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1. Description of Course

In this course we will mostly focus on second-order elliptic Partial Differential Equations
(PDEs). We start by developing finite difference methods (a five point stencil method) for
Poisson problems in one and two dimensions. Then, we develop finite element methods for
general second order problems. Finally, we develop finite element methods for Stokes problems.

Students are expected to write computer code to implement the numerical methods. Also,
theoretical aspects such as stability and error analysis will be covered and students are expected
to be able to follow all the main arguments.



CHAPTER 1

Two Point Boundary Value Problem: finite difference and finite
element methods

Before we jump into higher dimensional problems it is instructive to consider a two point
boundary value problem

1. Two Point Boundary Value problem

−u′′(x) =f(x) for all 0 < x < 1,(1.1a)

u(0) =a,(1.1b)

u(1) =b,(1.1c)

Here the function f(x) is given. This is commonly known as the source term. The data a, b is also
normally given an this is known as the Dirichlet boundary data. The unknown function is u. For
now we are assuming that u belongs to C2([0, 1]) = {u : u, u′, and u′′ are continuous on [0, 1]}.

We would like to prove a crucial property of these type of equations weak maximum principle
for this problem. Before we do that let us recall basic properties of calculus.

Proposition 1. Suppose that w ∈ C2((0, 1)) an suppose that w has a local maximum at
0 < z < 1 then

(1.2) w′(z) = 0 and w′′(z) ≤ 0

Similarly if w has a local minimum at z then

(1.3) w′(z) = 0 and w′′(z) ≥ 0.

Theorem 1. Suppose u solves (1.1) and f(x) ≤ 0 for all x ∈ (0, 1) then

(1.4) max
x∈[0,1]

u(x) ≤ max{a, b}.

On the other hand, if f(x) ≥ 0 for all x ∈ (0, 1) then

(1.5) min
x∈[0,1]

u(x) ≥ min{a, b}.

Proof. We only prove (1.4) and leave the proof of (1.5) to the reader. We start by defining

the function φ(x) = (x−1/2)2

2 and we let wε(x) = u(x)+εφ(x) where ε > 0. Noting that φ′′(x) = 1
for all x. Then we see that wε satisfies

−w′′ε (x) =f(x)− ε for all 0 < x < 1,(1.6a)

wε(0) =a+
ε

8
,(1.6b)

wε(1) =b+
ε

8
,(1.6c)

3



4 1. TWO POINT BOUNDARY VALUE PROBLEM: FINITE DIFFERENCE AND FINITE ELEMENT METHODS

Figure 1. Example: N = 3, h = 1/4

Since f(x) ≤ 0 for all 0 < x < 1 we have that w′′ε (x) = −(f(x) − ε) > 0. We then see that
wε cannot have a maximum at any point 0 < x < 1. Indeed, if wε had a maximum at x then
by (1.2) we have w′′ε (x) ≤ 0 contradicting that w′′ε (x) > 0. Hence, the maximum must occur at
x = 0 or x = 1. That is,

u(x) ≤ u(x) + εφ(x) = wε(x) ≤ max{wε(0), wε(1)} = max{a+ ε/8, b+ ε/8} for all 0 ≤ x ≤ 1.

Therefore,

u(x) ≤ max{a, b}+ ε/8 for all 0 ≤ x ≤ 1.

Now taking the limit at ε→ 0 we have

u(x) ≤ max{a, b} for all 0 ≤ x ≤ 1.

Taking the maximum we get (1.4). �

1.1. Finite Difference method. Now we develop a computational method to approximate
(1.1). To do that, we let N be an integer and define h = 1

N+1 and define xn = nh for

n = 0, 1, 2, . . . N + 1 (see Figure 1). We will approximate u(xn) for n = 0, 1, . . . , N + 1. Indeed,
the finite difference method will find numbers v0, v1, . . . , vN+1 such that vn ≈ u(xn) for n =
0, 1, . . . , N + 1.
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In order to derive the method, we use Taylor expansions on the solution u

u′′(xi) ≈ (u′(xi+1)− u′(xi))/h

≈ (
u(xi+1)− u(xi))

h
− u(xi)− u(xi−1)

h
)/h

= (u(xi+1)− 2u(xi) + u(xi−1))/h2.

In fact, we can show the following lemma (we leave the details to the reader).

Lemma 1. It holds

(1.7) u′′(xi) = (u(xi+1)− 2u(xi) + u(xi−1))/h2 − h2

24
(u(4)(θ1) + u(4)(θ2))

where xi−1 ≤ θ1 ≤ xi, xi ≤ θ2 ≤ xi+1.

Therefore, we define
Now, the finite difference method finds v0, v1, . . . , vN+1 such that:

(−vn+1 + 2vn − vn−1)/h2 =f(xn) for all n = 1, 2, . . . , N,(1.8a)

v0 =a,(1.8b)

vN+1 =b.(1.8c)

This will give rise to a system of N equations with N unknowns.

1

h2
(2v1 − v2) =f(x1) + a

1

h2

1

h2
(−v1 + 2v2 − v3) =f(x2)

...

