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Abstract. The mixed method for the biharmonic problem introduced in [15] is extended
to the Reissner-Mindlin plate model. The Reissner-Mindlin problem is written as a system
of first order equations and all the resulting variables are approximated. However, the hy-
brid form of the method allows one to eliminate all the variables and have a final system
only involving the Lagrange multipliers that approximate the transverse displacement and
rotation at the edges of the triangulation. Mixed finite element spaces for elasticity with
weakly imposed symmetry are used to approximate the bending moment matrix. Optimal
estimates independent of the plate thickness are proved for the transverse displacement,
rotations and bending moments. A post-processing technique is provided for the displace-
ment and rotations variables and we show numerically that they converge faster than the
original approximations.

1. Introduction

In [15] we developed a new mixed finite element method for the biharmonic problem.
Here we develop a similar method for the more challenging hard clamped Reissner-Mindlin
plate model:

−∇ · (Cε(r)) − λt−2(∇u− r) =0 in Ω, (1.1a)

−λt−2∇ · (∇u− r) =f in Ω, (1.1b)

u =0 on ∂Ω, (1.1c)

r =0 on ∂Ω, (1.1d)

where Ω ⊂ R2 is a polygonal domain and f ∈ L2(Ω). Here t is the thickness of the plate
and λ is fixed positive parameter. Moreover, the tensor C is defined to be

Cτ =
E

12(1 − ν2)
((1 − ν) τ + ν tr(τ ) I),

where ν is the Poisson ratio, E = 2(1+ν)λ
κ

is the Young’s modulus and κ is the shear
correction factor. The variable u is the transverse displacement and r the rotation.

Mixed finite elements for (1.1) typically approximate directly u and r, and the shear
stress σ = λt−2(r −∇u); see for instance [4, 6, 12, 34, 5, 16, 25, 26, 28, 30] and [27] for a
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review. Instead, our method is based on the following formulation of the above problem

q = ∇u, ρ =
1

2
(∇r − (∇r)T ) in Ω,

Az = ∇r − ρ, σ = ∇ · z in Ω,

r − q − t̂2σ = 0, ∇ · σ = f in Ω,

u = 0, r = 0 on ∂Ω,

where we define t̂ := t√
λ

and A denotes the inverse of C . We use the following convention

(∇q)ij = ∂xj
(qi) for 1 ≤ i, j ≤ 2 where qi is the i-th component of q. Moreover, (∇ ·

z)i =
∑d

j=1 ∂xj
zij where the zij is the ij-entry of z. Although we introduced three new

variables, we later will present a hybrid form of the mixed method that will allow us to
eliminate all the interior variables locally to obtain a system for the Lagrange multipliers
which approximate u and r on the edges of the triangulation. This makes the method
computationally competitive. We would like to point out that Amara et al. [1] considered
a low order method where they also approximate the bending moment directly which is,
however, different from our lowest order method.

A desirable property for a method to have is that the approximations have provable
error bounds independent of the plate thickness t. Indeed, all the methods considered in
the review paper [27] have this property. Similarly, for our method we will prove optimal
error estimates for the transverse displacement, rotation and bending moment independent
of t.

The key idea of our method is that we formulate (1.1) such that σ ∈ H(div; Ω) and
each row of z belongs to H(div; Ω) and all the other variables will only be required to be in
L2(Ω). This will allow us to use the Raviart-Thomas spaces, and in fact this is what we did
in [15]. However, for the Reissner-Mindlin problem, in contrast to the biharmonic problem,
we need to deal with the symmetric gradient of r. We deal with this issue by using weakly
symmetric elements borrowed from elasticity (see [2, 10, 24]) and this is why we introduced
the anti-symmetric gradient ρ above. By doing this we can hybridize our method and
eliminate all the interior variables and only get a formulation for the Lagrange multipliers.
Hence, the final linear system that arises from our new method has exactly 3(k + 1) (for
k ≥ 1) times the number of interior edges as unknowns if we consider Raviart-Thomas
elements of index k.

We would like to mention that the analysis of the method we present in this paper for
the Reissner-Mindlin problem will have many similarities with the analysis we performed
for the biharmonic problem [15]. However, there are two main differences. First, here we
have to prove estimates that are independent of t whereas for the biharmonic problem this
is not an issue. Second, here we have to borrow some techniques for weakly symmetric
methods for elasticity because of our choices of spaces which again did not arise in [15].

In [15] for the biharmonic we were able to prove that the projection of the error of
the variable u superconverges with two orders higher than the optimal estimate. This
allowed us to define a local post-processing procedure that produces a new approximation
to u that converges with two orders more than the original approximation to u. Such
estimates are based on a duality argument and certain regularity needs to be assumed. For
the biharmonic problem such regularity estimates are known. However, for the Reissner-
Mindlin problem the elliptic regularity results depend on the thickness t which does not
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allow us to prove such great results for the transverse displacement. Nonetheless, we define
a post-processing procedure for the Reissner-Mindlin problem and we observe numerically
that convergence rates are much faster than the original approximation. We do, however,
prove that the post-processed approximation for the rotation converges faster than that of
the original approximation.

2. The Method

We assume that Th is a shape-regular triangulation Ω. Moreover, we define the following
function spaces.

Wh :={w ∈ L2(Ω) : w|K ∈ P
k(K), for all K ∈ Th},

Qh :={m ∈ L2(Ω) :m|K ∈ P
k(K), for all K ∈ Th},

Σh :={v ∈H(div , Ω) : v|K ∈ RT k(K) for all K ∈ Th},

Zh :={s ∈ H(div , Ω) : s|K ∈ RT k(K) + Ẑ
k
(K) for all K ∈ Th},

Ah :={η ∈ L2(Ω) : η|K ∈ Ak(K), for all K ∈ Th}.

Here L2(Ω) = [L2(Ω)]2, and L2(Ω) = [L2(Ω)]2×2. Moreover, H(div , Ω) are 2 × 2 matrix-
valued functions such that each row belongs to the space H(div , Ω). The space of poly-
nomials of degree less than or equal to k is denoted by Pk(K) and P

k(K) = [Pk(K)]2

and P
k(K) = [Pk(K)]2×2. The space RT k(K) = P

k(K) + Pk(K)x is the Raviart-
Thomas space of index k. Also, Ak(K) := {η : η + ηT = 0 and η ∈ P

k(K)} and

Ã
k
(K) := {η ∈ Ak(K) : (η,v)K = 0 for all v ∈ P

k−1(K)}. Finally, for k ≥ 1

Ẑ
k
(K) = curl (curl (Ã

k
(K))bK),

where bK = λ1λ2λ3 is the bubble function of K with λ′
is the barycentric coordinates of K.

Here we used the following notation

curl (η) :=

(

∂1η12 − ∂2η11

∂1η22 − ∂2η21

)

and curl (w) :=

(

∂2w1 −∂1w1

∂2w2 −∂1w2

)

,

for a matrix η and for a vector w. Note that curl (η) is a vector whereas curl (w) is a
matrix.

For k = 0 we define

Ẑ(K) := {s ∈ P
1(K) : sn · t|F is constant on each edge F of K},

where t is a unit tangent vector of F . We note that dim(RT k(K)+Ẑ
k
(K)) = dim(RT k(K))+

(k + 1) for k ≥ 1, but dim(RT 0(K) + Ẑ
0
(K)) = dim(RT 0(K)) + 3 for k = 0. We further

note that the pair of spaces Qh ×Ah × Zh for k ≥ 1 are exactly the ones used in [2, 24]
for elasticity with weakly imposed symmetry. For k = 0 we use the reduced lowest order
element Qh ×Ah ×Zh given in [10]. Finally, note that Wh × Σh are the Raviart-Thomas
spaces for Poisson’s problem.

Now we can define our method.
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It finds (uh, qh, rh,ρh
, zh,σh) ∈ Wh ×Qh ×Qh ×Ah ×Zh × Σh that satisfy

(qh,v) + (uh,∇ · v) =0, (2.2a)

(Azh, s) + (rh,∇ · s) + (ρ
h
, s) =0, (2.2b)

−(σh,m) + (m,∇ · zh) =0, (2.2c)

(rh − qh,d) − t̂2(σh,d) =0, (2.2d)

(w,∇ · σh) =(f, w), (2.2e)

(zh,η) =0, (2.2f)

for all (w,m,d,η, s,v) ∈ Wh ×Qh ×Qh ×Ah ×Zh ×Σh.
For matrix-valued functions we used the notation

(z, s) :=
∑

K∈Th

(z, s)K , where (z, s)K :=

∫

K

z(x) : s(x)dx,

where : is the Froebenius inner product. For vector-valued and scalar-valued functions we
use similar notation.

We prove that the method is well defined, but first we state a standard result that can
be found in [17].

Proposition 2.1. If v ∈ Σh and ∇ · v = 0 then v ∈ Σh ∩Qh.

