
IMA Journal of Numerical Analysis (2013) Page 1 of 18
doi:10.1093/imanum/drnxxx

Conforming and divergence-free Stokes elements in three dimensions
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Conforming finite element pairs for the three-dimensional Stokes problem on general simplicial triangu-
lations are constructed. The pressure space simply consists of piecewise constants, where as the velocity
space consists of cubic polynomials augmented with rational functions. We show the existence of a
bounded Fortin projection and therefore the necessary LBB condition is satisfied. In addition the diver-
gence operator maps the velocity space into the space of piecewise constants. Consequently, the method
produces exactly divergence-free velocity approximations.
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1. Introduction

In this paper we construct three dimensional Stokes finite elements VVV h×Wh with no-slip boundary conditions
on general triangulations with the following desirable properties:

1) The pair VVV h×Wh is inf-sup stable, i.e., the LBB condition

inf
w∈Wh

sup
vvv∈VVV h

(divvvv,w)
‖vvv‖H1(Ω)‖w‖L2(Ω)

> β (1.1)

is satisfied for a constant β > 0 independent of h.

2) The finite element pair is conforming. In particular, the discrete velocity space satisfies the inclusion
VVV h ⊂ HHH1

0(Ω) := [H1
0 (Ω)]3.

3) Discretely divergence-free functions are exactly divergence-free point wise:

Zh,0 :=
{

vvv ∈VVV h : (divvvv,q) = 0 ∀q ∈Wh
}
=
{

vvv ∈VVV h : divvvv = 0
}
. (1.2)

Here, (·, ·) denotes the L2 inner product over the domain Ω ⊂ R3.
It is easy to see that property (3) implies that the resulting velocity approximations are exactly incom-

pressible, i.e., conservation of mass is maintained. Numerical conservation of mass has been shown to be a
crucial factor with respect to stability and accuracy for a variety of problems (Linke, 2008; Diening et al.,
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2012; Auricchio et al., 2010). In particular, it is well-known that rotation-free forcing terms can be con-
structed such that the velocity approximations suffer from significantly large divergence errors, leading to
large spurious oscillations of the solution (Galvin et al., 2012; Olshanskii & Reusken, 2004). Recent numer-
ical experiments in (Linke, 2008; Galvin et al., 2012) show that this phenomenon is not limited to simple
academic examples, but occurs in physically-relevant flow problems.

The theoretical justification of the importance of mass conservation is simple to formulate. Namely, if
a stable finite element pair satisfies (1)–(2) but not (3), then the resulting abstract error estimates show that
the velocity and pressure errors are coupled

‖uuu−uuuh‖H1(Ω) 6C
(

inf
vvv∈VVV h
‖uuu− vvv‖H1(Ω)+ν

−1 inf
p∈Wh
‖p− ph‖L2(Ω)

)
.

Here, ν denotes the kinematic viscosity of the fluid and C is a positive constant depending only on the
parameter β appearing in the inf-sup condition. Note that velocity error deteriorates globally as the viscosity
tends to zero and if the pressure gradient is of order O(1). Translating this result to the Navier-Stokes
problem, we see that such finite element pairs are not robust for problems with large Reynolds numbers and
large pressure gradients. On the other hand, if a finite element pair satisfies the three conditions above, then
the resulting velocity error is decoupled and simply reads

‖uuu−uuuh‖H1(Ω) = inf
vvv∈ZZZh,0

‖uuu− vvv‖H1(Ω),

where the discrete space of divergence-free functions ZZZh is defined in condition (3). Although the above
estimate may still depend on the viscosity (since high-order norms of uuu may depend on ν), the dependence
is local.

The construction of elements satisfying conditions (1)-(3) has been a challenge for general triangulations
in both two and three dimensions. Starting with the classical work of Scott and Vogelius (Scott & Vogelius,
1985), several elements have been constructed assuming certain restrictions on the triangulations (Scott &
Vogelius, 1985; Arnold & Qin, 1992; Zhang, 2005, 2008). For example, the two-dimensional Scott-Vogelius
element PPPc

k−Pdc
k−1 is stable only if k > 4 and the triangulation does not contain any singular vertices, i.e.,

vertices that lie on exactly two straight lines. Arnold & Qin (1992) later showed that the Scott-Vogelius
element is stable for k > 2 if the triangulation is obtained by a global barycenter refinement, and Zhang
(2005) has recently extended this result to three dimensions (where the restriction is then k > 3). A full
theory of the Scott-Vogelius elements in three dimensions is still open. Recently, we have constructed finite
element pairs that satisfy conditions (1)–(3) on general triangulations in two dimensions (Guzmán & Neilan,
2013). These spaces are obtained by enriching HHH(div ;Ω)-conforming elements locally with rational shape-
functions. Falk and the second author have constructed two dimensional elements satisfying (1)-(3) using
purely polynomial basis functions (Falk & Neilan, 2013). For problems with Dirichlet boundary conditions,
the elements in (Falk & Neilan, 2013) impose a mild restriction only on triangles that touch the corners
of the polygonal domain. Several papers have constructed elements satisfying (1)-(3) using splines and
IsoGeometric analysis on rectangular meshes (Evans & Hughes, 2012a,b; Buffa et al., 2011a,b).

Finally, several elements have been developed for the Stokes-Brinkman problem that satisfy (1) and (3)
but relax the conformity condition (2) (Tai & Winther, 2006; Guzmán & Neilan, 2012; Xie et al., 2008;
Mardal et al., 2002). These elements are HHH(div ;Ω)-conforming but are not HHH1(Ω)-conforming. In order
to impose some degree of continuity in the tangential direction on interfaces, standard polynomial basis are
augmented on each simplex by divergence-free polynomials with vanishing normal components. In fact, the
elements constructed here and in (Guzmán & Neilan, 2013) are similar, but we instead augment the local
spaces with divergence-free rational functions that have vanishing normal components. A related idea is to
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use HHH(div ;Ω)-conforming elements and penalize their tangential jumps (see (Wang & Ye, 2007; Cockburn
et al., 2007)) in the variational formulation.

As far as we are aware, the Stokes elements constructed in this paper are the first pair satisfying condi-
tions (1)–(3) on general simplicial triangulations in three dimensions. The pressure space Wh is simply the
space of piecewise constants and the velocity space VVV h consists of piecewise cubic polynomials enriched
with rational functions. The local dimension of the velocity space is 60, i.e, 60 degrees of freedom are
needed on each tetrahedron to unique determine a velocity function. However, we show that there exists a
reduced element with the same pressure space and a local velocity space with only sixteen degrees of free-
dom per simplex. The degrees of freedom of the lowest order element are simply vertex degrees of freedom
(three per vertex) and the average of normal components on faces (one degree of freedom per face). Note
that these are the same degrees of freedom as the Bernardi-Raugel elements (Bernardi & Raugel, 1985),
and therefore the two finite element spaces have the same dimension. Similar to the two-dimensional set-
ting, we use rational divergence-free basis functions associated to each face of a tetrahedron, but it addition,
we also require rational divergence-free functions associated to each edge. The basis functions associated
to faces is an exact generalization of basis functions used in our two-dimensional elements. The reduced
elements clearly have a relatively small number of degrees of freedom. However, due to their complexity,
the practical significance of the proposed elements may be questionable. Nonetheless, we believe that their
construction and theory may shed new light onto the derivation of simpler conforming and divergence-free
Stokes elements.