1

h2
(−vN−1 + 2vN ) =f(xN ) + b

1

h2

In matrix form we can write

1

h2


2 −1 0 . . . 0
−1 2 −1

0
. . .

. . .
. . .

... −1
0 . . . −1 2




v1

v2

v3
...
vN

 =


f(x1)
f(x2)
f(x3)

...
f(xN )

+
1

h2


a
0
...
0
b


You can easily write a computer code to implement this method.
Next, we will analyze the finite difference method described above. To do this we use some

notation. We let S = {x0, x1, . . . , xN+1} and we define all discrete functions as

Ph = {v : v is a real valued function with domain S}.

That is, a function in Ph only has to be defined on the discrete points S. We use the notation
vn = v(xn).

We also denote the i-th derivative of a function as Diu(x) = u(i)(x). In particular, we denote
the second derivative D2u(x) = u′′(x). We then define the discrete second derivative as

D2
hv(xn) ≡ 1

h2
(v(xn+1)− 2v(xn) + v(xn−1)) for all n = 1, . . . , N.
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We also use the notation D2
hvn ≡ D2

hv(xn). We can then rewrite (1.8) with the new notation.
Find v ∈ Ph satisfying

−D2
hvn =f(xn) for all n = 1, 2, . . . , N,(1.9a)

v0 =a,(1.9b)

vN+1 =b.(1.9c)

1.1.1. Discrete Maximum Principle. We now state and prove the discrete analogue to The-
orem 1.

Theorem 2. Suppose v solves (1.9) and f(xn) ≤ 0 for all n = 1, 2, . . . , N then

(1.10) max
n=0,1,...,N+1

vn ≤ max{a, b}.

On the other hand, if f(xn) ≥ 0 for all n = 1, 2, . . . , N then

(1.11) min
n=0,1,...,N+1

vn ≥ min{a, b}.

Proof. We will prove (1.10) and leave the proof (1.11) to the reader. LetM = maxn=0,1,...,N+1 vn.
First suppose that maxn=1,...,N vn < M then (1.10) holds.

On the other hand, suppose there that there exists an 1 ≤ n ≤ N such that vn = M . Then
from (1.9a) we have

M = vn =
1

2
(vn+1 + vn−1) + h2f(xn) ≤ 1

2
(vn+1 + vn−1) ≤M

sincef(xn) ≤ 0 and by our hypothesis 1
2(vn+1 + vn−1) ≤M . Hence, we must have

M =
1

2
(vn+1 + vn−1),

or that
1

2
(M − vn−1) +

1

2
(M − vn+1) = 0.

Since by our hypothesis (M −vn−1) ≥ 0 and (M −vn+1) ≥ 0 it must be vn−1 = vn = vn+1 = M .
We can continue this process to show that vi = M = maxn=0,1,...,N+1 vn for all i = 0, 1, . . . , N+1.
In other words, v ≡M is a constant discrete function. Therefore, (1.10) trivially holds. �

We can use the discrete maximum principle to prove a stability result.

Theorem 3. Let v ∈ Ph solve (1.9) then we have

(1.12) max
n=0,1,...,N+1

|vn| ≤ max{|a|, |b|}+
1

8
max

n=1,...,N
|f(xn)|.

Proof. Let Q = maxn=1,...,N |f(xn)| and define φ ∈ Ph as follows

φn = φ(xn) ≡ Q

2
(xn − 1/2)2 for all n = 0, 1, 2, . . . , N + 1.

Not difficult to see that D2
hφn = Q for n = 1, . . . , N . Define w ∈ Ph as w = v+ φ . Then we see

that w satisfies

−D2
hwn =f(xn)−Q for all n = 1, 2, . . . , N,(1.13a)

v0 =a+
Q

8
,(1.13b)

vN+1 =b+
Q

8
.(1.13c)



1. TWO POINT BOUNDARY VALUE PROBLEM 7

Now, note that f(xn)−Q ≤ 0 for all n and hence by (1.10) we have

max
n=0,1,...,N+1

wn ≤ max{a+
Q

8
, b+

Q

8
}.

Since φn ≥ 0 we have,

max
n=0,1,...,N+1

vn ≤ max
n=0,1,...,N+1

wn

Moreover, we have

max{a+
Q

8
, b+

Q

8
} ≤ max{|a|, |b|}+

Q

8
.

Hence, combining the last two inequalities we get �

(1.14) max
n=0,1,...,N+1

vn ≤ max{|a|, |b|}+
Q

8
.

Noting that

−D2
h(−vn) =− f(xn) for all n = 1, 2, . . . , N,

−v0 =− a,
−vN+1 =− b.

we can apply the previous argument verbatim to get

(1.15) max
n=0,1,...,N+1

(−vn) ≤ max{|a|, |b|}+
Q

8
.

Combining inequality (1.14) and (1.15) we get (1.12).
1.1.2. Error Estimate for Finite Difference Method. Now that we have established the sta-

bility result (1.12), we can prove an error estimate for the finite difference method. Let us define
the max norm for functions in w ∈ C([0, 1]) as

‖w‖C([0,1]) = max
0≤x≤1

|w(x)|.