Moreover, we need the following proposition.

Proposition 2.2. Given any w in Qh and ζ in Ah , there exists a τ in Zh satisfying

∇ · τ = w, (2.3a)

(τ ,η) = (ζ,η), ∀η ∈ Ah, and (2.3b)

‖τ‖L2(Ω) ≤ C
(

‖w‖L2(Ω) + ‖ζ‖L2(Ω)

)

, (2.3c)

where C only depends on the shape regularity of Th.

For the proof of this proposition see [2, 24] for k ≥ 1 and [10] for k = 0.
We can now prove that the method is well defined.

Theorem 2.3. The mixed method (2.2) is well defined.

Proof. Since (2.2) is a square linear system it is enough to prove uniqueness. To this end,
we assume that f ≡ 0 and we define the norm

‖s‖2
L2(Ω;A) := (As, s).

Note that by the fact that f = 0, (2.2e) and by Proposition 2.1 we have that

∇ · σh ∈ Σh ∩Qh. (2.4)

Then, we see that

‖zh‖2
L2(Ω;A) = −(rh,∇ · zh) − (ρ

h
, zh) by (2.2b)

= −(σh, rh) by (2.2c) and (2.2f)

= −(σh, qh) − (σh, rh − qh)

= (uh,∇ · σh) − t̂2(σh,σh) by (2.2a), (2.4) and (2.2d)

= −t̂2(σh,σh). by (2.2e)
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This shows that zh = 0 and σh = 0. Moreover, (2.2d) shows that rh = qh.
From (2.2b) we get

(rh,∇ · s) + (ρ
h
, s) = 0, for all s ∈ Zh .

Applying Proposition 2.2 we have that rh = 0 and ρ
h

= 0. Hence, qh = 0. By (2.2a) we
have

(uh,∇ · v) = 0, for all v ∈ Σh.

Since the divergence operator is onto from Σh to Wh we have that uh = 0. �

3. Hybrid Form

We introduce the hybrid form of the method. This will allow us to remove all the
interior degrees of freedom and have a formulation for only the Lagrange multipliers that
approximate u and r on the edges of the triangulation. However, the other variable can be
recovered element-by-element once we have solved for the Lagrange multipliers. We follow
closely our first paper [15] where we used the notation used in [23].

We need to define the following non-conforming versions of Σh and Zh .

Σ̃h :={v ∈ L2(Ω) : v|K ∈ RT k(K) for all K ∈ Th},

Z̃h :={s ∈ L2(Ω) : s|K ∈ RT k(K) + Ẑ
k
(K) for all K ∈ Th}.

We also need to define the Lagrange multiplier spaces

Mh :={µ : µ|F ∈ P
k(F ) for all faces of F of Th, µ = 0 on ∂Ω}.

For k ≥ 1 we define

Mh := {µ : µ|F ∈ P
k(F ) for all faces of F of Th,µ = 0 on ∂Ω},

and for k = 0 we define

Mh := {µ : µ|F ∈ P
1(F ) and µ · t|F is constant on all faces of F of Th,µ = 0 on ∂Ω},

where here t is a unit tangent vector to F .
The hybrid method finds (uh, qh, rh,ρh

, zh,σh, λh,αh) ∈ Wh ×Qh ×Qh ×Ah × Z̃h ×
Σ̃h × Mh ×M h that satisfy

(qh,v) + (uh,∇ · v) − 〈λh,v · n〉 =0 (3.5a)

(Azh, s) + (rh,∇ · s) + (ρ
h
, s) − 〈αh, sn〉 =0 (3.5b)

−(σh,m) + (m,∇ · zh) =0 (3.5c)

(rh − qh,d) − t̂2(σh,d) =0 (3.5d)

(w,∇ · σh) =(f, w) (3.5e)

(zh,η) =0, (3.5f)

〈σh · n, µ〉 =0, (3.5g)

〈zhn,µ〉 =0, (3.5h)

for all (w,m,d,η, s,v, µ,µ) ∈ Wh ×Qh ×Qh ×Ah × Z̃h × Σ̃h × Mh ×M h.
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Here we used the notation

〈µ, λ〉 :=
∑

K∈Th

∫

∂K

µ(s)λ(s) ds.

Note that equation (3.5g) implies that σh · n is single valued across edges. Similarly,
zh n is single-valued across edges by (3.5h). Note that by our definition of Z̃h for k = 0
we needed M h to contain more than piecewise constants.

The following result easily follows.

Theorem 3.1. The problem (3.5) is well defined. Moreover, let (uh, qh, rh,ρh
, zh,σh, λh,αh) ∈

Wh×Qh×Qh×Ah ×Z̃h ×Σ̃h×Mh×Mh be the solution to (3.5), then (uh, qh, rh,ρh
, zh,σh)

is the solution to (2.2).

The hybrid form will allow us to eliminate locally (uh, qh, rh,ρh
, zh,σh) to get a final

coupled system for (λh,αh). In order to describe the result we introduce local solvers. First
for m ∈ Mh let (u1(m),Q1(m),R1(m),L1(m),Z1(m),S1(m)) ∈ Wh×Qh×Qh×Ah ×Z̃h ×Σ̃h

solve

(Q1(m),v) + (u1(m),∇ · v) =〈m, v · n〉, (3.6a)

(Z1(m), s) + (R1(m),∇ · s) + (L1(m), s) =0, (3.6b)

−(S1(m),m) + (m,∇ · Z1(m)) =0, (3.6c)

(R1(m) −Q1(m),d) − t̂2(S1(m),d) =0 (3.6d)

(w,∇ · S1(m)) =0, (3.6e)

(Z1(m),η) =0, (3.6f)

for all (w,m,d,η, s,v) ∈ Wh ×Qh ×Qh ×Ah × Z̃h × Σ̃h.
Similarly, for µ ∈ Mh let (u2(m),Q2(m),R2(m),L2(m),Z2(m),S2(m)) ∈ Wh ×Qh ×

Qh ×Ah × Z̃h × Σ̃h solve

(Q2(µ),v) + (u2(µ),∇ · v) =0, (3.7a)

(Z2(µ), s) + (R2(µ),∇ · s) + (L2(µ), s) =〈µ, sn〉, (3.7b)

−(S2(µ),m) + (m,∇ · Z2(µ)) =0, (3.7c)

(R2(µ) − Q2(µ),d) − t̂2(S2(m),d) =0, (3.7d)

(w,∇ · S2(µ)) =0, (3.7e)

(Z2(µ),η) =0, (3.7f)

for all (w,m,d,η, s,v) ∈ Wh ×Qh ×Qh ×Ah × Z̃h × Σ̃h.
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Finally, let (u3(f),Q3(f),R3(f),L3(f),Z3(f),S3(f)) ∈ Wh ×Qh ×Qh ×Ah × Z̃h × Σ̃h

solve

(Q3(f),v) + (u3(f),∇ · v) =0, (3.8a)

(Z3(f), s) + (R3(f),∇ · s) + (L3(f), s) =0, (3.8b)

−(S3(f),m) + (m,∇ · Z3(f)) =0, (3.8c)

(R3(f) − Q3(f),d) − t̂2(S3(f),d) =0, (3.8d)

(w,∇ · S3(f)) =(f, w), (3.8e)

(Z3(f),η) =0, (3.8f)

for all (w,m,d,η, s,v) ∈ Wh ×Qh ×Qh ×Ah × Z̃h × Σ̃h.
Now that we have the local solvers we define three bilinear forms. For m, µ ∈ Mh and

µ, l ∈Mh define

a(m, µ) :=(AZ1(m),Z1(µ)) + t̂2(S1(m),S1(µ)),

c(µ, l) :=(AZ2(µ),Z2(l)) + t̂2(S2(µ),S2(l)),

b(m,µ) :=(AZ1(m),Z2(µ)) + t̂2(S1(m),S2(µ)).

The following problem allows us to find the Lagrange multipliers λh and αh.
Let (λh,αh) ∈ Mh ×Mh solve

a(λh, m) + b(m,αh) =(f, u1(m)), (3.9a)

b(λh,µ) + c(αh,µ) =(f, u2(µ)), (3.9b)

for all (m,µ) ∈ Mh ×M h.
It is clear that dim(Mh) = (k + 1)Ne and dim(Mh) = 2(k + 1)Ne for k ≥ 1 while

dim(M h) = 3Ne for k = 0 where Ne denotes the number interior edges. Hence, (3.9) gives
rise to a linear system with 3(k + 1)Ne unknowns for k ≥ 1 and 4Ne unknowns for k = 0.

Now we arrive at the main result of this section. The proof is found in the appendix.

