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Abstract

We develop a multiscale discontinuous Galerkin (DG) method for solving a class of second
order elliptic problems with rough coefficients. The main ingredient of this method is to use
a non-polynomial multiscale approximation space in the DG method to capture the multiscale
solutions using coarse meshes without resolving the fine scale structure of the solution. The-
oretical proofs and numerical examples are presented in both one and two dimensions. For
one-dimensional problems, optimal error estimates and numerical examples are shown for arbi-
trary order approximations. For two-dimensional problems, numerical results are presented by
high order multiscale DG method, but the error estimate is proven only for the second order
method.
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1 Introduction

In this paper, we consider solving a class of second order elliptic boundary value problems with
highly oscillatory coefficients. Such equations arise in, e.g. composite materials and porous media.
The solution oscillates rapidly and requires a very refined mesh to resolve. It is numerically difficult
for traditional numerical methods to do it due to the tremendous amount of computer memory and
CPU time. Recently developed multiscale finite element methods [3, 12, 2, 13, 14, 11, 6, 18] provide
an idea of constructing multiscale bases which are adapted to the local properties of the differential
operators, allowing adequate resolution on a coarser mesh.

In particular, we are interested in the second order elliptic boundary value problems

−∇ · (A(x)∇u) = f(x) in Ω (1)

∗Center for Turbulence Research, Stanford University, Stanford, CA 94305. E-mail: weiwang1@stanford.edu.
†Division of Applied Mathematics, Brown University, Providence, RI 02912. E-mail: jguzman@dam.brown.edu.

Research partially supported by NSF grant DMS-0914596.
‡Division of Applied Mathematics, Brown University, Providence, RI 02912. E-mail: shu@dam.brown.edu. Re-

search partially supported by DOE grant DE-FG02-08ER25863 and NSF grant DMS-0809086.

1



with the boundary condition
u = 0 on ∂Ω,

where Ω is a rectangular domain, f is a function in L2(Ω) and A(x) is the coefficient matrix containing
small scales.

In applications, Eq. (1) is the pressure equation in modeling two phase flow in porous media
(see [15, 13, 6]), with u and A(x) interpreted as the pressure and the relative permeability tensor.
Especially when the stochastic permeabilities are upscaled, A(x) is a diagonal tensor. Eq. (1) is also
the equation of steady state heat (electrical) conduction through a composite material, with A(x)
and u interpreted as the thermal (electric) conductivity and temperature (electric potential) (see
[13]).

In the one dimensional case, A(x) = a(x) and the equation becomes

−(a(x)ux)x = f(x). (2)

In the two dimensional case, we consider A with the following special form

A(x) =

(
a(x) 0

0 b(y)

)
,

and the two dimensional equation is

−(a(x)ux)x − (b(y)uy)y = f(x, y). (3)

Notice that we are considering this special class of two dimensional problems for the convenience
of explicitly constructing multiscale bases, thereby making the multiscale algorithm efficient. The
typical situation in multiscale modeling, has a(x) = aε(x, ε) and b(y) = bε(y, ε) being oscillatory
functions involving a small scale ε. Unlike the work for continuous finite elements in [13, 14, 11, 6],
we do not need the assumption of the periodicity of aε and bε in the ε scale and we do not assume
any scale separation. We only assume a(x) and b(y) belong to L∞(Ω) and satisfy

0 < α ≤ a(x), b(y) ≤ β < ∞ (4)

for any (x, y) ∈ Ω, where α and β are constants. If the coefficient a(x) is rough, then the solution
u to (2) will also be rough; to be specific, u will not in general be in H2(Ω) and may not be in
H1+δ(Ω) for any δ > 0.

In [3, 2], Babuška et al. proposed an approach to this kind of problems based on continuous
(or non-conforming) finite element methods. In [3] theoretical proofs were provided for the one
dimensional case and arbitrary order approximation. The two dimensional case was considered in
[2]. Only second-order accurate elements were considered (piecewise linear elements if A is constant).
One of the difficulties in using higher order elements for the continuous Galerkin method is to make
the multi-scale spaces conforming. Compared to continuous finite element methods, discontinuous
Galerkin (DG) methods do not enforce continuity at the element interfaces which provides an easy
way to construct multiscale basis in higher dimensions with high-order elements.

In [18], Yuan and Shu applied the approach of Babuška et al. to the Babuška-Zlámal DG method
[4]. They developed a multiscale Babuška-Zlámal DG method based on a non-polynomial basis for
Eq. (2) (see [17]). Both theoretical proofs and numerical tests were presented for the one dimensional
case. Followed by Yuan and Shu’s work, in [16], Wang improved the one dimensional proof of the
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multiscale Babuška-Zlámal DG method only assuming that the solution is in H1(Ω). In contrast,
more regularity was assumed in [18] while proving estimates for the multiscale Babuška-Zlámal DG
method.

In this paper we develop a multiscale symmetric interior penalty DG (IP-DG ([10, 19, 1]))
method in one and two dimensions. In particular, we prove optimal error estimates in the one
dimensional case for arbitrary order approximations. We only assume that the solution is in H1(Ω).
In the two dimensional case we prove optimal error estimates for the lowest-order (second-order
accurate method) multiscale IP-DG method. Moreover, we provide numerical results for higher
order elements. Finally, we argue that the recently introduced hybridizable DG methods [8, 7]
using piecewise polynomial approximations are convergent for multiscale problems considered here.
However, the approximations are at most first-order accurate.

2 Multiscale DG methods in one dimension

First we consider the one dimensional multiscale problem (2) on the domain [0, 1] with boundary
condition u(0) = u(1) = 0. Let Ij = (xj− 1

2

, xj+ 1

2

), j = 1, . . . , N , be a partition of [0, 1]. For
simplicity, we assume that the family of partitions are quasi-uniform.