Theorem 4. Suppose that u solves (1.1) and u ∈ C4([0, 1]). If v solves (1.9) we have

max
n=0,1,...,N+1

|u(xn)− vn| ≤
h2

104
‖D4u‖C([0,1]).

Proof. Define w ∈ Ph as wn = u(xn)− vn for n = 0, 1, . . . , N + 1. Then, we see that

−D2
h(wn) =τn for all n = 1, 2, . . . , N,

w0 =0,

wN+1 =0.

where τn = −D2
hu(xn)− f(xn) = D2u(xn)−D2

hu(xn). By (1.7) we have

(1.16) |τn| ≤
h2

12
‖D4u‖C([0,1]) for all n = 1, 2, . . . , N.

Now applying (1.12) we have

max
n=0,1,...,N+1

|wn| ≤
1

8
max

n=1,...,N
|τn|.

Combining this with (1.16) proves the result. �
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1.2. Finite element method. In this section we derive the finite element method for
(1.1). The methodology is quite different from the finite difference method but at the end they
give similar methods.

We first need to define the weak formulation of (1.1). Let us recall an integration formula

(1.17)

∫ 1

0
v′(x)w(x)dx = −

∫ 1

0
v(x)w′(x)dx+ v(1)w(1)− v(0)w(0).

Now let v ∈ C1([0, 1]) with v(0) = 0 and v(1) = 0 then if we multiply (1.1a) by v and integrate
we get

−
∫ 1

0
u′′(x)v(x)dx =

∫ 1

0
f(x)v(x)dx

If we apply (1.17) we get

−
∫ 1

0
u′′(x)v(x)dx =

∫ 1

0
u′(x)v′(x)dx,

where we used that v(0) = 0 = v(1). Hence, we have that if u solves (1.1) then it solves

(1.18)

∫ 1

0
u′(x)v′(x)dx =

∫ 1

0
f(x)v(x)dx for all v ∈ C1([0, 1]), v(0) = 0 = v(1).

The finite element method is based on (1.18).
The next step is to build a finite dimensional space of functions.
We let

Vh = {v ∈ C([0, 1]) : for all i = 0, 1, . . . , N, v|(xi,xi+1) is a linear function}.
We can define a basis easily for this space in the following way. For each i = 0, 1, 2, . . . we define
ψi (see Figures 1 and 4)

ψi(xj) =

{
1 if j = i

0 if j 6= i

Then we see that if v ∈ Vh then we have

v(x) =

N+1∑
i=0

v(xi)ψi(x) for 0 ≤ x ≤ 1.

We see that the dimension of Vh is exactly N + 1. We also need to define

V 0
h = {v ∈ Vh : v(0) = 0 = v(1)}.

The finite element method is as follows:
Find uh ∈ Vh such that

(1.19)

∫ 1

0
u′h(x)v′h(x)dx =

∫ 1

0
f(x)vh(x)dx for all vh ∈ V 0

h ,

where uh(0) = uh(x0) = a and uh(1) = uh(xN+1) = b.
Of course, since the space V 0

h is finite dimensional then (1.21) is equivalent to:

(1.20)

∫ 1

0
u′h(x)ψ′j(x)dx =

∫ 1

0
f(x)ψj(x)dx for all j = 1, 2, . . . , N,

and uh(0) = uh(x0) = a and uh(1) = uh(xN+1) = b. Writing

u′h(x) =

N+1∑
i=0

uh(xi)ψ
′
i(x) for 0 ≤ x ≤ 1.
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x0=0 x1=.2 x2=.4 x3=.6 x4=.8 x5=1
-0.5

0

0.5

1

1.5

2

Figure 2. Example of a function in Vh, h=.2

we get

(1.21)

∫ 1

0
u′h(x)ψ′j(x)dx =

∫ 1

0

N+1∑
i=0

uh(xi)ψ
′
i(x)ψ′j(x)dx =

N+1∑
i=0

uh(xi)

∫ 1

0
ψ′i(x)ψ′j(x)dx.

Therefore, we have

N∑
i=1

uh(xi)

∫ 1

0
ψ′i(x)ψ′j(x)dx =

∫ 1

0
f(x)ψj(x)dx

− a
∫ 1

0
ψ′0(x)ψ′j(x)− b

∫ 1

0
ψ′N+1(x)ψ′j(x) for all j = 1, 2, . . . , N,

To write this method in matrix form we define

A =


∫ 1

0 ψ
′
1(x)ψ′1(x)dx

∫ 1
0 ψ
′
1(x)ψ′2(x)dx . . .

∫ 1
0 ψ
′
1(x)ψ′N (x)dx∫ 1

0 ψ
′
2(x)ψ′1(x)dx

∫ 1
0 ψ
′
2(x)ψ′2(x)dx . . .

...
. . .∫ 1

0 ψ
′
N (x)ψ′1(x)dx . . .