Theorem 3.2. The problem (3.9) is well defined. Moreover, if (λh,αh) ∈ Mh×Mh solves

(3.9) and if we set

uh =u1(λh) + u2(αh) + u3(f), (3.10a)

qh =Q1(λh) + Q2(αh) + Q3(f), (3.10b)

rh =R1(λh) + R2(αh) + R3(f), (3.10c)

ρ
h

=L1(λh) + L2(αh) + L3(f), (3.10d)

zh =Z1(λh) + Z2(αh) + Z3(f), (3.10e)

σh =S1(λh) + S2(αh) + S3(f), (3.10f)

then (uh, qh, rh,ρh
, zh,σh, λh,αh) ∈ Wh ×Qh ×Qh ×Ah × Z̃h × Σ̃h × Mh ×M h solves

(3.5).

What this result says is that in order to solve our mixed method (2.2) we need
only to solve the problem (3.9) for λh and αh. Then, we can recover all the variables
(uh, qh, rh,ρh

, zh,σh) element-by-element which can be done in parallel.
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4. Error Estimates

In this section we prove error estimates for all the variables. We start by writing the
error equations

(q − qh,v) + (u − uh,∇ · v) =0, (4.11a)

(A(z − zh), s) + (r − rh,∇ · s) + (ρ− ρ
h
, s) =0, (4.11b)

−(σ − σh,m) + (m,∇ · (z − zh) ) =0, (4.11c)

(r − q − (rh − qh),d) − t̂2(σ −σh,d) =0, (4.11d)

(w,∇ · (σ −σh) ) =0, (4.11e)

(z − zh,η) =0, (4.11f)

for all (w,m,d,η,v, s) ∈ Wh ×Qh ×Qh ×Ah × Σh ×Zh .
We will use the Raviart-Thomas projection (see [36, 35]) Π :H(div; Ω)∩Lp(Ω) → Σh

for some p > 2 which satisfies the commutative property

∇ · (Πv) = P ∇ · v, (4.12)

where P is the L2-projection onto Wh.
Moreover, the following approximation property holds

‖v − Πv‖L2(Ω) ≤ hr‖v‖Hr(Ω), (4.13)

for 1 ≤ r ≤ k + 1.
We let Π denote the matrix version of Π where Π acts row-wise. Moreover, we let P

be the L2-projection onto Qh and P is the L2-projection onto Ah .
Since Π is not L2-stable and derivatives of σ may not be bounded independent of t,

we will use the recently introduced [19] smoothed projection ΠS : L2(Ω) → Σh; see also
[11, 37, 38]. It satisfies the commutative property

∇ · (ΠSv) = P S ∇ · v, (4.14)

where P S is a projection onto Wh. It is important to note that P S 6= P . These projections
have the following invariance property P Sw = w for all w ∈ Wh and ΠSv = v for all v ∈ Σh.
Finally, the following approximation properties hold for v ∈Hr(Ω) and w ∈ Hr(Ω)

‖v − ΠSv‖L2(Ω) ≤ C hr‖v‖Hr(Ω), (4.15)

and

‖w − P Sw‖L2(Ω) ≤ C hr‖w‖Hr(Ω),

for 0 ≤ r ≤ k + 1.
The projection ΠS , in contrast to the Raviart-Thomas projection Π, is defined for

functions in L2(Ω). However, ΠS is no longer defined locally on each element.
Before proving estimates for z and ρ we first need to prove some important lemmas.

We start by proving an estimate for ρ− ρ
h

in terms of z − zh.

Lemma 4.1. We have

‖ρ− ρ
h
‖L2(Ω) ≤ C(‖z − zh‖L2(Ω) + ‖Pρ− ρ‖L2(Ω)). (4.16)
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Proof. Let τ be from Proposition 2.2 with w = 0 and ζ = Pρ− ρ
h
.

‖Pρ− ρ
h
‖2

L2(Ω) = (Pρ− ρ
h
,Pρ− ρ

h
)

= (Pρ− ρ
h
, τ ) by (2.3b)

= (ρ− ρ
h
, τ ) + (Pρ− ρ, τ )

= −(A(z − zh), τ ) + (Pρ− ρ, τ ). by (2.3a) and (4.11b)

The result now follows from (2.3c), the fact that A is bounded and the triangle inequality.
�

Since we now have a bound for ρ − ρ
h

in terms of (z − zh) we will not need to use a
projection onto the full space of Zh , but only to the Raviart-Thomas part of that space.
This is the approach used in [32] for linear elasicity.

We now prove error estimates for the variable r in terms of the errors for z and ρ.
The first result bounds the jumps of Pr − rh.

Lemma 4.2. Let F be the common edge of two elements K, K ′ ∈ Th. Then,

‖(Pr−rh)|K − (Pr−rh)|K′‖L2(F ) ≤ C h
1/2
F (‖z−zh‖L2(K∪K′) +‖ρ−ρ

h
‖L2(K∪K′)), (4.17)

where hF is the length of F . Moreover, if F is an edge of K ∈ Th and F belongs to the

boundary ∂Ω then

‖Pr − rh‖L2(F ) ≤ C h
1/2
F (‖z − zh‖L2(K) + ‖ρ− ρ

h
‖L2(K)). (4.18)

Proof. We only prove (4.17). In order to do so, set

ψ = (Pr − rh)|K − (Pr − rh)|K′. (4.19)

We will also need to define s ∈ Zh in the following way: First, s|K ∈ RT k(K) solves

(s,v)K = 0 for all v ∈ P
k−1(K), (4.20a)

〈snK ,µ〉F = 〈ψ,µ〉F for all µ ∈ P
k(F ), (4.20b)

〈snK ,µ〉G = 0, for all µ ∈ P
k(G), for all edges G of K and G 6= F , (4.20c)

where here nK is the outward unit normal to K. Here RT k(K) is the set of matrix-valued
functions such that each row belongs to RT k(K).

Then, define s|K′ ∈ RT k(K ′) as follows

(s,v)K′ = 0 for all v ∈ P
k−1(K ′), (4.21a)

〈snK′ ,µ〉F = −〈ψ,µ〉F for all µ ∈ P
k(F ), (4.21b)

〈snK′,µ〉G = 0 for all µ ∈ P
k(G), for all edges G of K ′ and G 6= F . (4.21c)

Finally, set

s|Ω\K∪K′ ≡ 0. (4.22)

A standard scaling argument gives

‖s‖L2(K∪K′) ≤ C h
1/2
F ‖ψ‖L2(F ). (4.23)
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We then obtain

‖ψ‖2
L2(F ) =〈ψ,ψ〉F

=〈ψ, snK〉F by (4.20b)

=〈(Pr − rh)|K , snK〉F + 〈(Pr − rh)|K′, snK′〉F

=

∫

∂K

(Pr − rh) · snK +

∫

∂K′

(Pr − rh) · snK′ by (4.20c),(4.21c)

=(Pr − rh,∇ · s)K + (Pr − rh,∇ · s)K′ by (4.20a), (4.21a)

=(Pr − rh,∇ · s) by (4.22)

= − (A(z − zh), s) − (ρ− ρ
h
, s). by (4.11b)

Therefore,

‖ψ‖2
L2(F ) ≤ (‖z − zh‖L2(K∪K′) + ‖ρ− ρ

h
‖L2(K∪K′)) ‖s‖L2(K∪K′).

The result now follows if we apply (4.23). �

The next result controls the piecewise gradient of Pr − rh.

Lemma 4.3. For every K ∈ Th the following estimate holds

‖∇(Pr − rh)‖L2(K) ≤ C(‖z − zh‖L2(K) + ‖ρ− ρ
h
‖L2(K)).

Proof. Define s|K ∈ RT k(K) as the solution to

(s,v)K = (∇(Pr − rh),v)K for all v ∈ P
k−1(K), (4.24a)

〈snK ,µ〉F = 0 for all µ ∈ P
k(F ), for all edges F of K. (4.24b)

Also, set

s|Ω\K ≡ 0. (4.25)

Clearly, in this way s ∈ Zh .

‖∇(Pr − rh)‖2
L2(K) =(∇(Pr − rh), s) by (4.24a) and (4.25)

= − (Pr − rh,∇ · s) by (4.24b) and integration by parts

=(A(z − zh), s) + (ρ− ρ
h
, s). by (4.11b)

Therefore,

‖∇(Pr − rh)‖2
L2(K) ≤ C(‖z − zh‖L2(K) + ‖ρ− ρ

h
‖L2(K))‖s‖L2(K).

The result now follows from ‖s‖L2(K) ≤ C ‖∇(Pr − rh)‖L2(K) which in turn follows from
a standard scaling argument. �

We will also need the following trivial bound.