Here is the organization of the paper. In the next section, we set the notation and assumptions and define
the rational functions. In Section 3 we describe the local finite element pair, and in Section 4 we define the
global pair and their approximation properties. In Section 5 we construct the reduced elements and derive
analogous approximation results. Also in Section 5, we present different pairs of Stokes elements in any
dimension by using the Bogovskii operator locally to construct the basis functions. We apply the elements
to the Stokes problem in Section 6, where standard techniques are used to derive optimal order convergence
results. An appendix is given at the end of the paper where some technical results are reported.

2. Notation and Preliminaries

Given a set D⊂Ω , we denote by Hm(D) (m> 0) the Sobolev space consisting of all L2(D) functions whose
distributional derivatives up to order m are in L2(Ω), and Hm

0 (D) to denote the set of functions whose traces
vanish up to order m−1 on ∂D. We then set the corresponding vector Sobolev spaces as HHHm(D) = (Hm(D))3

and HHHm
0 (D) = (Hm

0 (D))3, and define the space of square integrable with vanishing mean as L2
0(D). The L2

inner product over a three dimensional (resp., one or two dimensional) set D is denoted by (·, ·)D (reps.,〈
·, ·
〉

D). In the case D = Ω , we set (·, ·) := (·, ·)Ω and
〈
·, ·
〉

:=
〈
·, ·
〉

∂Ω
. We shall also use the Sobolev spaces

HHH(div ;D) =
{

vvv ∈ LLL2(D) : divvvv ∈ L2(D)
}
,

HHH0(div ;D) =
{

vvv ∈ HHH(div ;D) : vvv ·nnn|∂D = 0
}
,

HHH(curl ;D) =
{

vvv ∈ LLL2(D) : curlvvv ∈ L2(D)
}
,

where nnn denotes the outward normal of the boundary ∂D.
For a given tetrahedron S and m > 0, the vector-valued polynomials are defined as PPPm(S) = [Pm(S)]3,

where Pm(S) is the space of polynomials defined on S of degree less than or equal to m. We also set Pm(S) and
PPPm(S) to be the empty set for any negative valued m. Let Th be a shape-regular tetrahedral decomposition
of Ω (Ciarlet, 1978; Brenner & Scott, 2008) with hT = diam(T ) for all T ∈ Th and h = maxT∈Th hT . Given
T ∈Th the barycentric coordinates are given by {λi}4

i=1 and are labeled such that λi vanishes on face Fi⊂ ∂T .



4 of 18 J. GUZMÁN AND M. NEILAN

We also denote by {xi}4
i=1 the four vertices of T with λi(x j) = δi j, and by ei, j the edge with ei, j = ∂Fi∩∂Fj.

We note that ei, j = e j,i. The volume bubble, face bubbles, and edge bubbles are defined respectively as

bT := λ1λ2λ3λ4 ∈ P4(T ), bi := ∏
j 6=i

λ j ∈ P3(T ), bi, j := ∏
k 6=i
k 6= j

λk ∈ P2(T ). (2.1)

By construction, the bubble functions satisfy the following properties:

bT
∣∣
∂T = 0,

∂bT

∂nnni

∣∣
Fi
= aFibi, bi

∣∣
∂T\Fi

= 0, (2.2a)

bi
∣∣
Fi
> 0, bi, j

∣∣
∂T\(Fi∪Fj)

= 0, bi, j
∣∣
Fi∪Fj

> 0, (2.2b)

where

aFi :=−|∇λi| 6= 0, (2.3)

and nnni denotes the outward unit normal of Fi.
We will also define the rational face bubble functions (i = 1,2,3,4)

Bi =


bT bi

(λi +λi+1)(λi +λi+2)(λi +λi+3)
for 06 λi 6 1, 06 λi+1,λi+2,λi+3 < 1,

0 otherwise

Here and throughout an index j of a barycentric coordinate will be calculated using the formula 1+( j−
1 mod 4). The rational face bubble functions are a three dimensional analogue of the rational edge bubbles
used in the construction of the singular Zienkiewicz triangle (Zienkiewicz, 1971; Ciarlet, 1978), and they
inherit similar properties as shown in the following lemma.

LEMMA 2.1 There holds

Bi ∈C2(T ), Bi
∣∣
∂T = 0, ∇Bi(x j) = 0 ( j = 1,2,3,4), (2.4a)

∇Bi
∣∣
∂T\Fi

= 0,
∂Bi

∂nnni

∣∣
Fi
= aFibi, ∇Bi

∣∣
Fi
∈ PPP3(Fi). (2.4b)

Proof. We first show BFi ∈C2(T ). Since this property is invariant under affine transformations it suffices to
show that the function

B̂(x) :=


x1x2

2x2
3(1− x1− x2− x3)

2

(x1 + x2)(x1 + x3)(1− x2− x3)
x 6= 0,

0 otherwise

is C2(T ) in the case T is the unit simplex with vertices (0,0,0), (1,0,0), (0,1,0), and (0,0,1). This property
will follow if we show that B̂(x) is C2 at the origin. Write B̂(x) = ĝ(x)ŝ(x), with

ĝ(x) =


x1x2

2x2
3

(x1 + x2)(x1 + x3)
x 6= 0,

0 otherwise

and ŝ(x) =
(1− x1− x2− x3)

2

(1− x2− x3)
.



STOKES ELEMENTS ON TRIANGULAR MESHES 5 of 18

Since ŝ(x) is well-behaved at the origin, it suffices to show that ĝ(x) is C2 at the origin. A direct calculation
gives us

∂ ĝ
∂x1

(x) =−
x2

2x2
3(x

2
1− x2x3)

(x1 + x2)2(x1 + x3)2 ,

and therefore since xi > 0, we have

lim
x→0

∣∣∣∣ ∂ ĝ
∂x1

(x)
∣∣∣∣6 lim

x→0
|x2

1− x2x3|= 0.

Similar arguments show that limx→0

∣∣∣ ∂ ĝ
∂x2

(x)
∣∣∣ = 0 and limx→0

∣∣∣ ∂ ĝ
∂x3

(x)
∣∣∣ = 0 as well. It then follows that

ĝ(x) ∈C1(T ). Next, we have

∂ 2ĝ
∂x2

1
(x) =

2x2
2x2

3(x
3
1−3x1x2x3− x2x2

3− x2
2x3)

(x1 + x2)3(x1 + x3)3 .