∫ 1
0 ψ
′
N (x)ψ′N (x)dx


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x0 x1 x2 x3 x4 x5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3. Graph of ψ0

U =


uh(x1)
uh(x2)

...
uh(xN )



F =


∫ 1

0 f(x)ψ1(x)dx∫ 1
0 f(x)ψ2(x)dx

...∫ 1
0 f(x)ψN (x)dx



G = −a


∫ 1

0 ψ
′
0(x)ψ′1(x)dx∫ 1

0 ψ
′
0(x)ψ′2(x)dx

...∫ 1
0 ψ
′
0(x)ψ′N (x)dx

− b

∫ 1

0 ψ
′
N+1(x)ψ′1(x)dx∫ 1

0 ψ
′
N+1(x)ψ′2(x)dx

...∫ 1
0 ψ
′
N+1(x)ψ′N (x)dx


Then, U solves

AU = F +G.
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Figure 4. Graph of ψ1

In order to be able to implement the method we need to find need to be able to evaluate the
entries of the matrix A and the vectors F and G. Lets start with A. An easy calculation shows
that (see Figure 5

ψ′i(x) =


0 x ∈ [0, xi−1)

1/h x ∈ [xi−1, xi)

−1/h x ∈ [xi, xi+1)

0 x ∈ (xi+1, 1].

Since

Aij =

∫ 1

0
ψ′i(x)ψ′j(x)dx.

First note that since the support of ψ′i is in (xi−1, xi+1) we see that

Aij = 0 when j = 1, . . . , i− 2 and j = i+ 2, . . . , N.

We thus only have to consider the case j = i− 1, i, i+ 1. Let us start the j = i, In this case

Aii =

∫ xi

xi−1

(1/h)2dx+

∫ xi+1

xi

(−1/h)2dx = 2/h.
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x0 x1 x2 x3 x4 x5
-5

-4

-3

-2

-1

0

1

2

3

4

5

Figure 5. Graph of ψ′1, h=.2

For j = i+ 1 we have

Ai,i+1 =

∫ xi+1

xi

(−1/h)(1/h)dx = −1/h.

Finally, for j = i− 1 we have

Ai,i−1 =

∫ xi

xi−1

(1/h)(−1/h)dx = −1/h.

In other words, we get

A =
1

h


2 −1 0 . . . 0
−1 2 −1

0
. . .

. . .
. . .

... −1
0 . . . −1 2


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We can easily calculate G to get

G =
1

h


a
0
...
0
b


Finally, in general we cannot compute exactly F . Instead we approximate Fi using the midpoint
rule:

Fi =

∫ 1

0
f(x)ψi(x)dx =

∫ xi

xi−1

f(x)ψi(x)dx+

∫ xi+1

xi

f(x)ψi(x)dx ≈ hf(xi) + f(xi+1)

2
.

where xi = xi−1+xi
2 . Hence, computationally we can solve

1

h2


2 −1 0 . . . 0
−1 2 −1

0
. . .

. . .
. . .

... −1
0 . . . −1 2




uh(x1)
uh(x2)
uh(x3)

...
uh(xN )

 =



f(x1)+f(x2)
2

f(x2)+f(x3)
2

f(x3)+f(x4)
2
...

f(xN )+f(xN+1)
2

+
1

h2


a
0
...
0
b


It is worth noting that the finite element method (where we approximate F with the midpoint
rule) is very similar to the finite difference method. The only difference is the right hand side.





CHAPTER 2

Finite difference method for poisson problem in two dimensions

In this chapter we consider a standard finite difference method for Poisson’s problem. For
simplicity, we will consider the domain Ω = (0, 1)2. We let ∂Ω denote the boundary of Ω.
Throughout we let x = (x1, x2) ∈ R2. We define the Laplacian ∆ applied to a smooth function
w:

∆w(x) = ∂2
x1w(x) + ∂2

x2w(x).

The Poisson problem is given by

−∆u(x) =f(x) for x ∈ Ω(0.1a)

u(x) =g(x) for x ∈ ∂Ω.(0.1b)

Here the functions f andg are given. The function f is known as the source term and g as the
Dirichlet data. We will assume that f and g are smooth functions. The unknown is the function
u for this section assume it belongs to C2(Ω) ∩ C(Ω).

As we did in the one-dimensional case we can easily prove the weak maximum principle

Theorem 5. Suppose u solves (0.1) and f(x) ≤ 0 for x ∈ Ω then

(0.2) max
x∈Ω

u(x) ≤ max
x∈∂Ω

g(x).

On the other hand, if f(x) ≥ 0 for all x ∈ Ω then

(0.3) min
x∈Ω

u(x) ≥ min
x∈∂Ω

g(x).

Proof. We only prove (0.2) and leave (0.3) to the reader. Define φ(x) = (x1−1/2)2+(x2−1/2)2

4
and let wε(x) = u(x) + εφ(x) where ε > 0. We see ∆φ(x) = 1 for all x and therefore we get

−∆wε(x) =f(x)− ε for x ∈ Ω,

wε(x) =g(x) + εφ(x) for x ∈ ∂Ω.