Lemma 4.4. We have

‖Pr − rh‖L2(Ω) ≤ C(‖z − zh‖L2(Ω) + ‖ρ− ρ
h
‖L2(Ω)). (4.26)
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Proof. There exists s ∈ H1(Ω) that satisfies

∇ · s = Pr − rh on Ω, (4.27)

with

‖s‖H1(Ω) ≤ C ‖Pr − rh‖L2(Ω). (4.28)

Hence, using

‖Pr − rh‖2
L2(Ω) =(Pr − rh,∇ · s) by (4.27)

=(Pr − rh,∇ ·Πs) by (4.12)

= − (A (z − zh),Πs) − (ρ− ρ
h
,Πs) by (4.11b)

The result now follows after we use (4.13) with r = 1 and (4.28).
�

We also need the following Helmholtz decomposition; see for example [33].

Proposition 4.5. Let v ∈ H(div, Ω). Then, there exists φ ∈ H1
0 (Ω) and p ∈ H1(Ω) such

that

v = ∇φ + curl p,

with

‖φ‖H1(Ω) ≤ ‖∇ · v‖H−1(Ω), (4.29)

and

‖p‖H1(Ω) ≤ C ‖v‖L2(Ω). (4.30)

In fact, in the proposition above φ ∈ H1
0 (Ω) solves

4φ = ∇ · v on Ω.

From this equation we clearly see that the estimate (4.29) follows.
We will need to define an auxiliary function. By the above lemma there exist θ ∈ H1

0 (Ω)
and q ∈ H1(Ω) such that

σ = ∇θ + curl q,

where 4θ = ∇ · σ = f .
We define the auxiliary function σ̃ as

σ̃ = ∇θ̃ + curl q,

where θ̃ ∈ H1
0 (Ω) is defined as the unique solution to 4θ̃ = P f . Note that as a consequence

∇ · σ̃ = P f . Furthermore, we have

‖σ − σ̃‖L2(Ω) = ‖∇θ −∇θ̃‖L2(Ω) ≤ C ‖f − Pf‖H−1(Ω), (4.31)

where we used that 4(θ − θ̃) = f − Pf and an energy argument.
Finally, we prove a simple but important lemma.

Lemma 4.6. We have,

∇ · (ΠSσ̃ − σh) = 0, (4.32)

and

ΠSσ̃ − σh ∈ Σh ∩Qh. (4.33)



12 BEHRENS AND GUZMÁN

Proof. Using (2.2e) we have that ∇ ·σh = P f . Using the commutative property (4.14) we
have

∇ · ΠSσ̃ = P S∇ · σ̃ = P S P f = P f,

where in the last equation we used that P f ∈ Wh. This proves (4.32), and (4.33) follows
form Proposition 2.1. �

4.1. Error estimates for z and ρ. In this section we prove optimal error estimates for
z and ρ independent of the plate thickness t. We start this section by stating the main
theorem of this section and a simple corollary.

Theorem 4.7. We have

‖z − zh‖L2(Ω) +
1

t̂
‖(Pr − rh) − (Pq − qh)‖L2(Ω) + ‖ρ− ρ

h
‖L2(Ω)

≤C (‖Πz − z‖L2(Ω) + ‖ρ− Pρ‖L2(Ω) + (h + t̂) ‖σ − ΠSσ‖L2(Ω) + ‖f − P f‖H−1(Ω)).
(4.34)

The following corollary easily follows from this theorem.

Corollary 4.8. For any 1 ≤ r0 ≤ k + 1 and 0 ≤ r1, r2, r3 ≤ k + 1 we have

‖z − zh‖L2(Ω) +
1

t̂
‖(Pr − rh) − (Pq − qh)‖L2(Ω) + ‖ρ− ρ

h
‖L2(Ω)

≤C (hr0 ‖r‖H1+r0 (Ω) + t̂hr1 ‖σ‖Hr1(Ω) + h1+r2 ‖σ‖Hr2(Ω) + h1+r3 ‖f‖Hr3 (Ω)).

Here we used that ‖z‖Hr0(Ω) + ‖ρ‖Hr0(Ω) ≤ C ‖r‖H1+r0 (Ω). Note that Corollary 4.8
provides optimal error estimates for z and ρ. In general the norms on the right-hand side
of the above corollary depend on t. However, in the case that Ω is convex the following
regularity result holds (see [27])

‖σ‖L2(Ω) + t ‖σ‖H1(Ω) + ‖r‖H2(Ω) ≤ C‖f‖L2(Ω).

Hence, choosing r0 = r1 = 1 and r2 = r3 = 0 in Corollary 4.8 we get the first-order
convergence result independent of the plate thickness

‖z − zh‖L2(Ω) + ‖ρ− ρ
h
‖L2(Ω) ≤ C h‖f‖L2(Ω).

In the remainder of this section we prove Theorem 4.7.

Proof. (Theorem 4.7)
We have

‖Πz − zh‖2
L2(Ω;A) =(A(Πz − z),Πz − zh) − (Pr − rh,∇ · (Πz − zh))

− (ρ− ρ
h
,Πz − zh) by (4.11b)

=(A(Πz − z),Πz − zh) − (σ − σh,Pr − rh)

− (ρ− ρ
h
,Πz − zh) by (4.11c)

=(A(Πz − z),Πz − zh) − (σ − σh,Pr − rh − (Pq − qh))

− (ρ− ρ
h
,Πz − zh) − (σ − σh,Pq − qh)

=(A(Πz − z),Πz − zh) −
1

t̂2
‖(Pr − rh) − (Pq − qh)‖2

L2(Ω)

− (ρ− ρ
h
,Πz − zh) − (ΠSσ̃ − σh,Pq − qh)

− (σ − σ̃,Pq − qh) − (σ̃ − ΠSσ̃,Pq − qh). by (4.11d)
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We simplify one of the terms above.

−(ΠSσ̃ − σh,Pq − qh) = − (ΠSσ̃ −σh, q − qh) by (4.33)

=(u− uh,∇ · (ΠSσ̃ − σh)) by (4.11a)

=0. by (4.32)

Hence, we obtain

‖Πz − zh‖2
L2(Ω;A) +

1

t̂2
‖(Pr − rh) − (Pq − qh)‖2

L2(Ω)

=(A(Πz − z),Πz − zh) − (ρ− ρ
h
,Πz − zh)

− (σ − σ̃,Pq − qh) − (σ̃ −ΠSσ̃,Pq − qh). (4.35)

Bounding the first term we get

(A(Πz − z),Πz − zh) ≤ C‖Πz − z‖L2(Ω) ‖Πz − zh‖L2(Ω). (4.36)

In order to bound the second term on the right of (4.35) we use (4.11f) to obtain

−(ρ− ρ
h
,Πz − zh) = − (ρ− Pρ,Πz − zh) − (Pρ− ρ

h
,Πz − zh)

= − (ρ− Pρ,Πz − zh) − (Pρ− ρ
h
,Πz − z).

We can then use (4.16) to arrive at the following bound

−(ρ− ρ
h
,Πz − zh) ≤C (‖ρ− Pρ‖L2(Ω) + ‖Πz − z‖L2(Ω))‖Πz − zh‖L2(Ω)

+ C (‖Πz − z‖L2(Ω) + ‖ρ− Pρ‖L2(Ω))‖Πz − z‖L2(Ω). (4.37)

To bound the third term on the right of (4.35) we use the triangle inequality (4.31)
and (4.26) to get

−(σ − σ̃,Pq − qh) ≤t̂‖f − P f‖H−1(Ω)

1

t̂
‖(Pr − rh) − (Pq − qh)‖L2(Ω)

+ C ‖f − P f‖H−1(Ω)(‖z − zh‖L2(Ω) + ‖ρ− ρ
h
‖L2(Ω)). (4.38)

We now bound the last term of (4.35). To this end, we apply Proposition 4.5 with v =
σ̃ − ΠSσ̃ and have p ∈ H1(Ω) such that

σ̃ − ΠSσ̃ = curl p.

Note that we used that ∇ · (σ̃ − ΠSσ̃) = P f − P SP f = 0.
We let I be the Scott-Zhang [39] linear interpolant that has the following property

‖p − I p‖L2(Ω) + h‖p − I p‖H1(Ω) ≤ Chj‖p‖Hj(Ω), (4.39)

for j = 1, 2.
We note that curl Ip ∈ Σh ∩Qh and see that

−(curl p,Pq − qh) = − (curl (p − Ip),Pq − qh) by (4.11a)

= − (curl (p − Ip),Pr − rh)

− (curl (p − Ip),Pq − qh − (Pr − rh)).

The last term is bounded in the following way

−(curl (p−Ip),Pq−qh−(Pr−rh)) ≤ C t̂ ‖σ̃−ΠSσ̃‖L2(Ω)

1

t̂
‖Pq−qh−(Pr−rh)‖L2(Ω),

where we used (4.39) and (4.30).
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To bound the other term we use integration by parts to get

−(curl (p − Ip),Pr − rh) = −((p − Ip), curl (Pr − rh)) − 〈p − Ip, (Pr − rh) · t〉,
where t when restricted to an element K ∈ Th is the unit tangent vector of ∂K.