The primal formulation of the IP-DG method [10, 19, 1] is to find uh ∈ Vh such that

Bh(uh, vh) =

∫

Ω

fvhdx, ∀vh ∈ Vh, (5)

where

Bh(u, v) =

N∑

j=1

∫

Ij

a uxvxdx −
N∑

j=0

(
[u]j−1/2{a vx}j−1/2 + {a ux}j−1/2[v]j−1/2 +

η

h
[u]j−1/2[v]j−1/2

)
,

(6)
where η is a sufficiently large positive constant for maintaining stability and rates of convergence,
and the average {u} and jump [u] are defined as follows:

[u]j−1/2 = u(x+
j−1/2) − u(x−

j−1/2), {u}j−1/2 =
1

2
(u(x+

j−1/2) + u(x−

j−1/2)), (7)

where u(x+
j−1/2) and u(x−

j−1/2) are the right and left limit of u at the cell boundary j − 1/2,

j = 1, . . . , N . At the domain boundaries, we have u(x−

1/2) = 0 and u(x+
N+1/2) = 0.

Vh is the finite element space containing functions which are discontinuous across cell interfaces.
For the traditional DG methods, these functions are piecewise polynomials. For the multiscale IP-
DG method, the basis functions are constructed to better approximate the solution. The multiscale
basis will involve the small scales and may not be polynomials any more. The multiscale IP-DG
method is constructed by using such kind of multiscale basis. We will first define the multiscale
space Vh and then prove optimal error estimates for the multiscale IP-DG method.

2.1 Multiscale space

In our multiscale IP-DG method, the spaces are constructed below to approximate the solution
to (2) (see [18, 3]):

Sk = {φ ∈ H1(0, 1) : −(aφx)x|Ij
∈ P k−2(Ij) for each j}. (8)
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Here we define P−1(Ij) = {0}. Hence, the multiscale IP-DG method will solve (5) with Vh = Sk.
The multiscale approximation space (8) for our model problem (2) is explicitly given by

Sk =

{
v : v|Ij

∈ span

{
1,

∫ x

xj

1

a(ξ)
dξ,

∫ x

xj

ξ − xj

a(ξ)
dξ, ...,

∫ x

xj

(ξ − xj)
k−1

a(ξ)
dξ

}}
. (9)

Next, we collect some properties of the spaces Sk (see Lemma 4.1 in [3]).

Lemma 1. Given a function u ∈ H1([0, 1]), there is a unique interpolation uI ∈ Sk satisfying

uI(xj+ 1

2

) = u(xj+ 1

2

), j = 0, 1, . . . , n,∫
Ij

(u − uI)(x − xj− 1

2

)ldx = 0, l = 0, . . . , k − 2, , j = 1, . . . , N.
(10)

The following approximation results hold (see Lemma 4.3 in [3]):

Lemma 2. Let u solve (2) and let uI be its interpolant defined in (10), then for every j = 1, . . . , N
we have

‖u − uI‖L2(Ij) ≤ C(α, β)h`+1‖f‖H`−1(Ij), (11)

‖u− uI‖H1(Ij ) ≤ C(α, β)h`‖f‖H`−1(Ij ), (12)

where C(α, β) is independent of u and h but depends on α, β. Here 1 ≤ ` ≤ k.

Remark 1. There are other ways to prove the above estimates in which one does not need to impose
the continuity on the cell boundary and are able to get the same optimal approximation results as
in Lemma 2, see [18].

2.2 Error estimates

In this section we prove optimal error estimates for the multiscale IP-DG method. For simplicity,
we will consider quasi-uniform meshes throughout this paper. We first need to define the energy
norm

9v92 :=
N∑

j=1

‖
√

avx‖2
L2(Ij ) + h

N∑

j=0

{avx}2
j+1/2 +

1

h
[v]2j+1/2.

We will need the following approximation result using the energy norm.

Lemma 3. Let u solve (2) and let uI be its interpolant defined in (10), then we have

9u − uI9 ≤ C h`‖f‖H`−1([0,1]).

for any 1 ≤ ` ≤ k.

Proof. Since u − uI vanishes at all the nodes we have

9u − uI9
2 =

N∑

j=1

‖
√

a(u − uI)x‖2
L2(Ij ) + h

N∑

j=0

({a(u − uI)x}2
j+1/2
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Since a is bounded

N∑

j=1

‖
√

a(u − uI)x‖2
L2(Ij)

≤C ‖(u − uI)x‖2
L2([0,1])

≤‖u− uI‖2
H1([0,1])

≤C h2 `‖f‖2
H`−1([0,1]).

In the last inequality we used (12).
To handle the other term. We use the fact that

|(aux)(x+
j−1/2) − (a(uI)x)(x+

j−1/2)|
≤|Pk−1(aux)(x+

j−1/2) − a(uI)x(x+
j−1/2)| + |Pk−1(aux)(x+

j−1/2) − aux(x+
j−1/2)|,

where Pk−1 : L2(Ij) → P k−1(Ij) is the L2 projection onto P k−1(Ij).
If we use the trace inequality and the approximation properties of Pk−1 we have

|Pk−1(aux)(x+
j−1/2) − aux(x+

j−1/2)|

≤ C

h1/2
‖Pk−1(aux) − aux‖L2(Ij) + Ch1/2‖(Pk−1(aux) − aux)x‖L2(Ij )

≤C h`−1/2‖D`(aux)‖L2(Ij)

=C h`−1/2‖D`−1f‖L2(Ij)

≤C h`−1/2‖f‖H`−1(Ij).

Here we used that the first equation of (2). Therefore, we have

h1/2|(Pk−1(aux)(x+
j−1/2) − aux(x+

j−1/2)| ≤ C h`‖f‖H`−1(Ij),

for any 1 ≤ ` ≤ k. Since uI ∈ Sk we easily see that a(uI)x|Ij
∈ P k−1(Ij), so by using an inverse

estimate we have

|Pk−1(aux)(x+
j−1/2) − a(uI)x(x+

j−1/2)|

≤C
1

h1/2
‖Pk−1(aux) − a(uI)x‖L2(Ij)

≤C
1

h1/2
‖(aux) − a(uI)x‖L2(Ij) + C

1

h1/2
‖Pk−1(aux) − aux‖L2(Ij )

≤C β
1

h1/2
‖ux − (uI)x‖L2(Ij) + C

1

h1/2
‖Pk−1(aux) − aux‖L2(Ij )

≤C h`−1/2‖f‖H`−1(Ij).