Assume that wε attains a local maximum at x ∈ Ω. Then by (1.2) we must have ∂2
x1wε(x) ≤ 0

and ∂2
x2wε(x) ≤ 0 which would imply that ∆wε(x) ≤ 0. However, ∆wε(x) = −(f(x) − ε) > 0

by our hypothesis which reaches a contradiction. Therefore, wε cannot attain a local maximum
in Ω let alone its global maximum in Ω. Hence, wε must attain its global maximum on ∂Ω. In
other words,

u(x) ≤ u(x) + εφ(x) = wε(x) ≤ max
y∈∂Ω

wε(y) for all x ∈ Ω.

On the other hand,

max
y∈∂Ω

wε(y) ≤ max
y∈∂Ω

g(y) + εmax
y∈∂Ω

φ(y) ≤ max
x∈∂Ω

g(y) +
ε

8
.

Where we used that maxy∈∂Ω φ(y) ≤ 1
8 . Combining the last two inequalities and taking the

limit as ε→ 0 gives
u(x) ≤ max

y∈∂Ω
g(y) for all x ∈ Ω.

15
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Figure 1. Graph of ψ0

This proves (0.2). �

1. Finite difference method

In order to define a finite difference we need a grid defined on Ω. Let N + 1 be given and
define h = 1/(N + 1) . Then, we define the grid as the collection of points

S = {(nh,mh) : n,m = 0, 1, . . . , N + 1}.

We denote the the interior points as SI

SI = {(nh,mh) : n,m = 1, . . . , N}.

and the boundary points as Sb = S\SI . As we did in the one-dimensional case we define the
space of discrete functions:

Ph = {v : v is a real valued function with domain S}.

We denote the principle directions of R2 by e1 = (1, 0) and e2 = (0, 1).
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Figure 2. Five point stencil

We define the discrete Laplacian for every x ∈ SI as follows

∆hv(x) ≡ 1

h2
(v(x+ he1)− 2v(x) + v(x− he1)) +

1

h2
(v(x+ he2)− 2v(x) + v(x− he2))

=
1

h2
(−4v(x) + v(x− he1) + v(x− he2) + v(x+ he1) + v(x+ he2)).

In fact, we can prove the following result using Taylor’s theorem

Lemma 2. Let u ∈ C4(Ω)

(1.1) max
x∈SI

|∆u(x)−∆hu(x)| ≤ C h2 max{‖∂4
x1u‖C(Ω), ‖∂4

x2u‖C(Ω)}

where the constant C is independent of h and u. Here we define

‖w‖C(Ω) = max
x∈Ω
|w(x)|.

The standard finite difference method finds v ∈ Ph such that

−∆hv(x) =f(x) for all x ∈ SI(1.2a)

v(x) =g(x) for all x ∈ Sb.(1.2b)

In order to be able to write a computer code we need to write the equivalent linear system
that the finite difference gives rise to. To do that we should enumerate the vertices of SI (note
that there are N2 vertices belonging to SI) . We define z1, z2, . . . , zN2 as (see Figure 3)

zn+(m−1)N = (nh,mh) for all n,m = 1, . . . , N.

We then define v(zk) = vk for k = 1, . . . , N2.
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Figure 3. Grid, N = 4, grid points Sb are in red and SI in blue

To write the linear system we need to distinguish between vertices that share an edge with
a boundary vertex and those that don’t. For vertices that don’t share an edge with a boundary
vertex we have the following linear equation

1

h2
(4vk − vk+1 − vk+N − vk−1 − vk−N ) = f(zk)

for k = n+ (m− 1)N with 2 ≤ n ≤ N − 1 and 2 ≤ m ≤ N − 1.
Then for those interior vertices that share an edge with vertices belonging to line x = 0 we

have the following linear system

1

h2
(4v1 − v2 − vN+1) =f(z1) +

1

h2
(g(z1 − he1) + g(z1 − he2))

1

h2
(4v2 − v3 − vN+2 − v1) =f(z2) +

1

h2
(g(z1 − he2))

...

1

h2
(4vN−1 − vN − v2N−1 − vN−2) =f(zN−1) +

1

h2
(g(zN−1 − he2))

1

h2
(4vN − v2N − vN−1) =f(zN ) +

1

h2
(g(zN − he2) + g(zN + he1))

Similarly, we can write the linear equations for the rest of vertices sharing an edge with a
boundary vertex.
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2. Error Analysis of Finite difference method

In order to obtain the error estimates of the finite difference method we need a stability
result. And, before that we need a discrete maximum principle

2.1. Discrete Maximum Principle.

Theorem 6. Suppose v solves (1.2) and f(x) ≤ 0 for x ∈ SI then

(2.1) max
x∈S

v(x) ≤ max
x∈Sb

g(x).

On the other hand, if f(x) ≥ 0 for all x ∈ SI then

(2.2) min
x∈S

v(x) ≥ min
x∈Sb

g(x).

Proof. We will prove (2.1) and leave the proof (2.2) to the reader. Let M = maxx∈S v(x).
First suppose that then maxx∈SI

v(x) < M then (2.1) holds.
On the other hand, suppose there that there exists x ∈ SI such that v(x) = M . Then from

(1.2a) we have

M =v(x)

=
1

4
(v(x+ he1) + v(x+ he2) + v(x− he1) + v(x− he2)) + h2f(x)

≤1

4
(v(x+ he1) + v(x+ he2) + v(x− he1) + v(x− he2)) ≤M

sincef(x) ≤ 0 and by our hypothesis 1
4(v(x+ he1) + v(x+ he2) + v(x− he1) + v(x− he2)) ≤M .