The first term above can be bounded using Lemma 4.3, (4.39) and (4.30)

−((p − Ip), curl (Pr − rh)) ≤ C h ‖σ̃ − ΠSσ̃‖L2(Ω)(‖z − zh‖L2(Ω) + ‖ρ− ρ
h
‖L2(Ω)).

The second term can be bounded using and Lemma 4.2, (4.39) and (4.30)

〈p − Ip, (Pr − rh) · t〉 ≤
∑

F∈Eh

‖p − I p‖L2(F )‖j(Pr − rh)‖L2(F )

≤C h ‖σ̃ − ΠSσ̃‖L2(Ω) (‖z − zh‖L2(Ω) + ‖ρ− ρ
h
‖L2(Ω)).

Here Eh is the collection of faces of the triangulation Th and j is the jump operator on
interior edges and the identity on boundary edges. More precisely, if F is an interior edge
and K, K ′ ∈ Th share F then

j(v)|F = |(v|K − v|K′)|F |,
and if F is a boundary edge then

j(v)|F = v|F .

Hence, we obtain

−(σ̃ − Πσ̃,Pq − qh) ≤ C h‖σ̃ − ΠSσ̃‖L2(Ω)(‖z − zh‖L2(Ω) + ‖ρ− ρ
h
‖L2(Ω))

+ C t̂ ‖σ̃ − ΠSσ̃‖L2(Ω))
1

t̂
‖(Pr − rh) − (Pq − qh)‖L2(Ω).

If we use (4.16) we have

−(σ̃ − ΠSσ̃,Pq − qh) ≤ C h‖σ̃ − ΠSσ̃‖L2(Ω)‖Πz − zh‖L2(Ω)

+ C h‖σ̃ − ΠSσ̃‖L2(Ω)(‖Πz − z‖L2(Ω) + ‖ρ− Pρ‖L2(Ω))

+ C t̂ ‖σ̃ − ΠSσ̃‖L2(Ω))
1

t̂
‖(Pr − rh) − (Pq − qh)‖L2(Ω).

(4.40)

Combining (4.36), (4.37), (4.38), (4.40) and (4.35) we arrive at

‖Πz − zh‖L2(Ω) +
1

t̂
‖(Pr − rh) − (Pq − qh)‖L2(Ω)

≤C (‖Πz − z‖L2(Ω) + ‖ρ− Pρ‖L2(Ω) + ‖f − P f‖H−1(Ω) + (h + t̂) ‖σ̃ −ΠSσ̃‖L2(Ω)),

where we used that t̂ is bounded and that A is positive-definite.
Using the triangle inequality, (4.15), and (4.31) we have

‖σ̃ − ΠSσ̃‖L2(Ω) ≤‖σ − ΠSσ‖L2(Ω) + ‖(σ̃ −σ) − ΠS(σ̃ − σ)‖L2(Ω)

≤‖σ − ΠSσ‖L2(Ω) + C‖σ̃ − σ‖L2(Ω)

≤‖σ − ΠSσ‖L2(Ω) + C‖f − P f‖H−1(Ω).
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Hence, using that h + t̂ is bounded we have

‖Πz − zh‖L2(Ω) +
1

t̂
‖(Pr − rh) − (Pq − qh)‖L2(Ω)

≤C (‖Πz − z‖L2(Ω) + ‖ρ− Pρ‖L2(Ω) + ‖f − P f‖H−1(Ω) + (h + t̂) ‖σ −ΠSσ‖L2(Ω)).
(4.41)

To complete the proof we note that by (4.16) and (4.41) we can also bound ‖ρ−ρ
h
‖L2(Ω)

by the right-hand side of (4.41). �

4.2. Error estimate for u, r, q and σ. We will prove optimal error estimates for u,
r, q and sub-optimal error estimates for σ. Our numerical experiments show that these
estimates are sharp.

The next theorem is a consequence of Theorem 4.7.

Theorem 4.9. For any 1 ≤ r0 ≤ k + 1 and 0 ≤ r1, r2, r3, r4 ≤ k + 1, we have

‖r − rh‖L2(Ω)

≤C hr0 ‖r‖H1+r0 (Ω) + C t̂ hr1 ‖σ‖Hr1 (Ω) + C h1+r2 ‖σ‖Hr2(Ω) + C h1+r3 ‖f‖Hr3 (Ω). (4.42)

and

‖q − qh‖L2(Ω) + ‖u − uh‖L2(Ω)

≤C hr0 ‖r‖H1+r0 (Ω) + C t̂ hr1 ‖σ‖Hr1 (Ω) + C h1+r2 ‖σ‖Hr2 (Ω) + C h1+r3 ‖f‖Hr3 (Ω)

+ hr4 ‖u‖H1+r4(Ω). (4.43)

Also,

‖σ − σh‖L2(Ω) ≤ C (‖∇ · (Πz − zh)‖L2(Ω) + ‖ΠSσ − σ‖L2(Ω) + ‖f − P f‖H−1(Ω)). (4.44)

If the mesh is quasi-uniform, then

‖σ − σh‖L2(Ω) ≤
C hr0−1 ‖r‖H1+r0 (Ω) + C t̂ hr1−1 ‖σ‖Hr1−1(Ω) + C hr2 ‖σ‖Hr2 (Ω) + C hr3 ‖f‖Hr3 (Ω). (4.45)

Proof. (Theorem 4.9)
By Lemma 4.26 we have

‖r − rh‖L2(Ω) ≤ C (‖z − zh‖L2(Ω) + ‖ρ− ρ
h
‖L2(Ω) + ‖Pr − r‖L2(Ω)).

If we apply Corollary 4.8 we get (4.42).
Using (4.11a) we can easily prove that

‖Pu− uh‖L2(Ω) ≤ C ‖q − qh‖L2(Ω),

and since

‖q − qh‖L2(Ω) ≤‖Pr − rh‖L2(Ω) + ‖Pr − rh − (Pq − qh)‖L2(Ω),

we can prove (4.43) by using Corollary 4.8, (4.42) and using that ‖q‖Hr4(Ω) ≤ C‖u‖H1+r4(Ω).
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In order to prove (4.44) we use (4.33) and (4.11c)

‖σ − σh‖2
L2(Ω) =(σ − σh,σ − ΠSσ̃) + (σ −σh,Π

Sσ̃ − σh)

=(σ − σh,σ − ΠSσ̃) + (∇ · (Πz − zh),Π
Sσ̃ − σh)

=(σ − σh,σ − ΠSσ̃) + (∇ · (Πz − zh),σ −σh)

+ (∇ · (Πz − zh),Π
Sσ̃ −σ)

where we also used the commutative property (4.12). This provides the following estimate

‖σ − σh‖L2(Ω) ≤ C(‖∇ · (Πz − zh)‖L2(Ω) + ‖ΠSσ̃ − σ‖L2(Ω)).

Finally, if we use the triangle inequality, (4.15) and (4.31) we get

‖ΠSσ̃ − σ‖L2(Ω) ≤C(‖ΠSσ −σ‖L2(Ω) + ‖ΠS(σ̃ − σ)‖L2(Ω))

≤C(‖ΠSσ −σ‖L2(Ω) + ‖σ̃ − σ‖L2(Ω))

≤C(‖ΠSσ −σ‖L2(Ω) + ‖f − P f‖H−1(Ω)), (4.46)

which in turn proves (4.44).
We can then use the inverse estimate

‖∇ · (Πz − zh)‖L2(Ω) ≤
C

h
‖Πz − zh‖L2(Ω),

and apply Corollary 4.8. This proves (4.45). �

4.3. Superconvergence of Pr − rh. In this section we prove a superconvergence result
for Pq − qh under the assumption that Ω is convex. In order to do this we use a duality
argument. We need to define the problem

−∇ · (Cε(θ)) − λt−2(∇w − θ) =Pr − rh in Ω, (4.47a)

−λt−2∇ · (∇w − θ) =0 in Ω, (4.47b)

θ =0 on ∂Ω, (4.47c)

ψ =0 on ∂Ω. (4.47d)

We let
γ = −t̂−2(∇w − θ). (4.48)

Then the following regularity result holds (see for example [27])

‖γ‖L2(Ω) + t ‖γ‖H1(Ω) + ‖θ‖H2(Ω) + ‖w‖H2(Ω) ≤ C‖Pr − rh‖L2(Ω). (4.49)

Moreover, since ∇ · γ = 0 we also find in [27] that there exists m ∈ H1(Ω) such that

γ = curl (m)

with
‖m‖H1(Ω) + t‖m‖H2(Ω) ≤ C‖Pr − rh‖L2(Ω). (4.50)

We will also need the following proposition.

Proposition 4.10. If ψ ∈ Σh then there exists v ∈ Qh such that for every K ∈ Th

‖ψ − v‖L2(K) ≤ C hK ‖∇ ·ψ − P k−1∇ ·ψ‖L2(K),

where Pm is the L2 projection onto the space

W m
h := {w ∈ L2(Ω) : w|K ∈ P

m(K), for all K ∈ Th} for m ≥ 0,
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and W−1
h := {0}.