Noting that

x2
2x2

3x3
1

(x1 + x2)3(x1 + x3)3 6
4x2

2x2
3x3

1

(x3
1 + x3

2)(x
3
1 + x3

2)
6

4x2
2x2

3x3
1

x3
1(x

3
2 + x3

3)
6 2(x2x3)

1/2,

x1x3
2x3

3
(x1 + x2)3(x1 + x3)3 6 x1, and

x4
2x3

3
(x1 + x2)3(x1 + x3)3 6 x2,

we obtain limx→0
∂ 2ĝ
∂x2

1
(x) = 0. Similar arguments show limx→0

∂ 2ĝ
∂xi∂x j

(x) = 0 (i, j = 1,2). It then follows that

ĝ(x) ∈C2(T ) and therefore Bi ∈C2(T ).
Next, since bT

∣∣
∂T , we have Bi

∣∣
∂T = 0 and

∇Bi
∣∣
∂T =

∇bT bi

(λi +λi+1)(λi +λi+2)(λi +λi+3)

∣∣∣
∂T

.

Since bi
∣∣
∂T\Fi

= 0 and ∂bT/∂nnni
∣∣
Fi
= aFibi, we obtain ∇Bi

∣∣
∂T\Fi

= 0, ∂Bi/∂nnni
∣∣
Fi
= aFibi and ∇Bi

∣∣
Fi
∈ PPP3(Fi).

Finally the property ∇Bi(x j) = 0 follows from the inclusion Bi ∈C1(T ) and ∇Bi
∣∣
∂T\Fi

= 0. �

REMARK 2.1 The rational face bubbles in three dimensions inherit better regularity properties than the
analogous two dimensional edge bubbles. In particular, the rational edge bubbles in two dimensions are not
C2(T ) (cf. Ciarlet (1978); Guzmán & Neilan (2013)).

In addition to the rational face bubbles, we will also include rational edge bubbles to form the local
space of the velocity elements. To describe these functions we let i, j = {1,2, . . . ,4} with i < j and let
ei, j = ∂Fi∩∂Fj. We then set

sssi, j =
bT bi, j

2(λiλ j +bi, j(λi +λ j))(λi +λ j)

(
∇(λ 2

j −λ
2
i )+4(λi∇λ j−λ j∇λi)

)
. (2.5)

The following lemma states the crucial properties of sssi, j. The proof is contained in the appendix.
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LEMMA 2.2 For i, j ∈ {1,2, . . . ,6} and i < j. Then we have

curlsssi, j ∈CCC0(T )∩WWW 1,∞(T ), (2.6a)
curlsssi, j|∂T =bi, j(∇λi×∇λ j), (2.6b)

sssi, j|∂T =0. (2.6c)

To close this section, we recall some well-known results about some auxiliary finite element spaces
which we use in the construction and analysis in the subsequent section. First, the classical HHH(curl ;Ω)
Nedelec spaces of index k−1 (Nedelec, 1980) is given by

NNNk−1(T ) = PPPk−2(T )+
{

www ∈ PPPk−1(T ) : www · xxx = 0
}
.

The dimension of NNNk−1(T ) is
1
2
(k+1)k(k−1). Furthermore, any vector polynomial vvv ∈ PPPk(T ) is uniquely

determined by the following degrees of freedom (Nedelec, 1986):〈
vvv ·nnni,κ

〉
Fi

for all κ ∈ Pk(Fi) (i = 1,2,3,4), (2.7a)

(vvv,ρρρ)T for all ρρρ ∈ NNNk−1(T ). (2.7b)

3. The Local Space

Our local space will be a sum of three spaces: an HHH(div ;Ω)-conforming space, a space containing rational
face bubbles, and a space containing rational edge bubbles. We introduce each space and give their cor-
responding degrees of freedom. We then combine the spaces and give the degrees of freedom of the local
H1(Ω) space in Theorem 3.1 below.

First we define the following local space of divergence-free functions.

QQQm(T ) =
{

v ∈ PPPm(T ) : (vvv,ρρρ)T = 0 for all ρρρ ∈ NNNm−1(T ) and〈
vvv ·nnni,κ

〉
Fi
= 0 for all κ ∈ PPPm−1(Fi) (i = 1,2,3,4)

}
.

It is easy to see that the dimension of QQQm(T ) is 4(m+ 1). Indeed, since there are 1
2 (m+ 2)(m+ 1)(m−

1)+2m(m+1) constraints imposed in the space QQQm(T ), we have dimQQQm(T )> dimPPPm(T )− 1
2 (m+2)(m+

1)(m−1)−2m(m+1)= 4(m+1). Also, since functions in PPPm(T ) are uniquely determined by the degrees of
freedom (2.7), we see that functions qqq∈QQQm(T ) are determined by the values

〈
qqq ·nnni,κ

〉
Fi

with κ ∈ P̃PPm(Fi) :=
PPPm(Fi)\PPPm−1(Fi). Since dim P̃PPm(Fi) = m+ 1, we deduce that dimQQQm(T ) = 4(m+ 1). Furthermore by the
definition of QQQm(T ) and NNNm−1(T ), we have∫

T
divqqqvdx =−

∫
T

qqq ·∇vdx+
∫

∂T
qqq ·nnnvds = 0 ∀qqq ∈ QQQm(T ), ∀v ∈ Pm−1(T ),

and therefore divQQQm(T ) = {0}.
Next we define a local HHH(div ;Ω)-conforming space

MMM(T ) = PPP1(T )+QQQ2(T )+QQQ3(T ). (3.1)

The associated degrees of freedom of MMM(T ) are given by

vvv(xi) for all vertices xi, (3.2a)〈
vvv ·nnnk,s

〉
ei, j

for all s ∈ P1(ei, j) (i, j = 1, . . . ,4, k = i, j) (3.2b)〈
vvv ·nnni,κ

〉
Fi

for all κ ∈ P0(Fi) (i = 1, . . . ,4). (3.2c)
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LEMMA 3.1 The degrees of freedom (3.2) are unisolvent on MMM(T ).

Proof. From the definition of QQQ2(T ) and QQQ3(T ), we see that the two sums in (3.1) are direct. It then follows
that dimMMM(T ) = dimPPP1(T )+ 12+ 16 = 40 which is exactly the number of degrees of freedom given in
(3.2). Hence to prove unisolvency we assume that vvv ∈MMM(T ) and has vanishing degrees of freedom (3.2) and
show vvv≡ 0.

Using the degrees of freedom (3.2a)–(3.2c) we have that vvv · nnn vanishes on ∂T . Write vvv = vvv0 + qqq where
vvv0 ∈ PPP1(T ) and qqq ∈ QQQ2(T )+QQQ3(T ). Using the defintion of the space QQQm(T ) we have

0 =
〈
vvv ·nnn,vvv0 ·nnn

〉
∂T =

〈
vvv0 ·nnn,vvv0 ·nnn

〉
∂T .

This shows that vvv0 ·nnn = 0 on ∂T and hence we conclude that qqq ·nnn = 0 on ∂T . Again using the definition of
QQQm(T ) we have that qqq≡ 0. To finish the proof, we see that vvv0 ≡ 0 since vvv0 ·nnn vanishes on ∂T . Thus, vvv≡ 0
and so the degrees of freedom (3.2) are unisolvent on MMM(T ). �

As a next step to develop local conforming elements for the 3D Stokes problem, we introduce and study
a space consisting of rational face bubbles. The local rational face bubble space is defined by

UUU(T ) =
4

∑
i=1

UUU (i)(T ), UUU (i)(T ) = curl
(
BFiPPP0(T )×nnni

)
. (3.3)

LEMMA 3.2

(i) The dimension of UUU(T ) is eight.