In the last inequality we used (11).
Therefore,

h1/2 |(aux)(x+
j−1/2) − (a(uI)x)(x+

j−1/2)| ≤ C h`‖f‖H`−1(Ij).

In a similar way we can show that

h1/2 |(aux)(x−

j−1/2) − (a(uI)x)(x−

j−1/2)| ≤ C h`‖f‖H`−1(Ij−1).
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Using this result and adding the contribution of every node we get

h

N∑

j=0

{a(u − uI)x}2
j+1/2 ≤ C h2 `‖f‖2

H`−1([0,1]).

Hence,
9u − uI9

2 ≤ C h2 `‖f‖2
H`−1([0,1]).

The result now follows after we take the square root on both sides.

Now we can state our main result of this section.

Theorem 2.1. Let uh ∈ Vh = Sk be the multiscale IP-DG solution of (5) then we have

9u − uh9 ≤C hk‖f‖Hk−1([0,1]) (13a)

‖u − uh‖L2([0,1]) ≤C hk+1‖f‖Hk−1([0,1]). (13b)

Proof. We first prove (13a). To do this we collect some results about the bilinear form Bh(·, ·)
defined in (6). The first result follows easily by applying the Cauchy-Schwartz inequality and using
the fact that a is bounded.

Lemma 4. (Boundedness) There exists a constant Cb such that

Bh(w, v) ≤ Cb 9 w 9 9v 9 ∀w, v ∈ Vh = Sk,

The second result concerns the coercivity of the bilinear form.

Lemma 5. (Stability) There exists some constant Cs such that

Bh(v, v) ≥ Cs 9 v 92 ∀v ∈ Vh = Sk. (14)

The proof of this lemma, when Vh is the space of piecewise polynomials, is contained in [1] (in
the multi-dimensional case as well). The case when Vh = Sk is similar, with the main difference
being that we have to apply an inverse estimate to functions of the form avx. However, by the
definition of Sk we have avx|Ij

∈ P k−1(Ij) hence we can apply inverse estimates; see the proof of
the two-dimensional case in the next section for a similar idea.

Finally, using integration by parts we can easily prove the following Galerkin orthogonality result.

Lemma 6. (Orthogonality) We have the following orthogonality equality

Bh(u − uh, v) = 0 ∀v ∈ Vh = Sk.

Using Lemmas 5, 6 and 4 we obtain

Cs 9 uI − uh92 ≤ Bh(uI − u, uI − uh) ≤ Cb 9 u − uI 9 9uI − uh 9 .

Hence,

9uI − uh9 ≤ Cb

Cs
9 u − uI 9 .

Therefore, the triangle inequality gives

9u− uh9 ≤
(

1 +
Cb

Cs

)
9 u − uI 9 .
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The inequality (13a) now follows from Lemma 3.
In order to prove (13b), we define the dual problem.

−(aϕx)x = u − uh, [0, 1], (15)

with the boundary conditions
ϕ(0) = ϕ(1) = 0. (16)

Therefore,

‖u− uh‖2
L2([0,1]) = −

∫ 1

0

(u − uh) (aϕx)x dx

=Bh(u − uh, ϕ).

In the last equation we used the consistency and symmetry of the IP-DG bilinear form Bh(·, ·).
Using Lemma 6 we get

‖u − uh‖2
L2([0,1]) = Bh(u − uh, ϕ − ϕI ),

where ϕI is the interpolant of ϕ defined in (10). By Lemma 4 we get

‖u− uh‖2
L2([0,1]) ≤ Cb 9 u − uh 9 9ϕ − ϕI 9 .

By using Lemma 3 (with ` = 1) we have 9ϕ − ϕI9 ≤ Ch‖u− uh‖L2([0,1]). We arrive at

‖u − uh‖L2([0,1]) ≤ C h 9 u − uh 9 .

The inequality (13b) now follows from (13a).

3 Multiscale DG methods in two dimensions

We now consider the two dimensional elliptic multiscale problem (3) on a square domain [−1, 1]2.
Let Th be a collection of quasi-uniform rectangular partitions of Ω and Eh be the collection of edges
of the Th. Define the following inner products

(v, w)Th
=

∑

K∈Th

∫

K

v(x, y) · w(x, y)dx dy,

〈v, w〉Eh
=

∑

e∈Eh

∫

e

v(s) · w(s) ds.

The IP method finds uh ∈ Vh such that

Bh(uh, vh) = (f, vh)Th
∀v ∈ Vh, (17)

where the bilinear form is defined by

Bh(u, v) := (A∇u,∇v)Th
− 〈{{A∇u}}, [[v]]〉Eh

− 〈{{A∇v}}, [[u]]〉Eh
+

η

h
〈[[u]], [[v]]〉Eh
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and η is a sufficiently large positive constant. For a scalar valued function u, we define the average
{{u}} and the jump [[u]] as follows. Let e be an interior edge shared by elements K1 and K2. Define the
unit normal vectors n1 and n2 on e pointing exterior to K1 and K2, respectively. With ui := u|∂Ki

,
we set

{{u}} =
1

2
(u1 + u2), [[u]] = u1n1 + u2n2 on e ∈ Eo

h, (18)

where Eo
h is the set of interior edges e. For a vector-valued function q we define q1 and q2 analogously

and set

{{q}} =
1

2
(q1 + q2), [[q]] = q1 · n1 + q2 · n2 on e ∈ Eo

h. (19)

For e ∈ E∂
h , the set of boundary edges, we set

[[u]] = un, {{q}} = q on e ∈ E∂
h , (20)

where n is the outward unit normal. We do not require either of the quantities {{u}} or [[q]] on
boundary edges, and we leave them undefined.