One can prove this result for example by letting v = ΠSFHψ where ΠSFH is the projec-
tion introduced in [21], noting that ψ = Πψ and then following the proof of Proposition
2.1 (vi) in [20].

Theorem 4.11. For Ω convex we have

‖Pr − rh‖L2(Ω) ≤C h(‖Πz − z‖L2(Ω) + ‖ρ− Pρ‖L2(Ω) + (h + t̂) ‖σ − ΠSσ‖L2(Ω))

+ C h (h`k ‖f − P f‖L2(Ω) + h1+`k ‖f − P k−1 f‖L2(Ω) + ‖f − P f‖H−1(Ω)),

where `k = 0 if k = 0 and `k = 1 if k ≥ 1.

Before proving Theorem 4.11 we state a simple corollary.

Corollary 4.12. Assuming Ω is convex we have for any 1 ≤ r0 ≤ k+1 and 0 ≤ r1, r2, r3 ≤
k + 1

‖Pr − rh‖L2(Ω) ≤ C h(hr0 ‖r‖H1+r0 (Ω) + t̂hr1 ‖σ‖Hr1(Ω) + h1+r2 ‖σ‖Hr2(Ω) + h`k+r3 ‖f‖Hr3 (Ω)),

where `k = 0 if k = 0 and `k = 1 if k ≥ 1.

This result shows that Pr−rh converges with one order more than r−rh. For smooth
solutions we should expect that Pr − rh converges with order k + 2. We exploit this later
with post-processing.

Proof. (Theorem 4.11) Let
As = ε(θ). (4.51)

Then, we see by (4.47a)
−∇ · s + γ = Pr − rh. (4.52)

Hence,

‖Pr − rh‖2
L2(Ω) = − (Pr − rh,∇ · s) + (γ,Pr − rh) by (4.52)

= − (Pr − rh,∇ ·Πs) + (γ,Pr − rh) by (4.12)

=(ρ− ρ
h
,Πs) + (A(z − zh),Πs) + (γ,Pr − rh) by (4.11b)

=(ρ− ρ
h
,Πs) + (z − zh, As) + (A(z − zh),Πs− s)

+ (γ,Pr − rh),

and by (4.51) we have

‖Pr − rh‖2
L2(Ω) = T0 + T1 + T2 + T3, (4.53)

where

T0 :=(ρ− ρ
h
,Πs),

T1 :=(z − zh, ε(θ)),

T2 :=(A(z − zh),Πs− s),
T3 :=(γ,Pr − rh).

We first bound T0. By using that s is symmetric and ρ−ρ
h

is anti-symmetric we have

T0 = (ρ− ρ
h
,Πs− s) ≤ C h ‖ρ− ρ

h
‖L2(Ω)‖s‖H1(Ω) ≤ C h ‖ρ− ρ

h
‖L2(Ω)‖Pr − rh‖L2(Ω),

(4.54)
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where we used ‖s‖H1(Ω) ≤ C ‖θ‖H2(Ω) and (4.49).
By using (4.13), the fact that ‖s‖H1(Ω) ≤ C ‖θ‖H2(Ω), and (4.49) we get

T2 ≤ C h ‖z − zh‖L2(Ω)‖s‖H1(Ω) ≤ C h ‖z − zh‖L2(Ω)‖Pr − rh‖L2(Ω). (4.55)

If we let η = (∇θ − (∇θ)t)/2 we see that

T1 =(z − zh,∇θ) − (z − zh,η)

= − (∇ · (z − zh), θ) − (z − zh,η −Pη) by (4.11f)

= − (σ − σh, θ) − (σh −∇ · zh, θ) − (z − zh,η − Pη)

= − (σ − σh,∇w) − t̂2(σ − σh,γ)

− (σh −∇ · zh, θ − Pθ) − (z − zh,η −Pη) by (4.48) and (2.2c)

=(∇ · (σ − σh), w) − ((Pr − rh) − (Pq − qh),Pγ)

− t̂2(σ −σh,γ − Pγ) − (σh −∇ · zh, θ − Pθ)
− (z − zh,η − Pη) by (4.11d)

=T4 − T3 + T5 + T6 + T7 + T8,

where

T4 :=(∇ · (σ −σh), w),

T5 :=(Pq − qh,Pγ),

T6 :=− t̂2(σ − σh,γ − Pγ),

T7 :=− (σh −∇ · zh, θ −Pθ),

T8 :=− (z − zh,η − Pη).

Hence,
T1 + T3 = T4 + T5 + T6 + T7 + T8. (4.56)

We now bound Ti for 4 ≤ i ≤ 8.
Since ∇ · (σ − σh) = f − Pf we have

T4 =(f − Pf, w − Pw) ≤ Ch1+`k ‖f − Pf‖L2(Ω) ‖w‖H2(Ω)

≤Ch1+`k ‖f − Pf‖L2(Ω) ‖Pr − rh‖L2(Ω), (4.57)

where `k = 0 if k = 0 and `k = 1 if k ≥ 1. Here we used (4.49).
By the definition of P we have

T5 = (Pq − qh,γ).

Therefore,

T5 = (Pq − qh, curl (m)) = (Pq − qh, curl (m − I m)),

where we used curl (Im) ∈ Σh ∩Qh, the definition of P and (4.11a).
Then, using integration by parts we get

T5 =(Pr − rh, curl (m − I m)) + ((Pq − qh) − (Pr − rh), curl (m − I m))

=(curl (Pr − rh), m − I m) + 〈(Pr − rh) · t, m− I m〉
+ ((Pq − qh) − (Pr − rh), curl (m − I m)).
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Using Lemma 4.17, Lemma 4.3 and (4.39) we have

T5 ≤C h(‖z − zh‖L2(Ω) + ‖s− sh‖L2(Ω))‖m‖H1(Ω)

+ C h
1

t̂
‖(Pq − qh) − (Pr − rh)‖L2(Ω) t̂‖m‖H2(Ω),

and using (4.50) we obtain

T5 ≤ Ch(‖z−zh‖L2(Ω) +‖ρ−ρ
h
‖L2(Ω) +

1

t̂
‖(Pq−qh)− (Pr−rh)‖L2(Ω))‖(Pr−rh)‖L2(Ω).

(4.58)
By using (4.33) and the definition of P we have

T6 = −t̂2(σ − ΠSσ̃,γ − Pγ) ≤ C h t̂‖σ − ΠSσ̃‖L2(Ω)t̂‖γ‖H1(Ω).

By (4.49), (4.46) and using that t̂ is bounded we have

T6 ≤ C h (t̂‖σ − ΠSσ‖L2(Ω) + ‖f − P f‖H−1(Ω))‖Pr − rh‖L2(Ω). (4.59)

To estimate T7 we use that ∇ · zh ∈ Qh and the definition of P to get

T7 = −(σh − v, θ − Pθ) ≤ C h1+`k ‖σh − v‖L2(Ω)‖θ‖H2(Ω),

for any v ∈ Qh. Hence, using Proposition 4.10 and (2.2e) we get

T7 ≤ C h2+`k ‖Pf−P k−1 f‖L2(Ω)‖Pr−rh‖L2(Ω) ≤ C h2+`k ‖f−P k−1 f‖L2(Ω)‖Pr−rh‖L2(Ω),
(4.60)

where we used that P k−1 = PP k−1 and P is L2 stable. Finally, since ‖η‖H1(Ω) ≤ ‖θ‖H2(Ω)

and (4.49) we have

T8 ≤ C h ‖z − zh‖L2(Ω)‖Pr − rh‖L2(Ω). (4.61)

Combining (4.57), (4.58), (4.59), (4.60), (4.61), and (4.56) we get

T1 + T3 ≤C h (‖z − zh‖L2(Ω) + ‖ρ− ρ
h
‖L2(Ω))‖Pr − rh‖L2(Ω)

+ C h
1

t̂
‖(Pq − qh) − (Pr − rh)‖L2(Ω) ‖Pr − rh‖L2(Ω)

+ C h (h`k ‖f − P f‖L2(Ω) + h1+`k ‖f − P k−1 f‖L2(Ω))‖Pr − rh‖L2(Ω)

+ C h (t̂‖σ − ΠSσ‖L2(Ω) + ‖f − P f‖H−1(Ω))‖Pr − rh‖L2(Ω).

Combining this inequality with (4.54), (4.55) and (4.53) we get

‖Pr − rh‖L2(Ω) ≤C h (‖z − zh‖L2(Ω) + ‖ρ− ρ
h
‖L2(Ω))

+ C h
1

t̂
‖(Pq − qh) − (Pr − rh)‖L2(Ω)

+ C h (h`k ‖f − P f‖L2(Ω) + h1+`k ‖f − P k−1 f‖L2(Ω))

+ C h (t̂‖σ − ΠSσ‖L2(Ω) + ‖f − P f‖H−1(Ω)).