(ii) Any zzz ∈UUU(T ) is uniquely determined by〈
zzz×nnnFi ,qqq×nnni

〉
Fi

for all qqq ∈ PPP0(Fi) and i = 1,2,3,4. (3.4)

(iii) Functions in UUU(T ) vanish at the degrees of freedom (3.2).

Proof. It is easy to see from (3.3) that the dimension of UUU (i)(T ) is two. Thus in order show that dimUUU(T ) =
8, it suffices to show that the sum in (3.3) is direct.

Suppose that 0 = zzz = curl(∑4
i=1 zzzi) with zzzi ∈ UUU (i), zzzi = BFi pppi × nnnFi and pppi ∈ PPP0(T ). We show that

zzzi ≡ 0 (i = 1,2,3,4). Since BFi vanishes on ∂T and ∇BFi vanishes on ∂T\Fi, we deduce that 0 = zzz
∣∣
Fi
=

∇BFi × (pppi×nnni)
∣∣
Fi
=−aFibFinnni× (pppi×nnni)

∣∣
Fi

. We then have

zzz×nnni
∣∣
Fi
=−aFibFi(pppi×nnni)

∣∣
Fi
, and zzz ·nnni

∣∣
Fi
= 0 (3.5)

on each face Fi ⊂ ∂T . Since bFi is strictly positive on Fi and zzz = 0, we conclude that pppi× nnni = 0 and so
zzz≡ 0. Therefore dimUUUk−1(T ) = 8.

Next, suppose that zzz ∈UUU(T ) vanishes at the degrees of freedom given in (3.4). As before, write zzz =
curl(∑4

i=1 zzzi) with zzzi ∈ UUU (i)
k−1, zzzi = BFi pppi× nnnFi and pppi ∈ PPP0(T ). Then the left-hand side equality in (3.5)

holds and therefore by (3.4), we have pppi×nnni
∣∣
Fi
= 0. Using the same arguments as above, we conclude that

pppi ≡ 0 and therefore zzz ≡ 0. Since there are exactly eight conditions in (3.4), it follows that the degrees of
freedom are unisolvent on UUUk−1(T ).

Finally, by Lemma 2.1 and (3.5) we see that any zzz ∈UUU(T ) vanishes at the degrees of freedom (3.2). �
The last ingredient of the local velocity space is the space of rational edge bubbles. The addition of

this space will enforce tangental continuity on each edge of the tetrahedron. To start, we define the two
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dimensional space M(i, j)(T ) = span{λk,λ`}, where the indices k, ` ∈ {1,2,3,4} are chosen such that k, ` 6=
i, k, ` 6= j, k 6= `. By properties of the barycentric coordinates, there holds M(i, j)(T )

∣∣
ei, j

= P1(ei, j). We then
set the space of rational edge bubbles to be

WWW (T ) = {
4

∑
i, j=1
i> j

curl(pi, jsssi, j) : pi, j ∈M(i, j)(T )}, (3.6)

where sssi, j is given by (2.5).

LEMMA 3.3 Let vvv ∈WWW (T ) have the form vvv = ∑
4
i, j=1i> j

curl(pi, jsssi, j). We then have

vvv|ei, j = pi, jbi, j(∇λi×∇λ j), vvv ·nnn|∂T = 0. (3.7)

Moreover, the dimension of WWW (T ) is 12, and a set of degrees of freedom that uniquely determines a function
in WWW (T ) are given by 〈

vvv · ttt i, j,s
〉

ei, j
for all s ∈ P1(ei, j). (3.8)

Here, ttt i, j is a unit vector tangent to the edge ei, j.

Proof. By the product rule and Lemma 2.2 we have

vvv|∂T =
4

∑
i, j=1
i> j

(pi, jcurl(sssi, j)+∇pi, j× sssi, j)|∂T =
4

∑
i, j=1
i> j

pi, jbi, j(∇λi×∇λ j)|∂T .

Since bi, j has support on ei, j and vanishes at the other five edges, we obtain vvv|ei, j = pi, jbi, j(∇λi×∇λ j).
Furthermore, since (∇λi×∇λ j) is orthogonal to nnni and nnn j, and since bi, j vanishes on ∂T\(Fi ∪Fj), there
holds vvv ·nnn|∂T = 0.

To show that the dimension of WWW (T ) is twelve, we show that if vvv = 0 in T , then all of the functions
pi, j ∈ M(i, j)(T ) must vanish. The assumption that vvv = 0 implies that pi, jbi, j(∇λi×∇λ j) = 0 on ei, j by
the arguments above. Since (∇λi×∇λ j) 6= 0 and bi, j > 0 on ei, j we conclude that pi, j = 0 on ei, j. Since
M(i, j)(T ) restricted to ei, j spans P1(ei, j), this condition implies pi, j = 0 on T . Since the dimension of
curl

(
sssi, jM(i, j)(T )

)
is two, we conclude that the dimension of WWW (T ) is twelve.

Finally since (∇λi×∇λ j) is parallel to ttt i, j and since vvv|ei, j = pi, jbi, j(∇λi×∇λ j)|i, j, we easily see that the
degrees of freedom (3.8) are unisolvent on WWW (T ). �

With the three separate spaces established, we are now ready to define the local velocity space. The 60
dimensional space is defined to be the sum of the three previously defined spaces, namely,

VVV (T ) = MMM(T )+UUU(T )+WWW (T ). (3.9)

LEMMA 3.4 There holds for any vvv ∈VVV (T ),

divvvv ∈P0(T ), vvv ∈CCC0(T )∩WWW 1,∞(T ), vvv|∂T ∈ PPP3(∂T ). (3.10)

Proof. By (3.9) and (3.1), and since UUU(T ) and WWW (T ) consists of divergence-free functions, we have
divVVV (T )= divMMM(T )= divPPP1(T )+divQQQ2(T )+divQQQ3(T ). Functions in QQQ2(T ) and QQQ3(T ) are also divergence-
free. Therefore since the divergence operator maps PPP1(T ) onto P0(T ), we obtain the first identity in (3.10).

The regularity result in (3.10) immediately follows from (3.9), (3.1), (3.3), (3.6), Lemma 2.1 and Lemma
2.2. Similarly, the identity vvv|∂T ∈ PPP3(∂T ) follows from Lemmas 2.1 and 2.2 and the definition of the local
finite element space. �
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THEOREM 3.1 We have dimVVV (T ) = dimMMM(T )+dimUUU(T )+dimWWW (T ) = 60. A set of unisolvent degrees
of freedom for a function vvv ∈VVV (T ) is given by

vvv(xi) for all vertices xi, (3.11a)〈
vvv,www

〉
ei, j

for all www ∈ PPP1(ei, j) and i, j = 1, . . . ,4 (3.11b)〈
vvv,www

〉
Fi

for all www ∈ PPP0(Fi) and i = 1, . . . ,4. (3.11c)

Proof. The dimension count immediately follows from the direct sum VVV (T ) = MMM(T )⊕UUU(T )⊕WWW (T ) and
Lemmas 3.1, 3.2 and 3.3.