In this section, the high order multiscale IP-DG method for the two dimensional case will be
constructed, however the optimal error estimate will be shown only for the second order method.

3.1 Multiscale spaces

The one dimensional approach can be easily expanded to the two dimensional case, i.e. we
construct the two dimensional multiscale approximation space as follows (see [18]):

Sk
2 = {φ ∈ H1(Ω) : −(a(x)φx)x − (b(y)φy)y |K ∈ P k−2(K), for all K ∈ Th}, (21)

where (xK , yK) is the barycenter of the element K. In particular,

S1
2 =

{
v : v|K ∈ span

{
1,

∫ x

xK

1

a(ξ)
dξ,

∫ y

yK

1

b(η)
dη,

}}
,

S2
2 =

{
v : v|K ∈ span

{
1,

∫ x

xK

1

a(ξ)
dξ,

∫ y

yK

1

b(η)
dη,

∫ x

xK

ξ − xK

a(ξ)
dξ,

∫ x

xK

1

a(ξ)
dξ

∫ y

yK

1

b(η)
dη,

∫ y

yK

η − yK

b(η)
dη

}}
,

and

S3
2 =

{
v : v|K ∈ span

{
1,

∫ x

xK

1

a(ξ)
dξ,

∫ y

yK

1

b(η)
dη,

∫ x

xK

ξ − xK

a(ξ)
dξ,

∫ x

xK

1

a(ξ)
dξ

∫ y

yK

1

b(η)
dη,

∫ y

yK

η − yK

b(η)
dη,

∫ x

xK

(ξ − xK)2

a(ξ)
dξ,

∫ x

xK

ξ − xK

a(ξ)
dξ

∫ y

yK

1

b(η)
dη,

∫ x

xK

1

a(ξ)
dξ

∫ y

yK

η − yK

b(η)
dη,

∫ y

yK

(η − yK)2

b(η)
dη

}}
.

For k ≥ 4 it is more difficult to find an explicit formula for the multiscale basis (21).
Hence, the multiscale IP-DG method solves (17) with Vh = Sk

2 .
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3.2 Error estimates

Here we give an error analysis of the lowest-order (k = 1) IP-DG method. In order to do so, we
define the following energy norm.

9v92 := (A∇v,∇v)Th
+

1

h
〈[[v]], [[v]]〉Eh

+ h〈{{A∇v}}, {{A∇v}}〉Eh
.

We now state our main result.

Theorem 3.1. Let u be the solution of (3) and let uh ∈ Vh = S1
2 be the IP-DG approximation, then

9u − uh9 ≤C h‖f‖L2(Ω), (22a)

‖u − uh‖L2(Ω) ≤C h2‖f‖L2(Ω). (22b)

Before we prove this theorem we will state and prove some important lemmas.

Lemma 7. The following stability result holds

9v92 ≤ CBh(v, v) ∀v ∈ Vh = S1
2 .

Proof. Let v ∈ Vh then by the definition of Bh(·, ·) we get

Bh(v, v) = (A∇v,∇v)Th
− 2〈{{A∇v}}, [[v]]〉Eh

+
η

h
〈[[v]], [[v]]〉Eh

. (23)

By the arithmetic-geometric mean inequality we get that

2〈{{A∇v}}, [[v]]〉Eh
≤ 1

δh
〈[[v]], [[v]]〉Eh

+ hδ〈{{A∇v}}, {{A∇v}}〉Eh
, (24)

for any δ > 0. Next, we bound hδ〈{{A∇v}}, {{A∇v}}〉Eh
. One can easily show that

〈{{A∇v}}, {{A∇v}}〉Eh
≤ 2

∑

K∈Th

∫

∂K

(A∇v) · (A∇v). (25)

By the definition of Vh, A∇v ∈ P 1(K) on each triangle K ∈ Th. Hence, by a standard inverse
inequality for the space P 1(K)

∫

∂K

(A∇v) · (A∇v) ≤ Cinv h−1

∫

K

(A∇v) · (A∇v) ≤ Cinvβ h−1

∫

K

(A∇v) · ∇v.

Hence,
hδ〈{{A∇v}}, {{A∇v}}〉Eh

≤ 2δCinvβ(A∇v,∇v)Th
. (26)

If we plug this result into (24) we get

2〈{{A∇v}}, [[v]]〉Eh
≤ 1

δh
〈[[v]], [[v]]〉Eh

+ 2δCinvβ(A∇v,∇v)Th
. (27)

Using (23) we obtain

Bh(v, v) ≥(A∇v,∇v)Th
+

η

h
〈[[v]], [[v]]〉Eh

− 1

δh
〈[[v]], [[v]]〉Eh

− 2δCinvβ(A∇v,∇v)Th

=(1 − 2δCinvβ)(A∇v,∇v)Th
+ (

η

h
− 1

δh
)〈[[v]], [[v]]〉Eh

.

9



If we choose δ so that (1 − 2δCinvβ) ≤ 1
2 and then if we assume that η is sufficiently large so that

η ≥ 1
2δ , then we get

(A∇v,∇v)Th
+

1

h
〈[[v]], [[v]]〉Eh

≤ C B(v, v).

Finally, the proof is complete if we use (26).

The next lemma concerns approximation properties of the space S1
2 .

Lemma 8. Let u solve (3). Then, there exists v ∈ Vh = S1
2 so that

9u− v9 ≤ Ch‖f‖L2(Ω).

Proof. We start with a natural transformation. Define

x̂ :=

∫ x

−1

1

a(s)
ds

ŷ :=

∫ y

−1

1

b(s)
ds.

We see that the transformation (x, y) → (x̂, ŷ) maps Ω = [−1, 1]× [−1, 1] to Ω̂ = [−1,
∫ 1

−1
1

a(s)ds] ×
[−1,

∫ 1

−1
1

b(s) ]. Also it maps the rectangle K ∈ Th to a rectangle K̂.