We complete the proof if we use Theorem 4.7. �
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5. Post-processing

Here we present a post-processing approximation for the transverse displacement and
the rotation. They are motivated by the good results we obtained in [15] for the biharmonic
problem. The main reason post-processing works well is that local averages (or projections)
of some errors converge faster than the error itself for these methods; see Corollary 4.12. In
the next section we present the numerical convergence properties of the new approximation.

We first need to define the following space

P
`,m
⊥ (K) := {v ∈ P

`(K) : (v, ω)K = 0 for all ω ∈ P
m(K)}.

We also need the vector-valued space P
`,m
⊥ = [P`,m

⊥ (K)]2.
In order to define the post-processed approximation to u we need to define a post-

processed approximation to r. It is defined in the following way.
We define r?

h|K ∈ P
k+1(K) as the solution to

(∇r?
h,∇v)K =(Azh + ρ

h
,∇v)K for all v ∈ P

k+1,0
⊥ (K), (5.62a)

(r?
h,w)K =(rh,w)K for all w ∈ P

0(K), (5.62b)

for all K ∈ Th.
Finally, we can define u?

h, the post-processed approximation to u. We define u?
h|K ∈

Pk+2(K) locally by

(∇u?
h,∇v)K =(r?

h − t̂2σh,∇v)K for all v ∈ P
k+2,0
⊥ (K), (5.63a)

(u?
h, w)K =(uh, w)K for all w ∈ P

0(K), (5.63b)

for all K ∈ Th.
Note that ∇u = r − t̂2σ, and therefore it makes sense to define u?

h as above. It is
easy to prove that r?

h and u?
h are well defined; see for example [15]. Moreover, following for

example [15], we can prove the following result if we use Corollaries 4.8 and 4.12.

Theorem 5.1. If Ω is convex we have for any 1 ≤ r0 ≤ k + 1 and 0 ≤ r1, r2, r3 ≤ k + 1

‖r − r?
h‖L2(Ω) ≤ C h(hr0 ‖r‖H1+r0 (Ω) + t̂hr1 ‖σ‖Hr1(Ω) + h1+r2 ‖σ‖Hr2(Ω) + h`k+r3 ‖f‖Hr3 (Ω)),

where `k = 0 if k = 0 and `k = 1 if k ≥ 1.

6. Numerical Experiments

In this section we provide numerical experiments in the case of k = 1 of our method to
test the robustness of the method for t small. We take the semi-infinite plate example given
in [7]. However, we only consider the solution on Ω = [0, 1]× [0, 1]. Hence, we will not have
zero boundary conditions. Our method can easily be adapted to handle non-homogeneous
boundary conditions. We choose ν = 0, E = 12, λ = 6, t = 10−6 and the right-hand side
will be f = cos x. The solution u, r = (r1, r2) are given by

u(x, y) =
(

1 + λ−1t2 − e−y + l1(2λ
−1t2 + y)e−y − l2λ

−1t2e−y
)

cosx

r1(x, y) =
(

−1 + e−y − l1ye−y + l2λ
−1t2e−y − l3λ

−1t
√

12 + t2 e−
√

12+t2y/t
)

sinx

r2(x, y) =
(

e−y + l1(1 − y)e−y + l2λ
−1t2e−y − l3λ

−1t2e−
√

12+t2y/t
)

cosx
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with

l1 =(−
√

12 + t2 λ −
√

12 + t2 t2 + t3)/m

l2 = −
√

12 + t2 λ/m

l3 = − λ t/m

m =
√

12 + t2 λ + 2β t2 − 2t3.

The other variables can be found by differentiating and algebraic manipulations. We note
that the problem has a boundary layer along the line y = 0 for t small. A thorough
discussion on boundary layers of the Reissner-Mindlin plate problem can be found in [8, 9].
The i-th mesh in our computation is a uniform mesh with mesh size h = 1

2i , see Figure 1
for an example.

Figure 1. Mesh 3, h = 1
23

As we see from Table 1 the L2-norms of the errors converge with optimal order k+1 for
all variables except σ which converges with order k. From Table 2 we see that ‖u−u?

h‖L2(Ω)

and ‖r− r?
h‖L2(Ω) converge much faster than ‖u−uh‖L2(Ω) and ‖r− rh‖L2(Ω), respectively.

This is exactly the behavior we observed for the biharmonic problem as well. Finally, in
Table 3 we measure ‖Iσ − σh‖L∞(Ω) where I is the Lagrange interpolant onto piece-wise
linear functions. We see that the error measured in the max-norm does not decrease with
the mesh size. The reason for this is that σ has a sharp layer near the boundary y = 0
since t is small. However, notice that the approximation in the L2-norm of σ given Table
1 does not deteriorate.

7. Different Spaces

Here we show that it is possible to use other spaces. The idea is to choose Qh×Ah ×Zh

as stable spaces for elasticity with weakly imposed symmetry. In other words, they need
to satisfy the statement of Proposition 2.2. Then, one chooses Wh × Σh as stable spaces
for the Poisson problem. Finally, one needs to link them with the following condition

{v ∈ Σh : ∇ · v = 0} ⊂ Qh. (7.64)
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Table 1. History of convergence, k = 1

mesh ‖u − uh‖L2(Ω) ‖q − qh‖L2(Ω) ‖r− rh‖L2(Ω) ‖ρ− ρ
h
‖L2(Ω) ‖z − zh‖L2(Ω) ‖σ − σh‖L2(Ω)

i error order error order error order error order error order error order

1 .34e-2 0.00 .68e-2 0.00 .68e-2 0.00 .36e-2 0.00 .10e-1 0.00 .84e-1 0.00

2 .87e-3 1.96 .17e-2 1.96 .17e-2 1.96 .10e-2 1.85 .27e-2 1.92 .49e-1 0.77
3 .22e-3 1.99 .44e-3 1.99 .44e-3 1.99 .26e-3 1.97 .68e-3 1.96 .27e-1 0.89

4 .55e-4 2.00 .11e-3 2.00 .11e-3 2.00 .65e-4 1.99 .17e-3 1.98 .14e-1 0.94
5 .14e-4 2.00 .28e-4 2.00 .28e-4 2.00 .16e-4 2.00 .44e-4 1.99 .71e-2 0.97

6 .34e-5 2.00 .69e-5 2.00 .69e-5 2.00 .41e-5 2.00 .11e-4 2.00 .36e-2 0.98

Table 2. History of convergence of post-processed approximations

mesh ‖u − u?
h‖L2(Ω) ‖r− r?

h‖L2(Ω)

i error order error order

1 .53e-4 0.00 .89e-3 0.00

2 .37e-5 3.86 .12e-3 2.93
3 .24e-6 3.95 .15e-4 2.97

4 .15e-7 3.98 .19e-5 2.99
5 .95e-9 3.99 .23e-6 2.99

6 .62e-10 3.93 .29e-7 3.00

Table 3. History of convergence of σ in the max-norm

mesh ‖Iσ − σh‖L∞(Ω)

i error

1 .84e+0

2 .84e+0
3 .84e+0

4 .84e+0
5 .84e+0

6 .84e+0

To be more precise the following result holds.

Theorem 7.1. Suppose that Qh × Ah × Zh are stable spaces for elasticity with weakly

imposed symmetry and suppose that Wh ×Σh are stable spaces for the Poisson problem. If

(7.64) holds, then the method (2.2) with such spaces is well-defined.

This result can be proved similar to Theorem 2.3.
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7.1. Other Examples. Example of spaces that lead to a well-defined method are the
following with k ≥ 1

Wh :={w ∈ L2(Ω) : w|K ∈ P
k−1(K), for all K ∈ Th},

Qh :={m ∈ L2(Ω) :m|K ∈ P
k−1(K), for all K ∈ Th},

Σh :={v ∈H(div , Ω) : v|K ∈ RT k−1(K) for all K ∈ Th},

Zh :={s ∈H(div , Ω) : s|K ∈ P
k(K) + Ẑ

k
(K) for all K ∈ Th},

Ah :={η ∈ L2(Ω) : η|K ∈ Ak(K), for all K ∈ Th}.
The triple Qh × Ah × Zh are stable spaces for elasticity with weakly imposed symmetry
as shown in [29] for the the case k = 1 and in general in [31]. Moreover, Wh ×Σh is simply
the Raviart-Thomas spaces for Poisson’s problem. By Proposition 2.1 we see that (7.64)
holds.