Next, let vvv ∈VVV (T ) such that the degrees of freedom (3.11) vanish. We will argue that vvv vanishes on T to
prove unisolvency. Write

vvv = vvv1 + vvv2 + vvv3,

where vvv1 ∈MMM(T ),vvv2 ∈UUU(T ),vvv3 ∈WWW (T ). From Lemmas 3.2 and 3.3, both vvv2 and vvv3 vanish on the degrees of
freedom (3.2). Using the degrees of freedom (3.11), we have that vvv1 must vanish on the degrees of freedom
(3.2). Since vvv1 ∈MMM(T ) we conclude that vvv1≡ 0 in light of Lemma 3.1. Next, since vvv2|Fi =−aFibFi(pppi×nnni)|Fi

for some pppi ∈ PPP0(T ) (cf. (3.5)), we see that vvv2 vanishes on each edge of T (this follows from the properties
of the cubic face bubble). In particular, vvv2 · ttt i, j|ei, j = 0 for each edge ei, j of T . By (3.11b) we conclude that
vvv3 vanishes at the degrees of freedom (3.8). By Lemma 3.3, vvv3 must be identically zero. Finally by (3.11b),
we have that vvv2 vanishes on the degrees of freedom (3.4). Hence, vvv2 ≡ 0 by Lemma 3.2 and therefore vvv≡ 0.
�

4. The Global Spaces and Their Approximation Properties

Now that we have constructed the local spaces we can glue them together to form a global H1 space.

VVV h = {vvv ∈ HHH1
0(Ω) : vvv|T ∈VVV (T ), for all T ∈ Th}.

The pressure space is the space of piecewise constants with vanishing mean, i.e,

Wh = {w ∈ L2
0(Ω) : w|T ∈ P0(T ) for all T ∈ Th}.

The degrees of freedom (3.11) naturally lead us to define the (Fortin) projection Π̂ : CCC(Ω)→VVV h deter-
mined by the conditions

Π̂vvv(x) = vvv(x) for all vertices x of Th, (4.1a)〈
Π̂vvv,www

〉
e =

〈
vvv,www

〉
e for all edges e of Th and www ∈ PPP1(e), (4.1b)〈

Π̂vvv,www
〉

F =
〈
vvv,www

〉
F for all faces F of Th and www ∈ PPP0(F). (4.1c)

Theorem 3.1 ensures that Π̂ is well-defined. The projection Π̂ is not defined for all H1
0 (Ω) since requires

well-defined traces on edges and vertices. We instead use a standard modification. Let Π S : HHH1
0(Ω)→ LLLh

denote the Scott-Zhang interpolant (Scott & Zhang, 1990), where LLLh is the space of continuous piecewise
linear polynomials. We then define Π : HHH1

0(Ω)→VVV h to be the unique operator satisfying

Πvvv(x) = Π Svvv(x) for all vertices x of Th, (4.2a)〈
Πvvv,www

〉
e =

〈
Π Svvv,www

〉
e for all edges e of Th and www ∈ PPP1(e), (4.2b)〈

Πvvv,www
〉

F =
〈
vvv,www

〉
F for all faces F of Th and www ∈ PPP0(F). (4.2c)
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The following commuting property then easily follows from integration by parts and (4.2c):

divΠvvv = P0divvvv for all vvv ∈ HHH1
0(Ω), (4.3)

where P0 is the L2 projection onto Wh.

LEMMA 4.1 There exists a constant C such that for any vvv ∈ HHHs
0(Ω)

‖vvv−Πvvv‖H1(Ω) 6Chs−1‖vvv‖Hs(Ω), (4.4)

where 16 s6 2.

Proof. The proof follows the same arguments as those found in (Guzmán & Neilan, 2013).
First, denote by Π T := Π |T the local Fortin operator restricted to a single element T ∈ Th. We then

decompose the local Fortin operator as III−Π T = (III−ΠU,T )(III−ΠW,T )(III−Π M,T ) where III is the identity
operator on HHH1

0(T ), and Π M,T , ΠW,T and ΠU,T are the canonical projections associated with the local spaces
MMM(T ), WWW (T ) and UUU(T ). In particular, the projections Π M,T : HHH1

0(T )→MMM(T ), ΠW,T : HHH1
0(T )→WWW (T ) and

ΠU,T : HHH1
0(T )→UUU(T ) satisfy

Π M,T vvv(xi) = Π Svvv(xi) for all vertices xi of T,〈
(Π M,T vvv) ·nnnk,s

〉
ei, j

=
〈
(Π Svvv) ·nnnk,s

〉
ei, j

for all edges ei, j of T and s ∈ P1(ei, j) (k = i, j),〈
(Π M,T vvv) ·nnni,κ

〉
Fi
=
〈
vvv ·nnni,κ

〉
Fi

for all faces Fi of T and κ ∈ P0(Fi),〈
(ΠU,T vvv)×nnni,κ

〉
Fi
=
〈
vvv×nnni,κ

〉
Fi

for all faces Fi of T and κ ∈ P0(Fi),〈
(ΠW,T vvv) · ttt i, j,s

〉
ei, j

=
〈
(Π Svvv) · ttt i, j,s

〉
ei, j

for all edges ei, j of T and s ∈ P1(ei, j).

Using arguments found in (Arnold & Winther, 2002; Guzmán & Neilan, 2013), we find

‖vvv−Π M,T vvv‖Hm(T ) 6Chs−m
T ‖vvv‖Hs(ω(T )) ∀vvv ∈ HHHs(ω(T )), (4.5)

where ω(T ) := ∪T ′∈Th T̄∩T̄ ′ 6= /0 T ′. Moreover, by using the same arguments in (Guzmán & Neilan, 2013,
Lemma 3.3) we have

‖ΠW,T vvv‖Hm(T ) 6Ch1/2−m
T ‖vvv×nnn‖L2(∂T ) (m = 0,1). (4.6)

Next, denote by FT : T̂ → T with F(x̂) = Ax̂+ b to be the standard affine transformations, where T̂
is the reference element with vertices (0,0,0), (1,0,0), (0,1,0) and (0,0,1). Given vvv ∈UUU(T ), we define
v̂vv(x̂) = AT vvv(x), where x = FT (x̂). Under this transformation, we have

〈
v̂vv · t̂tt i, j, ŝ

〉
êi, j

=
〈
vvv · ttt i, j,s

〉
ei, j

(Monk,

2003). Therefore by Lemma 3.3, the function v̂vv is uniquely determined by the moments
〈
v̂vv · t̂tt i, j, ŝ