Accordingly, for any function u defined on Ω we define a function û on Ω̂ by

û(x̂, ŷ) := u(x, y).

Define v̂ to be piece-wise linear function defined on Ω̂ such that v̂|K̂ ∈ P 1(K̂) satisfies

hK̂‖∇(û − v̂)‖L2(K̂) + ‖û− v̂‖L2(K̂) ≤ Ch2
K̂
|D2û|L2(K̂),

where hK̂ = diam(K̂).
Now define v ∈ L2(Ω), such that on each K ∈ Th

v(x, y) := v̂(x̂, ŷ).

We easily see that v ∈ Vh.
It is clear that

‖u − v‖L2(K) ≤
1

α
‖û − v̂‖L2(K̂) ≤ Ch2

K̂
|D2û|L2(K̂).

Taking the sum over K ∈ Th we get

‖u− v‖L2(Ω) ≤ Ch2|D2û|L2(Ω̂), (28)

where we used that hK̂ ≤ ChK .
We also obtain∫

K

A∇(u − v) · ∇(u − v)dx dy ≤ 1

α

∫

K

A∇(u − v) · A∇(u − v)dx dy

=
1

α

∫

K̂

∇(û − v̂) · ∇(û − v̂)â(x̂)b̂(ŷ)dx̂ dŷ

≤β2

α

∫

K̂

∇(û − v̂) · ∇(û − v̂)dx̂ dŷ

≤Ch2
K̂
|D2û|2

L2(K̂)
.
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Hence, if we sum over K we get that

(A∇(u − v),∇(u − v))Th
≤ Ch2|D2û|2

L2(Ω̂)
. (29)

Finally, we set that

∫

K

∇(A∇(u)) : ∇(A∇(u))dx dy

=

∫

K̂

(
1

â
∂2

x̂û + (
1

â
+

1

b̂
)∂x̂∂ŷû +

1

b̂
∂2

ŷû)â b̂ dx̂ dŷ

≤β2

α
|D2û|2

L2(K̂)
.

Hence, ∑

K∈Th

‖∇(A∇u)‖2
L2(K) ≤ C |D2û|2

L2(Ω̂)
. (30)

From the definition of 9 · 9 we see that

9u− v92 =(A∇(u − v),∇(u − v))Th
+

1

h
〈[[(u − v)]], [[(u − v)]]〉Eh

+ h〈{{A∇(u − v)}}, {{A∇(u− v)}}〉Eh
.

We bound each term individually. The first term was bounded in (29). For the second term we use
the a trace inequality to get

1

h
〈[[(u − v)]], [[(u − v)]]〉Eh

≤ C

h2
‖u− v‖2

L2(Ω) + C‖∇(u − v)‖2
L2(Ω)

≤ C

h2
‖u− v‖2

L2(Ω) + C
1

α
(A∇(u − v),∇(u − v))Th

≤Ch2|D2û|2
L2(Ω̂)

.

In the last inequality we used (28) and (29).
If we use a trace inequality we get that

h〈{{A∇(u − v)}}, {{A∇(u − v)}}〉Eh

≤C
∑

K∈Ωh

‖A∇(u − v)‖2
L2(K) + C h2

∑

K∈Th

‖∇(A∇u)‖2
L2(K)

≤C

α
(A∇(u − v),∇(u − v))Th

+ Ch2
∑

K∈Th

‖∇(A∇u)‖L2(K)

≤C h2|D2û|2
L2(Ω̂)

,

where we used (29) and (30). We also used the fact that ∇(A∇v)|K = 0 for v ∈ Vh and K ∈ Th.
Hence,

9u− v92 ≤ Ch2|D2û|2
L2(Ω̂)

.
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In order to complete the proof we argue that

|D2û|L2(Ω̂) ≤ C‖f‖L2(Ω). (31)

We easily see that

−1

â
∂2

x̂û − 1

b̂
∂2

ŷ û =f̂ Ω̂,

û =0, ∂Ω̂.

By Berstein’s Theorem [5] we get that

|D2û|L2(Ω̂) ≤ C‖f̂‖L2(Ω̂).

Finally, using the fact that ‖f̂‖L2(Ω̂) ≤ C‖f‖L2(Ω) gives (31) and this completes the proof.

Now we prove Theorem 3.1.

Proof. We first prove (22a). To this end, by Lemma 7 we have

9v − uh92 ≤ C Bh(v − uh, v − uh),

for any v ∈ Vh.
By Galerkin orthogonality of the IP-DG method we have

9v − uh92 ≤ C Bh(v − u, v − uh).

Clearly, the Bh(·, ·) is a bounded bilinear form. That is,

Bh(v − u, v − uh) ≤ C 9 v − u 9 9v − uh 9 .

Therefore,
9v − uh9 ≤ C 9 v − u 9 .

The triangle inequality gives

9u − uh9 ≤ C 9 v − u 9 .

Since this holds for any v ∈ Vh, Lemma 8 gives (22a).
In order to prove (22b), we will use a duality argument. We define the problem

−(a(x)φx(x, y))x − (b(y)φy(x, y))y =(u − uh)(x, y), (x, y) ∈ Ω = [−1, 1]2, (32a)

φ(x, y) =0, (x, y) ∈ ∂Ω. (32b)

By the adjoint consistency of the IP-DG method we have

‖u− uh‖2
L2(Ω) = Bh(u − uh, φ) = Bh(u − uh, φ − v),

for any v ∈ Vh. Here we used Galerkin orthogonality. Hence,

‖u − uh‖2
L2(Ω) ≤ C 9 u − uh 9 9φ − v9 ≤ C h 9 u − uh 9 ‖u − uh‖L2(Ω),

where we used Lemma 8. The inequality (22b) now follows after we apply (22a).
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Figure 1: Exact solution of the one dimensional Example 1. Left: u; middle: zoomed part of u;
right: ux.

