

e∈Ei
h

he

∫

e

[[∇huh − ph I]] · [[qh I]] = 0 ∀qh ∈ Qh.(5.1b)

Theorem 5.1. Consider the method defined by (5.1). It holds that

‖u− uh‖h +


∑

e∈Ei
h

he

∫

e

[[∇huh − ph I]]2




1/2

≤ C
(

inf
vh∈Zh

‖u− vh‖h + inf
qh∈Qh

‖p− qh‖L2(Ω)

)

+ C Osc(f , Ω).

Proof. If we let wh = uh − vh for an arbitrary vh ∈ Zh and follow similar arguments as the
proof of Theorem 3.1 we arrive at

C‖wh‖2
h +

∑

e∈Ei
h

he

∫

e

[[∇huh − ph I]]2

≤ f(wh − Ehwh)− Bh(wh − Ehwh, qh)−Ah(vh,wh − Ehwh)

+ a(u, Ehwh) + b(Ehwh, p)− Bh(Ehwh, qh)−Ah(vh, Ehwh)

+
∑

e∈Ei
h

he

∫

e

[[∇huh − ph I]] · [[∇hvh − qh I]].

Using the bounds in the proof of Theorem 3.1 (i.e. (3.6), (3.7) and (3.11)) we obtain

C ‖wh‖2
h +

∑

e∈Ei
h

he

∫

e

[[∇huh − ph I]]2 ≤C
(‖u− vh‖h + ‖p− qh‖L2(Ω) + Osc(f , Ω)

) ‖wh‖h

+
∑

e∈Ei
h

he

∫

e

[[∇hvh − qh I]]2.

We complete the proof after applying the second inequality of Lemma 2.2 and the triangle
inequality. ¤

The proof of the following pressure estimate follows a similar argument as in the proof of
Theorem 4.1. We leave the details to the reader.

Theorem 5.2. Consider the method defined by (5.1). The following estimate holds:

‖p− ph‖L2(Ω) ≤ C

(
inf

vh∈Zh

‖u− vh‖h + ‖p− P r−1p‖L2(Ω) + Osc(f , Ω)

)
.

6. A DG method for f ∈ [H−1(Ω)]d

It is clear that the DG method (3.3) is not well-defined for every f ∈ [H−1(Ω)]d. In order
to have a well-defined method we modify the method in the following way

Ah(uh,vh) + Bh(vh, ph) = f(Ehvh) ∀vh ∈ Vh,(6.1a)
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Bh(uh, qh)− Sh(ph, qh) = 0 ∀qh ∈ Qh,(6.1b)

where we recall Eh : Vh → Vh ∩H1
0 (Ω) satisfies (2.1). There are many choices for Eh which

are normally easy to compute.
We prove the following error estimate.

Theorem 6.1. Consider the method (6.1). There holds

‖u− uh‖h + Sh(ph, ph)
1/2 ≤ C inf

vh∈Zh

‖u− vh‖h + C

(∑
e∈Eh

‖fe‖2
H−1(Te)

)1/2

+ C inf
qh∈Qh

(‖p− qh‖L2(Ω) + Sh(qh, qh)
1/2

)
.

Notice that the difference in this estimate as compared to Theorem 3.1 is that P f does
not appear. This will allow us to prove convergence assuming f ∈ [H−1(Ω)]d. Indeed, given

ε > 0 there exists f̃ ∈ [L2(Ω)]d such that

‖f − f̃‖H−1(Ω) ≤ ε.

Then,
(∑

e∈Eh

‖fe‖2
H−1(Te)

)
≤

(∑
e∈Eh

‖fe − f̃‖2
H−1(Te)

)
+

(∑
e∈Eh

‖f̃‖2
H−1(Te)

)

≤ C ‖f − f̃‖2
H−1(Ω) +

(∑
e∈Eh

‖f̃‖2
H−1(Te)

)

where we used (3.13). Using Poincare’s inequality we have

‖f̃‖H−1(Te) ≤ C h‖f̃‖L2(Te),

and hence we have (∑
e∈Eh

‖f̃‖2
H−1(Te)

)1/2

≤ C h‖f̃‖L2(Ω).