Hence, we must have

M =
1

4
(v(x+ he1) + v(x+ he2) + v(x− he1) + v(x− he2)),

or that
1

4
(M − v(x+ he1)) +

1

4
(M − v(x+ he2)) +

1

4
(M − v(x− he1)) +

1

4
(M − v(x− he2)) = 0.

By our hypothesis each term on the left hand side is non-negative as so it must be v(x) =
v(x + he1) = v(x + he2) = v(x − he1) = v(x − he2) = M . We can repeat the argument for
the v(x+ he1), v(x+ he2), v(x− he1), v(x− he2) and have all its neighbors also equal to M . If
we repeat this process we will arrive at v ≡ M is a constant discrete function. Therefore, (2.1)
trivially holds. �

2.2. Discrete Stability Result.

Theorem 7. Suppose v solves (1.2) then

(2.3) max
x∈S
|v(x)| ≤ max

x∈Sb

|g(x)|+ 1

8
max
x∈SI

|f(x)|.

Proof. Let φ(x) = Q
4 (x1 − 1/2)2 + (x2 − 1/2)2 where Q = maxx∈SI

|f(x)|. The it is
not difficult to show that ∆hφ(x) = Q for all x ∈ SI . Then we define w ∈ Ph as follows
w(x) = v(x) + φ(x). We see that w solves �

−∆hw(x) =f(x)−Q for all x ∈ SI(2.4a)

w(x) =g(x) + φ(x) for all x ∈ Sb.(2.4b)
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Since f(x)−Q ≤ 0 for all x ∈ SI we can apply (2.1) to get

v(x) ≤ v(x) + φ(x) ≤ max
y∈Sb

(g(y) + φ(y)) for all x ∈ S.

However,
max
y∈Sb

(g(y) + φ(y)) ≤ max
y∈Sb

|g(y)|+ max
y∈Sb

|φ(y)| ≤ max
y∈Sb

|g(y)|+Q/8.

Hence, we have
v(x) ≤ max

y∈Sb

|g(y)|+Q/8. for all x ∈ S.

Similarly, we can show that

−v(x) ≤ max
y∈Sb

|g(y)|+Q/8. for all x ∈ S.

Hence, we have
|v(x)| ≤ max

y∈Sb

|g(y)|+Q/8. for all x ∈ S,

which proves the result.

2.3. Error Estimate. We can prove the desired error estimate.

Theorem 8. Suppose v solves (1.2) and suppose that u ∈ C4(Ω) solves (0.1) then we have

max
x∈S
|u(x)− v(x)| ≤ C h2 max{‖∂4

x1u‖C(Ω), ‖∂4
x2u‖C(Ω)}

where C is independent of h and u

Proof. Let w ∈ Ph and let w(x) = u(x)− v(x) for all x ∈ S.
Then, w solves

−∆hw(x) =−∆hu(x) + f(x) for all x ∈ SI
w(x) =0 for all x ∈ Sb.

Therefore, we get by (2.3) we get

max
x∈S
|w(x)| ≤ 1

8
max
x∈SI

| −∆hu(x) + f(x)| = 1

8
max
x∈SI

|∆u(x)−∆hu(x)|.

The result now follows from (1.1). �



CHAPTER 3

Finite Element Methods for second order elliptic Problems

In this chapter we study finite element methods for second order elliptic problems.

1. Function Spaces

We first need to study some function spaces. We let Ω ⊂ R2 be a bounded domain with
Lipschitz boundary. We recall the space of m-th order continuous functions:

Cm(Ω) = {v : all the partial derivatives of order less than or equal to m of v are continuous in Ω}.

Cmc (Ω) = {v ∈ Cm(Ω) : v vanishes outside of Ω0 ⊂⊂ Ω}.
Here Ω0 is a compact domain and Ω0 ⊂⊂ Ω means ∂Ω0 ∩ ∂Ω = ∅.

We will need to make sense of derivatives of functions that are not differentiable everywhere.
For example, the function u(x) = |x|. To do that we need to define the weakderivative of a
function if it exists. This is done via integration by parts.

Let us recall integration by parts formula for smooth functions. Let n = (n1,n2) be the
unit outward pointing normal to Ω. Suppose that u, v ∈ C∞(R2)∫

Ω
∂xiu(x)v(x)dx = −

∫
Ω
u(x)∂xiv(x)dx−

∫
∂Ω
u(x)v(x)nids for i = 1, 2.

Let u be an integrable function on Ω then we say that ∂xiu exists if there is an integrable function
φ such that ∫

Ω
φ(x)v(x)dx = −

∫
Ω
u(x)∂xiv(x)dx for all v ∈ C∞c (Ω).

in which case we define ∂xiu(x) = φ(x). In other words, if ∂xiu then

(1.1)

∫
Ω
∂xiu(x)v(x)dx = −

∫
Ω
u(x)∂xiv(x)dx for all v ∈ C∞c (Ω).