〉
êi, j

over

all edges êi, j of T̂ . Since these values uniquely determine v̂vv and since all norms are equivalent in a finite
dimensional setting, we have (m> 0)

‖v̂vv‖2
Hm(T̂ ) 6C

∣∣∣ 4

∑
i, j=1
i> j

sup
ŝ∈P1(êi, j)

‖ŝ‖L2(êi, j)
=1

〈
v̂vv · t̂tt i, j, ŝ

〉
êi, j

∣∣∣2.
Let ŝ∗i, j ∈ P1(êi, j) with ‖s∗i, j‖L2(êi, j)

= 1 be a function satisfying〈
v̂vv · t̂tt i, j, ŝ∗i, j

〉
ei, j

= sup
ŝ∈P1(êi, j)

‖ŝ‖L2(êi, j)
=1

〈
v̂vv · t̂tt i, j, ŝ

〉
êi, j

.
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Setting s∗i, j(x) =
√
|êi, j|/|ei, j|ŝ∗i, j(x̂) so that ‖s∗i, j‖L2(ei, j)

= 1, we have

∣∣∣ 4

∑
i, j=1
i> j

sup
ŝ∈P1(êi, j)

‖ŝ‖L2(êi, j)
=1

〈
v̂vv · t̂tt i, j, ŝ

〉
êi, j

∣∣∣2 = ∣∣∣ 4

∑
i, j=1
i> j

√
|ei, j|/|êi, j|

〈
vvv · ttt i, j,s∗i, j

〉
ei, j

∣∣∣2.
Combining these results, and replacing vvv by ΠU vvv, we obtain

‖Π̂U vvv‖2
Hm(T ) 6C

∣∣∣ 4

∑
i, j=1
i> j

√
|ei, j|/|êi, j|

〈
ΠU vvv · ttt i, j,s∗i, j

〉
ei, j

∣∣∣2

6ChT

4

∑
i=1
‖Π Svvv‖2

L2(∂Fi)
6Ch−1

T ‖Π Svvv‖2
L2(T ),

where a trace inequality was used to derive the last inequality. Consequently, by a scaling argument and the
stability properties of the Scott-Zhang interpolant we have

‖ΠU vvv‖2
H1(T ) 6Ch−1

T ‖Π̂U vvv‖2
L2(T̂ ) 6Ch−1

T ‖Π Svvv‖2
L2(T ) 6Ch−2

T ‖vvv‖
2
L2(T ) ∀vvv ∈ HHH1

0(Ω). (4.7)

Finally, recalling the decomposition III−Π T = (III−ΠU,T )(III−ΠW,T )(III−Π M,T ) and applying the estimates
(4.5), (4.6) and (4.7), we obtain

‖vvv−Π T vvv‖H1(T ) 6
∥∥(III−ΠW,T )(III−Π M,T )vvv

∥∥
H1(T )+Ch−1

T

∥∥(III−ΠW,T )(III−Π M,T )vvv
∥∥

L2(T )

6C
(
‖vvv−Π M,T vvv‖H1(T )+h−1

T ‖vvv−Π M,T vvv‖L2(T )+h−1/2
T ‖vvv−Π M,T vvv‖L2(∂T )

)
6C

(
‖vvv−Π M,T vvv‖H1(T )+h−1

T ‖vvv−Π M,T vvv‖L2(T )
)
6Chs−m

T ‖vvv‖Hs(ω(T )).

�

THEOREM 4.1 The LBB condition (1.1) holds for a constant β > 0 independent of h. In addition, the space
of discretely divergence-free functions are divergence-free pointwise; that is, property (1.2) is satisfied.

Proof. The first assertion follows from (4.3) and (4.4) (with s = 1) and using standard arguments (cf. Brezzi
& Fortin (1991); Boffi et al. (2008)).

Next, recall the definition of the local spaces VVV (T ) = MMM(T ) +UUU(T ) +WWW (T ) and MMM(T ) = PPP1(T ) +
QQQ2(T )+QQQ3(T ). Since UUU(T ), WWW (T ) and QQQm(T ) consists of divergence-free functions, we have divVVV (T ) =
divMMM(T ) = divPPP1(T )⊆ P0(T ). Therefore divVVV h ⊆ Qh and (1.2) immediately follows. �

5. Reduced Elements

Theorem 3.1 states that the local velocity space VVV (T ) has sixty degrees of freedom. Moreover, it is easy
to see from the degrees of freedom (3.11) that the global dimension of the velocity space is dimVVV h =
3Nv +6Ne +3N f , where Nv, N f , Ne denote, respectively, the number of interior vertices, faces and edges in
the triangulation. In this section, we show that the dimension of the velocity space can be significantly re-
duced, with only sixteen degrees of freedom per element, while not affecting the stability and approximation
properties.
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To define the reduced velocity space, we first define the local space and its degrees of freedom. To this
end, let T be an arbitrary element in the triangulation. For each ` = 1,2,3,4, define vvvR

` to be the unique
function in VVV (T ) satisfying

vvvR
` (xi) = 0 for all vertices xi,〈
vvvR
` ,www

〉
ei, j

= 0 for all www ∈ PPP1(ei, j) and i, j = 1, . . . ,4,〈
vvvR
` ·nnni,w

〉
Fi
= δi` for all www ∈ PPP0(Fi) and i = 1, . . . ,4,〈

vvvR
` ×nnni,www

〉
Fi
= 0 for all www ∈ PPP0(Fi) and i = 1, . . . ,4.

Theorem 3.1 ensures that vvvR
` is well-defined.

Notice that the tangential component of each vvvR
` is zero on all the faces and the normal component

vanishes on faces Fi with i 6= `. In other words, on the boundary of T one has

vvvR
` |∂T = c`λ`+1λ`+2λ`+3∇λ`

for some non-zero constant c`. We note that the right hand side is exactly the Bernardi-Raugel face bubble
(Bernardi & Raugel, 1985). Of course, the difference between the two functions is that divvvvR

` is a constant
on T while div(λ`+1λ`+2λ`+3∇λ`) is a quadratic polynomial.

The reduced local space is defined as

VVV R(T ) = PPP1(T )+ span{vvvR
1 ,vvv

R
2 ,vvv

R
3 ,vvv

R
4}.

It is easy to see that the dimension of the space is 16 with a unisolvent set of degrees of freedom given by

vvv(xi) for all vertices xi, (5.1a)〈
vvv ·nnni,κ

〉
Fi

for all κ ∈ P0(Fi) and i = 1, . . . ,4. (5.1b)

Again, these degrees of freedom are the same as the Bernardi-Gaugel element (Bernardi & Raugel, 1985).
The global space simply consists of continuous functions with vanishing trace that are locally in VVV R(T ),

i.e.,
VVV R

h = {vvv ∈ HHH1
0(Ω) : vvv|T ∈VVV R(T ),∀T ∈ Th}.

The global dimension is thus dimVVV R
h = 3Nv +N f .