Therefore, we have (∑
e∈Eh

‖fe‖2
H−1(Te)

)1/2

≤ C(ε + h‖f̃‖L2(Ω)).

There exists h0 > 0 such that for h < h0 we have h‖f̃‖L2(Ω) ≤ ε.

This shows that
(∑

e∈Eh
‖fe‖2

H−1(Te)

)1/2

converges to zero as h approaches 0. The other

terms in Theorem 6.1 approach zero as h approaches zero again using density arguments
and therefore we can conclude that method (6.1) converges.

We now prove Theorem 6.1.
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Proof. (Theorem 6.1)
Following the proof of Theorem 3.1 we get

C‖wh‖2
h + Sh(ph, ph) ≤ −Bh(wh − Ehwh, qh)−Ah(vh,wh − Ehwh)

+ a(u, Ehwh) + b(Ehwh, p)− Bh(Ehwh, qh)−Ah(vh, Ehwh)

+ Sh(ph, qh).

Using (3.9) and (3.10) we have

− Bh(wh − Ehwh, qh)−Ah(vh,wh − Ehwh)

=
∑
T∈Th

∫

T

(∆vh −∇qh) · (wh − Ehwh)

−
∑

e∈Ei
h

∫

e

[[∇hvh − qhI]] · {{wh − Ehwh}}

+
∑
e∈Eh

∫

e

{{∇h(wh − Ehwh)}} : [[vh]]−
∑
e∈Eh

∫

e

η

he

[[vh]] : [[wh − Ehwh]].

The proof is completed by applying Lemma 2.2 with fh = 0, (3.6) and (3.7). ¤
Notice that Theorem 6.1 only gives at most an O(h) convergence rate, even if f is smooth

due to the term
(∑

e∈Eh
‖fe‖2

H−1(Te)

)1/2

.

In order to remove this term altogether one can use instead an enrichment operator Eh :
Vh → Vs

h ∩ [H1
0 (Ω)]d where

Vs
h = {vh ∈ [L2(Ω)]d : vh|T ∈ [Ps(T )]d},

with s > r. For example, suppose Qh = Qr−1
h and suppose d = 2. Then, we can define

Eh : Vh → Vr+1
h ∩ [H1

0 (Ω)]d in the following way

∫

T

(Ehwh −wh) · v = 0 for all v ∈ [Pr−2(T )]d for all T ∈ Th

∫

e

(Ehwh − {{wh}}) · v = 0 for all v ∈ [Pr−1(e)]
d for all edges e ⊂ E i

h

Ehwh(z) =
1

|Tz|
∑
T∈Tz

wh|T (z) for all vertices z ∈ V i
h

∫

e

Ehwh · v = 0 for all v ∈ [Pr−1(e)]
d for all edges e ∈ Eb

h

Ehwh(z) = 0 for all vertices z ∈ Vb
h,

where |Tz| denotes the cardinality of the set Tz and P−1(T ) = {0} for all T ∈ Th. Also not
difficult to see that Eh also satisfies (2.1).
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In this case, we have

− Bh(wh − Ehwh, qh)−Ah(vh,wh − Ehwh)

=
∑
e∈Eh

∫

e

{{∇h(wh − Ehwh)}} : [[vh]]−
∑
e∈Eh

∫

e

η

he

[[vh]] : [[wh − Ehwh]].

Hence, following the proof of Theorem 6.1 we get the following estimate

‖u− uh‖h ≤ C

(
inf

vh∈Zh

‖u− vh‖h + inf
qh∈Qh

‖p− qh‖L2(Ω)

)
.

This shows that best approximation error estimates (mod a constant) are obtained for DG
methods (6.1) by choosing the enrichment operator Eh carefully.
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