Or course ∂xiu(x) are uniquely defined up to a set of measure zero.
We will also need to define the following function spaces

L2(Ω) = {v : v is integrable on Ω and

∫
Ω
v2(x)dx <∞}.

We define the Sobolev space Hm as follows

Hm(Ω) = {v ∈ L2(Ω) : ∂α1
x1 ∂

α2
x2 u ∈ L

2(Ω), for all α1 + α2 ≤ m}.

The associated norm is given as follows

‖u‖2Hm(Ω) =
m∑
j=0

|u|2Hj(Ω) where |u|2Hj(Ω) =
∑

α1+α2=j

‖∂α1
x1 ∂

α2
x2 u‖

2
L2(Ω).

21
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2. Linear second-order elliptic problems

Recall that div F (x) = ∂x1F1(x) + ∂x2F2(x) where F (x) = (F1(x), F2(x)). We will study
second order elliptic problems of the form

−div (A(x)∇u(x)) =f(x) for x ∈ Ω(2.1a)

u(x) =g(x) for x ∈ ∂Ω.(2.1b)

Here we assume that A(x) ∈ R2×2 is a symmetric matrix for every x ∈ Ω and is smooth on Ω.
Notice that if A(x) is the identity matrix for all x then div (A(x)∇u(x)) = −∆u(x). We can
write out div (A(x)∇u(x))

div (A(x)∇u(x)) = ∂x1(A11(x)∂x1u(x) +A12(x)∂x2u(x)) + ∂x1(A21(x)∂x1u(x) +A22(x)∂x2u(x)).

In particular, if A is a constant matrix independent of x we have

div (A(x)∇u(x)) = A11∂
2
x1u(x) + 2A12∂x1∂x2u(x) +A22∂

2
x2u(x).

We assume that A is uniformly elliptic. That, is there exists a constant θ > 0 such that

(2.2) ytA(x)y ≥ θyty for all y ∈ R2 and x ∈ Ω.

One can easily show that this is equivalent to A(x) having uniformly positive eigenvalues on Ω.
Since A is smooth we also have that there exists a constant γ > 0 such that

(2.3) ytA(x)z ≤ γ|y||z| for all y, z ∈ R2 and x ∈ Ω.

2.1. Weak Formulation of second-order problems. We define H1
0 (Ω) = {v ∈ H1(Ω) :

v vanishes on ∂Ω}. If we use the integration by parts formula (1.1) we can derive Gauss’ integral
formula ∫

Ω
div F (x)v(x)dx = −

∫
Ω
F (x) · ∇v(x)dx+

∫
∂Ω
F (x) · nv(x)ds.

If we apply this to (2.1a) we have∫
Ω
A(x)∇u(x) · ∇v(x)dx =

∫
Ω
f(x)v(x)dx for all v ∈ H1

0 (Ω).

Hence, we can state the weak formulation of (2.1) as follows Find u ∈ H1(Ω) with u = g on
∂Ω such that

(2.4)

∫
Ω
A(x)∇u(x) · ∇v(x)dx =

∫
Ω
f(x)v(x)dx for all v ∈ H1

0 (Ω).

We use the notation

(2.5) a(u, v) =

∫
Ω
A(x)∇u(x) · ∇v(x)dx.

and

(f, u) =

∫
Ω
f(x)v(x)dx.

Hence, we can write the weak form as follows Find u ∈ H1(Ω) with u = g on ∂Ω such that

(2.6) a(u, v) = (f, v) for all v ∈ H1
0 (Ω).

The nice property of the weak formulation is that solutions could exists even though they do
not have second derivatives. They only require that u ∈ H1(Ω). Therefore, the weak formulation
is a generalization of (2.1).
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Figure 1. Illustration of θT , hT

3. Finite Element Formulation

In this section we develop finite element method for (2.6). To do that we need to define
some concepts. For simplicity we will assume that Ω is a polygonal domain. We will assume
that we have a family of triangulations of Ω of {Th}. For every h we assume that

Ω = ∪T∈ThT .

If T,K ∈ Th and T 6= K then T ∩K is either empty, a vertex or an edge of the triangulation.
We assume that the mesh is shape regular: There exists a constant κ > 0 such that

(3.1) θT ≥ κ for all T ∈ {Th},

where θT denotes the smallest angle of the triangle T .
We also also define

hT = diam(T ),

and

h = sup
T∈Th

hT .

We now define finite element spaces:

Vh = {v ∈ C(Ω) : v|T ∈ P 1(T ) for all T ∈ Th},

where P 1(T ) is the space of affine function defined on T . We also define

V 0
h = {v ∈ Vh, v ≡ 0 on ∂Ω}.
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Figure 2. Example of a triangulation of a polygonal domain the vertices Sb are
in green, and SI in blue

We can also define a basis for the spaces Vh. Let us denote by

S ={ set of all vertices of Th}
SI ={x ∈ S : x /∈ ∂Ω}
Sb =S\SI .