4 Numerical results

In this section, both one and two dimensional examples are presented to demonstrate that the
proposed multiscale IP-DG method can capture the small scales in a very coarse mesh whereas the
traditional IP-DG method (i.e. that uses piecewise polynomial spaces) cannot do that.

4.1 One dimensional examples

The first one dimensional example is the same as that in [18]. However the results are computed
by the proposed multiscale IP-DG method. The second example is used to show a(x) = aε(x) does
not need to have periodicity in x

ε . In both cases, the multi-scale IP-DG method shows the optimal
order of convergence for the solution with a very small ε = 0.01 and ε = 0.001 starting from coarse
meshes. The stabilization parameter in the IP-DG method is taken as η = 10.

4.1.1 One dimensional Example 1

Consider the one dimensional multiscale problem Eq. (2) with

a(x) = aε(x) =
1

2 + x + sin
(

2πx
ε

) , f = x, x ∈ [0, 1]. (33)

The exact solution of Eq. (33) with ε = 0.01 is plotted in Fig. 1. The solution itself is oscillatory in
the level of ε. However the derivative of the solution is oscillating rapidly (see Fig. 1 right).

We first run this multiscale problem by the traditional IP-DG method with polynomial basis.
Table 1 shows the L2 errors and orders of accuracy for ε = 0.01 and ε = 0.001. We can see that, for
ε = 0.01, the traditional IP-DG method starts to converge from the mesh size N = 320. However,
for ε = 0.001, we cannot see any order of convergence even when the mesh is refined to N = 640.
This is because the traditional IP-DG method can only have the expected order of convergence when
the mesh is refined enough relative to ε, which is consistent with the error estimates for such DG
method based on regular piecewise polynomials. We remark that high order IP-DG methods will
have the same phenomenon, which we do not show here.
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Table 1: L2 errors and orders of accuracy by the traditional IP-DG method with polynomial basis
P 1: One dimensional Example 1.

ε = 0.01 ε = 0.001

u − uh q − qh u − uh q − qh

N error order error order error order error order
10 1.02E-02 – 1.20E-01 – 1.05E-02 – 6.06E-02 –
20 9.82E-03 0.05 1.12E-01 0.10 9.97E-03 0.08 1.56E-01 -1.36
40 9.60E-03 0.03 1.10E-01 0.02 9.89E-03 0.01 1.12E-01 0.48
80 8.85E-03 0.12 1.09E-01 0.01 9.89E-03 0.00 1.12E-01 0.00
160 6.33E-03 0.48 9.67E-02 0.17 8.95E-03 0.14 1.11E-01 0.01
320 2.50E-03 1.34 5.73E-02 0.75 8.99E-03 -0.01 1.11E-01 0.00
640 7.45E-04 1.75 2.98E-02 0.94 8.56E-03 0.07 1.08E-01 0.04

Next we test our multiscale IP-DG method for this multiscale problem with both ε = 0.01 and
ε = 0.001. The numerical results are shown in Table 2. We can clearly see the expected order of
accuracy which is (k+1)th order for u and kth order for q for the multiscale IP-DG method, starting
from very coarse meshes.

Table 2: L2 errors and orders of accuracy by the multiscale IP-DG method: One dimensional
Example 1.

ε = 0.01 ε = 0.001

S1 u − uh q − qh u − uh q − qh

N error order error order error order error order
10 1.03E-03 – 4.73E-02 – 1.03E-03 – 4.74E-02 –
20 2.61E-04 1.98 2.36E-02 1.00 2.62E-04 1.97 2.37E-02 1.00
40 6.71E-05 1.96 1.18E-02 1.00 6.62E-05 1.98 1.19E-02 1.00
80 1.68E-05 2.00 5.86E-03 1.01 1.67E-05 1.99 5.93E-03 1.01
160 3.89E-06 2.11 2.80E-03 1.06 4.17E-06 2.00 2.96E-03 1.00

S2 u − uh q − qh u − uh q − qh

N error order error order error order error order
10 1.16E-05 – 1.01E-03 – 1.15E-05 – 1.01E-03 –
20 1.48E-06 2.97 2.48E-04 2.03 1.46E-06 2.98 2.52E-04 2.00
40 1.89E-07 2.97 6.14E-05 2.01 1.83E-07 2.99 6.28E-05 2.00
80 2.29E-08 3.04 1.51E-05 2.03 2.30E-08 2.99 1.57E-05 2.00
160 2.84E-09 3.01 3.74E-06 2.01 2.94E-09 2.97 3.94E-06 1.99
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4.1.2 One dimensional Example 2

In the second example, the coefficient aε is not periodic in x or x
ε and there is no clear scale

separation. Consider the multiscale problem with

aε(x, ε) =
1

2 + x + sin
(

sin x
ε cosx

) , f = − cosx, x ∈ [0, 1]. (34)

We perform the numerical tests by the multiscale IP-DG method on Eq. (34) with ε = 0.01
and ε = 0.001. Table 3 shows the L2 errors and orders of accuracy. We can again clearly see the
expected order of accuracy which is (k + 1)th order for u and kth order for q, starting from very
coarse meshes.

Table 3: L2 errors and orders of accuracy by the multiscale IP-DG method: One dimensional
Example 2.