Another set of spaces are (k ≥ 2)

Wh :={w ∈ L2(Ω) : w|K ∈ P
k−2(K), for all K ∈ Th},

Qh :={m ∈ L2(Ω) :m|K ∈ P
k−1(K), for all K ∈ Th},

Σh :={v ∈H(div , Ω) : v|K ∈ P
k−1(K) for all K ∈ Th},

Zh :={s ∈H(div , Ω) : s|K ∈ P
k(K) + Ẑ

k
(K) for all K ∈ Th},

Ah :={η ∈ L2(Ω) : η|K ∈ Ak(K), for all K ∈ Th}.
In this example Wh ×Σh is the Brezzi-Douglas-Marini pair [14] for Poisson’s problem and
(7.64) holds trivially.

It is not difficult to carry out the error analysis of the resulting methods. For exam-
ple, Theorem 4.7 holds for these methods. Of course, now the projections have changed
according to the new spaces.

8. Concluding Remarks

We have developed a family of locking-free methods (one for each k ≥ 0) for the
Reissner-Mindlin problem. Based on the hybrid form, the only globally coupled degrees of
freedom are those of the rotations and displacement on the edges of the triangulation; see
(3.9). We should mention that the low-order non-conforming methods in [18, 22, 34] also
only have edge degrees of freedom for the rotations and displacement. It would be inter-
esting to see if there are connections between our family of methods and non-conforming
methods in the way mixed methods for the Poisson problem have been related to non-
conforming methods for Poisson’s problem; see [3] for example.

9. Appendix

Here we prove Theorem 3.2.

Proof. (Theorem 3.2)
We first prove that (3.9) is a well-defined problem for λh,αh. Since (3.9) is a square

system we need to show uniqueness, so we let f = 0. If we let m = λh and µ = αh and
add the two equations (3.9a) and (3.9b) we get

a(λh, λh) + 2 b(λh,αh) + c(αh,αh) = 0.
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Using the definition of the bilinear forms a, b, c, this gives exactly

‖Z1(λh) + Z2(αh)‖2
L2(Ω;A) + t̂2‖S1(λh) + S2(αh)‖2

L2(Ω) = 0,

which in turn gives us that

Z1(λ̃h) + Z2(α̃h) = 0. (9.65)

and

S1(λ̃h) + S2(α̃h) = 0. (9.66)

Next we show that R1(λh) + R2(αh) and L1(λh) + L2(αh) are identically zero. Indeed,
by (3.6b), (3.7b) (9.65) we have that

(R1(λ̃h) + R2(α̃h),∇ · s) + (L1(λ̃h) + L2(α̃h), s) = 〈α̃h, sn〉, (9.67)

for all s ∈ Z̃h . In particular, for s ∈ Zh we have

(R1(λ̃h) + R2(α̃h),∇ · s) + (L1(λ̃h) + L2(α̃h), s) = 0.

Applying Proposition (2.2) with w = R1(λ̃h) + R2(α̃h) and ζ = L1(λ̃h) + L2(α̃h) we
have that R1(λh) + R2(αh) and L1(λh) + L2(αh) are identically zero. Therefore, we have

〈αh, sn〉 = 0,

for all s ∈ Z̃h . Since Z̃h contains the Raviart-Thomas space we can use the degrees
of freedom of the Raviart-Thomas space for k ≥ 1 to show that αh = 0. However, for
k = 0 we need to use the degrees of freedom of all of Z̃h . Let us describe them here. Let

s ∈ RT 0(K) + Ẑ
0
(K). Then, s is determined by the average of sn · t on each edge of K

and by the average and first moment of sn · n on each edge of K; see [10]. Also, we can
write

0 = 〈αh, sn〉 = 〈αh · n, sn · n〉 + 〈αh · t, sn · t〉.
By the definition of M h (for k = 0) αh ·t is constant on edges and αh ·n is linear on edges,
hence, we can choose s ∈ Z̃h appropriately to prove that αh = 0.

We now only need to show that λh = 0. To this end, we first note that by (3.6d) and
(3.7d)

(Q1(λh) + Q2(αh),d) = 0,

for all d ∈ Qh. Here we used that R1(λh) + R2(αh) = 0 and (9.66). This implies that
Q1(λh) + Q2(αh) = 0 which combined with (3.6a) and (3.7a) gives that

(u1(λh) + u2(αh),∇ · v) = 〈λh,v · n〉,
for all v ∈ Σ̃h. Using the degrees of freedom of the Raviart-Thomas space Σ̃h we can easily
show that λh = 0. Hence we have proved that (3.9).

Next we assume λh,αh solve (3.9) and that uh, qh, rh,ρh
, zh,σh are given by (3.10).

We then will show that (uh, qh, rh,ρh
, zh,σh, λh,αh) solves (3.5). To this end, using the

definition of the local solvers, we easily can show that (uh, qh, rh,ρh
, zh,σh, λh,αh) satisfies

(3.5a)-(3.5f). Hence, by the uniqueness of (3.5) it is enough to show that

〈σh · n, µ〉 =0,

〈zh n,µ〉 =0,
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for all µ,µ ∈ Mh ×M h. Therefore, if λh,αh solves (3.9) we need to show that

〈(S1(λh) + S2(αh) + S3(f)) · n, µ〉 =0,

〈(Z1(λh) + Z2(αh) + Z3(f)) n,µ〉 =0.

for all µ,µ ∈ Mh ×M h.
This in turn follows from the following identities

〈S3(f) · n, µ〉 =(f, u1(µ)), (9.68a)

〈Z3(f)n,µ〉 = − (f, u2(µ)), (9.68b)

〈S1(m) · n, µ〉 = − (Z1(m),Z1(µ)) − t̂2(S1(m),S1(µ)), (9.68c)

〈Z2(µ)n, l〉 =(Z2(µ),Z2(r)) + t̂2(S2(µ),S2(l)), (9.68d)

〈S2(µ) · n, µ〉 = − (Z2(µ),Z1(µ)) − t̂2(S2(µ),S1(µ)), (9.68e)

〈Z1(µ)n,µ〉 =(Z2(µ),Z1(µ)) + t̂2(S2(µ),S1(µ)), (9.68f)

which hold for all m, µ ∈ Mh and µ, r ∈Mh.
Since the proof of the above identities are similar we only prove (9.68a), (9.68c) and

(9.68e). To this end, we first note that by Proposition 2.1 we have that

S1(m), S2(µ) ∈ Σh ∩Qh. (9.69)

Then,

(f, u1(µ)) =(u1(µ),∇ · S3(f)) by (3.8e)

= − (Q1(µ),S3(f)) + 〈µ,S3(f) · n〉 by (3.6a)

= − (R1(µ),S3(f)) − (Q1(µ) − R1(µ),S3(f)) + 〈µ,S3(f) · n〉
= − (R1(µ),∇ · Z3(f)) + t̂2(S1(µ),PS3(f)) + 〈µ,S3(f) · n〉 by (3.8c), (3.6d)

=(AZ1(µ),Z3(f)) + (L1(µ),Z3(f))

+ t̂2(S1(µ),S3(f)) + 〈µ,S3(f) · n〉 by (3.6b), (9.69)

= − (R3(f),∇ · Z1(µ)) − (L3(f),Z1(µ))

+ t̂2(S1(µ),S3(f)) + 〈µ,S3(f) · n〉 by (3.8b), (3.8f)

= − (R3(f),S1(µ)) + t̂2(S1(µ),S3(f)) + 〈µ,S3(f) · n〉 by (3.6c), (3.6f)

= − (Q3(f),S1(µ)) + 〈µ,S3(f) · n〉 by (3.8d), (9.69)

=(u3(f),∇ · S1(µ)) + 〈µ,S3(f) · n〉 by (3.6c)

=〈µ,S3(f) · n〉. by (3.6e)

This proves (9.68a).
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Also,

(AZ1(m),Z1(µ)) = − (R1(µ),∇ · Z1(m)) − (L1(µ),Z1(m)) by (3.6b)

= − (R1(µ),S1(m)) by (3.6c), (3.6f)

= − (Q1(µ),S1(m)) − t̂2(S1(µ),S1(m)) by (3.6d), (9.69)

=(u1(µ),∇ · (S1(m))) − t̂2(S1(µ),S1(m))

− 〈µ,S1(m) · n〉 by (3.6a)

= − t̂2(S1(µ),S1(m)) − 〈µ,S1(m) · n〉. by (3.6e)

This proves (9.68c).
Next we prove (9.68e).

(AZ2(µ),Z1(µ)) = − (R1(µ),∇ · Z2(µ)) − (L1(µ),Z2(µ)) by (3.6b)

= − (R1(µ),S2(µ)) by (3.7c), (3.7f)

= − t̂2(S1(µ),S2(µ))

+ (u1(µ),∇ · S2(µ)) − 〈µ,S2(µ) · n〉 by (3.6a), (3.6d), (9.69)

= − t̂2(S1(µ),S2(µ)) − 〈µ,S2(µ) · n〉 by (3.7d).

This proves (9.68e). This completes the proof of the theorem.
�
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