It is not difficult to show that VVV R
h×Wh also satisfies properties (1)-(3) stated in the introduction. Indeed, it

is easy to see that the divergence operator maps VVV R
h into the space of piecewise constants (i.e., divVVV R

h ⊆Wh)
and therefore the divergence-free property (1.2) is trivially satisfied. Moreover, we can define the operator
Π R : HHH1

0(Ω)→VVV R
h satisfying

Π Rvvv(x) = Π Svvv(x) for all vertices x of Th, (5.2)〈
Π Rvvv ·nnn,κ

〉
F =

〈
vvv ·nnn,κ

〉
F for all faces F of Th and κ ∈ P0(F). (5.3)

The following commuting property follows from integration by parts and (5.3):

divΠ Rvvv = P0divvvv for all vvv ∈ HHH1
0(Ω), (5.4)

where we call P0 : L2(Ω)→Wh is the L2-projection onto the space of piecewise constants. We also have the
following approximation properties of the Fortin projection.
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LEMMA 5.1 There exists a constant C such that for any vvv ∈ HHHs
0(Ω)

‖vvv−Π Rvvv‖H1(Ω) 6Chs−1‖vvv‖Hs(Ω), (5.5)

where 16 s6 2.

The proof of Lemma 5.1 is nearly identical to the proof of Lemma 4.1 so we omit it. Combining Lemma
5.1 with the commuting property (5.4) we easily see that the LBB condition (1.1) is satisfied, and therefore
VVV R

h ×Wh is a stable finite element pair for the Stokes problem.

5.1 Elements using Bogovskii’s operator

In this section we give a different approach to construct Stokes elements that produce divergence-free ap-
proximations and have the same number of degrees of freedom as the reduced elements constructed above.
The argument presented below is valid in any dimension d > 2. The basis function of the velocity space may
or may not be rational functions.

The central idea is to start with the Bernardi-Raugel face bubbles and then correct them so that the
divergence of the resulting functions are constant while not affecting the values on the boundary. To this
end, let T be a d-dimensional simplex and let Fi (i = 1, . . . ,d + 1) denote the (d − 1)-dimensional sub-
simplices of T . For each, i = 1, . . . ,d + 1 the ith Bernardi-Raugel bubble of T is given by (Bernardi &
Raugel, 1985)

bbbi := λi+1λi+2 · · ·λi+d∇λi,

where we recall λi is the barycentric coordinate of T that vanishes on Fi. The following properties of bbbi are
evident from its definition:

– The tangential components of bbbi vanish on Fj for all j = 1, . . . ,d +1.
– The normal component of bbbi vanishes on Fj if j 6= i.
– bbbi ·nnn|Fi 6= 0.
– divbbbi is a non-zero polynomial of degree d−1.

We note that due to the last property, the Bernardi-Raugel element (where the pressure space consists of
piecewise constants) does not produce exactly divergence-free velocity approximations.

We now seek a continuous functions vvvi with the following properties:

(P1) vvvi|∂T = bbbi|∂T

(P2) divvvvi ∈ P0(T ).

To construct such a function, we set

gi := div(bbbi)−
1
|T |

∫
T

divbbbi dx,

and note that gi has zero mean. We then define wwwi by the Bogovskii operator (Bogovskii, 1979; Durán, 2012)
with source gi:

wwwi(x) :=
∫

T
G(x,y)gi(y)dy.

Here, the kernel G is given by

G(x,y) :=
∫ 1

0

(x− y)
t

ω(y+
x− y

t
)

dt
td ,
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and ω ∈ C∞
0 (B) with

∫
B ω dx = 1 for some ball B ⊂ T . The function wwwi then satisfies divwwwi = gi and

wwwi ∈WWW 1,p
0 (T ) for any 1 < p < ∞ (cf. (Durán et al., 2001; Durán, 2012)). Therefore, wwwi ∈ CCC0(T ) by a

Sobolev embedding.
We then set

vvvi := bbbi−wwwi.

Since wwwi has vanishing trace, we have vvvi|∂T = bbbi|∂T . Moreover, divvvvi = divbbbi − divwwwi = divbbbi − gi =
− 1
|T |
∫

T divbbbi dx ∈ P0(T ). Therefore the function vvvi satisfies the desired properties (P1)–(P2).
Next, we define the local space and global spaces

VVV B(T ) : = PPP1(T )+ span{vvv1, . . . ,vvvd+1},
VVV B

h : = {vvv ∈ HHH1
0(Ω) : vvv|T ∈VVV B(T ),∀T ∈ Th}.

This local space has all of the properties of the reduced elements constructed above. For example, any
function vvv ∈ VVV B(T ) is uniquely determined by the degrees of freedom (5.1). Moreover, the degrees of
freedom naturally lead to a projection Π B : HHH1(Ω)→VVV B

h satisfying the commuting property divΠ B =P0div .

6. Stokes Problem

In this section we apply the elements constructed in Sections 3 and 5 toward the Stokes problem with no-slip
boundary conditions:

−ν∆uuu+∇p = fff in Ω , (6.1a)
divuuu = 0 in Ω , (6.1b)

uuu = 0 on ∂Ω . (6.1c)

In (6.1a). fff is a given LLL2(Ω) function and ν > 0 is the kinematic viscosity. The finite element approximation
reads: find a pair (uuuh, ph) ∈VVV h×Wh such that

ν(∇uuuh,∇vvv)− (ph,divvvv) = ( fff ,vvv) ∀vvv ∈VVV h, (6.2a)
(divuuuh,q) = 0 ∀q ∈Wh. (6.2b)

Using standard arguments (Brezzi & Fortin, 1991; Boffi et al., 2008) we obtain the following convergence
results.

THEOREM 6.1 There exists a unique solution (uuuh, ph) ∈VVV h×Wh to problem (6.2). Moreover, there holds

‖∇(uuuh−uuu)‖L2(Ω) 6 ‖∇(Πuuu−uuu)‖L2(Ω),

‖p− ph‖L2(Ω) 6C(‖p−P0 p‖L2(Ω)+ν‖∇(Πuuu−uuu)‖L2(Ω)).

Therefore, by Lemma 4.1 and approximation properties of the L2-projection, we have

‖uuu−uuuh‖H1(Ω) 6Chs−1‖uuu‖Hs(Ω),

‖p− ph‖L2(Ω) 6Chs−1(‖p‖Hs−1(Ω)+ν‖uuu‖Hs(Ω)

)
(s = 1,2).

REMARK 6.1 Due to property (1.2) the velocity error is decoupled from the pressure error and is independent
of the viscosity coefficient.

REMARK 6.2 The same conclusions hold in Theorem 6.1 if the velocity space is replaced by the reduced
space VVV R

h constructed in Section 5.
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7. Conclusions

In this paper we constructed a stable finite element pair for the three dimensional Stokes problem that
produces exactly divergence-free velocity approximations. As far as we are aware, this is the first Stokes
pair with these properties on general shape-regular simplicial triangulations.