ε = 0.01 ε = 0.001

S1 u − uh q − qh u − uh q − qh

N error order error order error order error order
10 1.50E-03 – 6.36E-02 – 1.44E-03 – 6.18E-02 –
20 3.51E-04 2.09 2.92E-02 1.12 3.67E-04 1.97 3.09E-02 1.00
40 8.95E-05 1.97 1.50E-02 0.96 9.26E-05 1.99 1.54E-02 1.00
80 2.33E-05 1.94 7.68E-03 0.97 2.33E-05 1.99 7.61E-03 1.02
160 5.93E-06 1.97 3.87E-03 0.99 5.55E-06 2.07 3.59E-03 1.08

S2 u − uh q − qh u − uh q − qh

N error order error order error order error order
10 8.39E-06 – 5.74E-04 – 7.87E-06 – 5.60E-04 –
20 1.10E-06 2.94 1.38E-04 2.05 9.75E-07 3.01 1.40E-04 2.00
40 1.41E-07 2.97 3.50E-05 1.98 1.27E-07 2.94 3.49E-05 2.00
80 1.77E-08 3.00 8.80E-06 1.99 1.59E-08 2.99 8.51E-06 2.04
160 2.21E-09 3.00 2.20E-06 2.00 1.96E-09 3.02 2.14E-06 1.99

4.2 Two dimensional example

We now consider the two dimensional elliptic multiscale problem Eq. (3) on the domain [−1, 1]2

with

a(x) = aε(x, ε) =
1

4 + x + sin
(

x
ε

) , b(x) = bε(y, ε) =
1

4 + y + sin
(

y
ε

) , f = x + y. (35)

We do not have an explicit representation of the solution, so we computed a reference solution by the
spectral Chebyshev collocation method with a mesh 512 × 512 for ε = 0.01 and ε = 0.005 in order
to check the convergence rates of DG methods. Table 4 lists the L2 errors and orders of convergence
of the multiscale IP-DG method. We can see an almost second order convergence for the multiscale
IP-DG method with the S1

2 space and an almost third order convergence with S2
2 , starting from very

15



coarse meshes. This shows the optimal convergence rates of the multiscale IP-DG method (recall
that our proof of optimal convergence is only for S1

2). Compared to the multiscale IP-DG results,
the L2 errors and orders by the traditional IP-DG method with polynomial spaces P 1 and P 2 are
listed in Table 5. For the relative large ε = 0.01, we can see the convergence of the traditional IP-DG
method from the mesh size N = 80. When ε goes smaller to 0.005, we cannot see a correct order of
convergence especially in the P 2 case for the meshes we have tested.

We remark that due to the difficulties of computing a very refined reference solution, we are
unable to test a much smaller ε. The smaller the ε is, the bigger advantage of multiscale IP-DG
method we should see. This is because the error of the multiscale IP-DG method does not depend
on ε, but the traditional IP-DG method can only have convergence when the mesh size is small
enough to resolve the ε scale.

Table 4: L2 errors and orders of accuracy by the multiscale IP-DG method: two dimensional example.

ε = 0.01 ε = 0.005

S1
2

N error order error order
10 4.16E-02 – 4.04E-02 –
20 1.28E-02 1.71 1.31E-02 1.63
40 3.56E-03 1.85 3.59E-03 1.87
80 9.42E-04 1.92 9.50E-04 1.92

S2
2

10 1.25E-03 – 1.25E-03 –
20 1.82E-04 2.78 1.85E-04 2.75
40 2.54E-05 2.84 2.59E-05 2.84
80 3.57E-06 2.83 3.56E-06 2.86

Table 5: L2 errors and orders of accuracy by polynomial IP-DG methods: two dimensional example.

ε = 0.01 ε = 0.005

P 1

10 4.98E-02 – 4.97E-02 –
20 2.22E-02 1.16 2.33E-02 1.10
40 1.37E-02 0.69 1.39E-02 0.75
80 5.33E-03 1.36 1.11E-02 0.32

P 2

10 1.06E-02 – 1.16E-02 –
20 1.09E-02 -0.04 1.06E-02 0.13
40 5.14E-03 1.08 1.08E-02 -0.02
80 7.49E-04 2.78 5.06E-03 1.09
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5 DG methods with polynomial basis for multiscale problems

In this section, we are going to show that some DG methods with piecewise constant approxi-
mations can approximate the multiscale problem (2) and (3) with first-order accuracy. However, if
higher-order accuracy is required then one needs to use multiscale basis in the previous sections.

Falk and Osborn [12] argued that some mixed methods can approximate rough solutions of
the problem (3) using piecewise polynomial approximations. Here we argue that the single face-
hybridizable (SF-H) method [7] can also approximate rough solutions to (3) using piecewise polyno-
mial approximations. Hybridizable-DG (HDG) methods were recently introduced in [8]. The SF-H
[7] method is a special class of HDG methods where on each triangle one only penalizes on exactly
one edge. The minimal dissipation local DG (MD-LDG) method [7] is a limiting case of the HDG
methods where the penalization parameter is allowed to be infinite (see [8] for more details). We
will first give the error estimates for the HDG methods. Then we will show the numerical results by
the limiting case MD-LDG method.

5.1 Error estimates for the hybridizable DG methods

In order to define the SF-H method for (3), we need to rewrite (3) in its mixed form. We let

A−1
q + ∇u =0 (36)

∇ · q = f (37)

where A is given by

A(x) =

(
a(x) 0

0 b(y)

)
.

We let {Th} be a collection of shape-regular triangular partitions of Ω. Let Eh be the collection
of edges of the Th. We define the function spaces corresponding the lowest-order SF-H method

Σh = {v ∈ [L2(Ω)]2 : v|K ∈ [P 0(K)]2 ∀ K ∈ Th}, (38a)

Wh = {w ∈ L2(Ω) : w|K ∈ P 0(K) ∀ K ∈ Th}, (38b)

Mh = {µ ∈ L2(Eh) : µ|e ∈ P 0(e) ∀ e ∈ Eh, and µ = 0 on ∂Ω}. (38c)

The approximation (qh, uh, λh) ∈ Σh × Wh × Mh is determined by requiring that

(A−1
qh, v)Th

− (uh,∇ · v)Th
+ 〈λh, v · n〉∂Th

= 0, (39a)

−(qh,∇ω)Th
+ 〈q̂h · n, ω〉∂Th

= (f, ω)∂Th
, (39b)

〈q̂h · n, µ〉∂Th
=0, (39c)

for all (v, ω, µ) ∈ Σh × Wh × Mh, where

q̂h := qh + τ(uh − λh)n on ∂K for all K ∈ Th. (39d)

Here n is the outward pointing unit normal to an element K ∈ Th. Moreover, we used the following
notation

〈v · n, µ〉∂Th
:=

∑

K∈Th

∫

∂K

v(γ) · n µ(γ) dγ.
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The penalty parameters τ is a double-valued constant function on each interior edge of the
triangulation Th. The SF-H method chooses τ |K so that it is zero on all but one edge of ∂K.
More precisely, it chooses an arbitrary edge eτ

K of ∂K. Then it sets τ = τK > 0 on eτ
K but it sets

τ = 0 on ∂K\eτ
K. With such a choice one has the property that qh and λh is independent of τ ;

see [7]. However, uh will depend on τ . We note that λh is the so-called Lagrange multiplier that
approximates u on the edges of the triangulation Th. In fact, one can locally eliminate qh, uh to get
a final system for λh, then one can recover qh, uh element-by-element; see [7, 8].

We now state the main result of this section.

Theorem 5.1. Let u solve (3) and let (qh, uh, λh) ∈ Σh × Wh × Mh solve (39) then

‖∇u + A−1
qh‖L2(Ω) ≤ C h‖f‖L2(Ω). (40)

Moreover, if τK ≥ c
hK

for some constant c > 0 and all K ∈ Th then

‖u − uh‖L2(Ω) ≤ C h‖f‖L2(Ω). (41)

Proof. By Theorem 2.5 in [7] we have

‖A−1/2(q − qh)‖L2(Ω) = C h‖q‖H1(Ω).

Hence,

‖∇u + A−1
qh‖L2(Ω) ≤‖A−1(−q + qh)‖L2(Ω)

≤ 1

α
‖A−1/2(−q + qh)‖L2(Ω)

≤C h‖q‖H1(Ω).

Using Bernstein’s regularity result [5], Falk and Osborn [12] proved that A∇u ∈ H1(Ω) although
u may not belong to H2(Ω). In fact, they proved

‖A∇u‖H1(Ω) ≤ C ‖f‖L2(Ω).

Since q = −A∇u we have proven (40).
In order to prove (41) we use Corollary 2.7 in [7] that gives

‖u− uh‖L2(Ω) ≤ C h(‖q‖H1(Ω) + ‖u‖H1(Ω)).

Here we used our hypothesis τK ≥ c
hK

for some constant c > 0 and all K ∈ Th.
We already argued that ‖q‖H1(Ω) ≤ ‖f‖L2(Ω). Clearly, by an energy argument we have ‖u‖H1(Ω) ≤

‖f‖L2(Ω). This proves (41).

A few comments are in order. First, it is no surprise that the SF-H method is convergent for (3)
since the SF-H method is very similar to standard mixed methods. Also, more general HDG methods
(e.g. allowing τ = 1 everywhere) are convergent for (3); however, one needs to trace the effects of
the penalty parameters τ on the error q − qh; see [9]. Finally, we point out that higher-order SF-H
methods would not give better results since q ∈ H1(Ω) but not in H2(Ω).
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5.2 Numerical tests by MD-LDG

If we formally set τ− = 0 and τ+ = ∞ on all the interior edges of the triangulation Th, then the
HDG method will result in the MD-LDG method (see [8]).

Table 6 shows the numerical results by the piecewise constant MD-LDG method for the one
dimensional multiscale problem Example 1 (33). We can see a clear first order convergence for both
u and the derivative of u.

We remark that higher order MD-LDG schemes can give the optimal convergence for the deriva-
tive of u but not for u. Because the function a ux does not involve the small scale and thus the
polynomial basis can well approximate q in the implementation for Eq. (36). In other words, if
MD-LDG is implemented in the following way

q + ∇u =0 (42)

∇ · Aq =f, (43)

we will not be able to see convergence before the small scale is resolved. We do not include these
numerical results here.

The numerical results for the two dimensional multiscale problem are listed in Table 7 for ε = 0.01
and ε = 0.005. We can see that the piecewise constant MD-LDG method also shows a first order
convergence in the two dimensional case.

Table 6: L2 errors and orders of accuracy by the MD-LDG with polynomial basis P 0: one dimensional
Example 1.

ε = 0.01 ε = 0.001

u − uh q − qh u − uh q − qh

N error order error order error order error order
10 2.21E-02 – 2.69E-02 – 2.23E-02 – 2.69E-02 –
20 1.16E-02 0.93 1.24E-02 1.12 1.18E-02 0.92 1.24E-02 1.12
40 6.01E-03 0.95 5.90E-03 1.07 5.99E-03 0.98 5.88E-03 1.08
80 3.03E-03 0.99 2.86E-03 1.04 3.02E-03 0.99 2.86E-03 1.04
160 1.53E-03 0.98 1.41E-03 1.02 1.51E-03 1.00 1.41E-03 1.03

6 Concluding remarks

In this paper, we developed a multiscale IP-DG method for solving a class of second order elliptic
equations with rough coefficients in one- and two-dimensions. Assuming that the solution lies only
in H1, we prove optimal error estimates for arbitrary order approximations for the one dimensional
case and optimal error estimates for the second order approximation for the two dimensional case.
Numerical tests are performed in both one and two dimensions, demonstrating high order accuracy
by the multiscale IP-DG method. In addition, the proof of first order convergence of the HDG
method with polynomial basis is given and related numerical test is shown for the MD-LDG method.
In future work, we plan to generalize the analysis and develop multiscale DG methods for various
elliptic problems.
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Table 7: L2 errors and orders of accuracy by the MD-LDG method with polynomial basis P 0: two
dimensional example.

ε = 0.01 ε = 0.005

N error order error order
10 4.14E-01 – 4.16E-01 –
20 2.16E-01 0.94 2.18E-01 0.93
40 1.09E-01 0.99 1.10E-01 0.99
80 5.50E-02 0.99 5.45E-02 1.01
160 2.74E-02 1.01 2.73E-02 1.00
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