We end the paper by remarking that the proposed elements can be generalized to arbitrary order. Similar
to the construction in Section 3, this is achieved by enriching an HHH(div ;Ω)-conforming finite element space
with rational face bubbles and rational edge bubbles. In this case the local space of the HHH(div ;Ω) element
is given by MMM(T ) = PPPk(T )+QQQk+1(T )+QQQk+2 with k > 1, and the enriching local spaces are given by (3.3)
and (3.6) with UUU (i) = curl(BFiAAA

(i)
k−1×nnni) and M(i, j)(T ) = span{λ α1

k λ
α2
` : |α|6 k}. Here, AAA(i)

k−1 is the space
of functions ppp ∈ PPPk−1(T ) satisfying (ppp×nnni,BFiqqq×nnni)T = 0 for all qqq ∈ PPPk−2(T ). The pressure space in the
general setting is the space of piecewise polynomials of degree k− 1. Using similar arguments as in the
proceeding sections, it can be shown that the resulting spaces form a stable pair for the Stokes problem and
the approximations converge with order k.
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A. Appendix

A.1 The proof of Lemma 2.2

We break the proof of Lemma 2.2 into several steps. First, noting that ∇(λ 2
j −λ 2

i )+ 4(λi∇λ j−λ j∇λi) =
3∇(λ j−λi)(λi +λ j)−∇(λi +λ j)(λ j−λi), we may write

sssi, j = pi, jgggi, j
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with

pi, j =
b2

i, j(λi +λ j)

λiλ j +bi, j(λi +λ j)
, gggi, j =

3
2

λiλ j

λi +λ j
∇(λ j−λi)−

1
2

λiλ j(λ j−λi)

(λi +λ j)2 ∇(λi +λ j).

We now analyze the functions pi, j and gggi, j individually.

LEMMA A.1 There holds

|gggi, j|6C
λiλ j

λi +λ j
, |∇gggi, j|6C, |D2gggi, j|6

C
λi +λ j

,

|∇pi, j|6C, |D2 pi, j|6C+
C

λiλ j
λi+λ j

+
C

λi +λ j
.

where the constants C > 0 are independent of the barycentric coordinates (but depend on h). Moreover,

curlgggi, j = ∇λi×∇λ j. (A.1)

Proof. The first estimate easily follows from the inequality |λ j−λi|6 |λ j +λi|= λ j +λi and the definition
of gggi, j. The second and third inequalities follow from the estimates

λiλ j

(λi +λ j)2 6C,
∣∣∣∇( λiλ j

λi +λ j

)∣∣∣6C,
∣∣∣D2

(
λiλ j

λi +λ j

)∣∣∣6 C
λi +λ j

. (A.2)

Next we write

pi, j =
b2

i, j

ri, j
with ri, j :=

λiλ j

λ j +λ j
+bi, j, (A.3)

and note that (cf. (A.2))

r−1
i, j 6

1
λiλ j

λi+λ j

, r−1
i, j 6

1
bi, j

, |∇ri, j|6C, |D2ri, j|6
C

λi +λ j
. (A.4)

We then have

|∇pi, j|=
∣∣∣2bi, j∇bi, j

ri, j
−

b2
i, j

r2
i, j

∇ri, j)
∣∣∣6 2|∇bi, j|+ |∇ri, j|6C. (A.5)

Furthermore by (A.4) we have

|D2 pi, j|=
∣∣∣2∇bi, j∇bt

i, j +2bi, jD2bi, j

ri, j
−

2bi, j(∇bi, j∇rt
i, j +∇ri, j∇bt

i, j)+b2
i, jD

2ri, j

r2
i, j

+
2b2

i, j∇ri, j∇rt
i, j

r3
i, j

∣∣∣
6

2|∇bi, j|2

ri, j
+2|D2bi, j|+

4bi, j|∇bi, j||∇ri, j|
r2

i, j
+ |D2ri, j|+

2b2
i, j|∇ri, j|2

r3
i, j

6
2|∇bi, j|2

ri, j
+2|D2bi, j|+

4|∇bi, j||∇ri, j|
ri, j

+ |D2ri, j|+
2|∇ri, j|2

ri, j
6C+

C
λiλ j

λi+λ j

+
C

λi +λ j
.
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Next, since ∇λi and ∇λ j are constant vectors we have

curlgggi, j =
3
2

∇(λiλ j)

λi +λ j
×∇(λ j−λi)−

3
2

λiλ j∇(λi +λ j)×∇(λ j−λi)

(λi +λ j)2

− 1
2
(λ j−λi)∇(λiλ j)+λiλ j∇(λ j−λi)

(λi +λ j)2 ×∇(λi +λ j)

=
3
2
(∇λi×∇λ j)−

1
2
(6λiλ j +(λ j−λi)(λi +λ j)−2λiλ j)

(λi +λ j)2 (∇λi×∇λ j) = ∇λi×∇λ j.

�

COROLLARY A.1 There holds

|∇(∇pi, j×gggi, j)|6C.

Proof. This result directly follows from the estimates stated in Lemma A.1:

|∇(∇pi, j×gggi, j)|6 |D2 pi, j||gggi, j|+ |∇pi, j||∇gggi, j|6C.

�

LEMMA A.2 There holds

pi, jcurlgggi, j|∂T = bi, j(∇λi×∇λ j), (A.6)

∇pi, j×gggi, j|∂T = 0. (A.7)

Consequently, pi, jcurlgggi, j ∈CCC0(T ) and ∇pi, j×gggi, j ∈CCC0(T ).

Proof. By Lemma A.1 we have

pi, jcurlgggi, j|∂T = pi, j(∇λi×∇λ j).

Since bi, j|∂T\(Fi∪Fj) = 0 we have pi, j|∂T\(Fi∪Fj) = 0. Moreover, since lim(λi,λ j)→(0,0) ri, j = bi, j, we have
(cf. (A.3)) lim(λi,λ j)→(0,0) pi, j = bi, j. Thus, p|∂T = bi, j and therefore the identity (A.6) holds.

Next, using the estimates in Lemma A.1 we obtain

|∇pi, j×gggi, j|6 |∇pi, j||gggi, j|6C|gggi, j|6C
λiλ j

λi +λ j
.

Consequently,

lim
(λi,λ j)→(0,0)

|∇pi, j×gggi, j|= lim
(λi,λ j)→(0,0)

C
λiλ j

λi +λ j
= 0.

On the other hand, the edge bubble bi, j vanishes on ∂T\(Fi∪Fj). Hence by (A.5) we have ∇p|∂T\(Fi∪Fj)=

0, and therefore ∇p×gggi, j|∂T\(Fi∪Fj) = 0. We then conclude that ∇p×gggi, j|∂T = 0. �
We are now in position to prove Lemma 2.2. First, by Lemma A.2 we have

curlsssi, j|∂T = pi, jcurlgggi, j|∂T +∇pi, j×gggi, j|∂T = bi, j(∇λi×∇λ j),

and curlsssi, j ∈CCC0(T ).
We also have by Lemma A.1,

|∇curlsssi, j|6 |∇(pi, jcurlgggi, j)|+ |∇(∇pi, j×gggi, j)|6C|∇pi, j|+C 6C.

Thus, curlsssi, j ∈WWW 1,∞(T ).