Let us enumerate the vertices in S, SI , Sb:

S ={z1, z2, . . . , zM}
SI ={zj1 , zj2 , . . . , zjQ}
Sb ={z`1 , z`2 , . . . , z`R}

here 1 ≤ j1 ≤ · · · ≤ jQ ≤M , 1 ≤ `1 ≤ · · · ≤ `R ≤M , and Q+R = M .
For each i = 1, . . . ,M we define ψi ∈ Vh

ψi(zj) =

{
1 if j = i

0 if j 6= i

Then we see that if v ∈ Vh we have

v(x) =
∑

1≤i≤1

v(zi)ψi(x) for all x ∈ Ω.
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Figure 3. An example of an ψi basis function

The finite element method solves: Find uh ∈ Vh with u(z) = g(z) for all z ∈ Sb such that

(3.2)

∫
Ω
A(x)∇uh(x) · ∇vh(x)dx =

∫
Ω
f(x)vh(x)dx for all vh ∈ V 0

h .

or using the a(·, ·) notation Find uh ∈ Vh with u(z) = g(z) for all z ∈ Sb such that

(3.3) a(uh, vh) = (f, v) for all vh ∈ V 0
h .

We can easily show, using that a(uh, ·), (f, ·) are linear forms that

(3.4) a(uh, ψjk) = (f, ψjk) 1 ≤ k ≤ Q.

If we write

uh(x) =
∑

1≤i≤M
uh(zi)ψi(x) for all x ∈ Ω.

we have

(3.5)
∑

1≤i≤M
uh(zi)a(ψi, ψjk) = (f, ψjk) 1 ≤ k ≤ Q.

or using that uh(z) = g(z) for z ∈ Sb we get:

(3.6)
∑

1≤s≤Q
uh(zjs)a(ψjs , ψjk) = (f, ψjk)−

∑
1≤s≤R

g(z`s)a(ψ`s , ψjk) 1 ≤ k ≤ Q.

We then have the matrix system
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
a(ψj1 , ψj1) a(ψj1 , ψj2) . . . a(ψj1 , ψjQ)
a(ψj2 , ψj1) a(ψj2 , ψj2) . . . a(ψj2 , ψjQ)

...
. . .

...
a(ψjQ , ψj1) . . . a(ψjQ , ψjQ)



uh(zj1)
uh(zj2)

...
uh(zjQ)

 =


(f, ψj1)
(f, ψj2)

...
(f, ψjQ)

+G,

where

G =



a(ψj1 , ψ`1) a(ψj1 , ψ`2) . . . a(ψj1 , ψ`R)
a(ψj2 , ψ`1) a(ψj2 , ψ`2) . . . a(ψj2 , ψ`R)

...
. . .

...
...

...
...

...
a(ψjQ , ψ`1) . . . a(ψjQ , ψ`R)




g(z`1)
g(z`2)

...
g(z`R)

 .

3.1. Implemenation of FEM.

3.2. Error Analysis of FEM. In this section we perform an error analysis of the finite
element method. We will see that error estimates follows easily from, coercivity and boundedness
of bilinear form and from Galerkin Orthogonality of the FEM.

Lemma 3. Coercivity: It holds

(3.7) θ‖∇v‖2L2(Ω) ≤ a(v, v) for all v ∈ H1(Ω).

Proof. Recall that

a(v, v) =

∫
Ω
A(x)∇v(x) · ∇v(x)dx =

∫
Ω

(∇v(x))tA(x)∇v(x)dx

then the result follows from (2.2). �

Lemma 4. Boundedness: It holds,

(3.8) a(v, w) ≤ γ‖∇v‖L2(Ω)‖∇w‖L2(Ω) ≤ for all v, w ∈ H1(Ω).

Proof. Similar to the previous proof the result follows from (2.3). �

Lemma 5. Galerkin Orthogonality Let u solve (2.5) and let uh solve (3.3) then we have

(3.9) a(u− uh, vh) = 0 for all vh ∈ V 0
h .

Proof. Since V 0
h ⊂ H1

0 (Ω) we have by (2.5)

a(u, vh) = (f, vh) for all vh ∈ V 0
h .

However, (3.3) states that

a(uh, vh) = (f, vh) for all vh ∈ V 0
h .

Therefore, we have
a(u, vh)− a(uh, vh) = 0 for all vh ∈ V 0

h .

Using that a(·, vh) is linear we get

a(u, vh)− a(uh, vh) = a(u− uh, vh) for all vh ∈ V 0
h .

The result now follows. �

Now we can easily prove the following result.
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Theorem 9. Let u solve (2.5) and let uh solve (3.3) then we have

(3.10) ‖∇(u− uh)‖L2(Ω) ≤
γ

θ
min
v∈V g

h

‖∇(u− vh)‖L2(Ω).

where V g
h = {vh ∈ Vh : vh(z) = g(z) for all z ∈ Sb}.

Proof. By Coercivity (3.7) we obtain

θ‖∇(u− uh)‖2L2(Ω) ≤ a(u− uh, u− uh).

Now by linearity of a(u− uh, ·) we have

a(u− uh, u− uh) = a(u− uh, u− vh)− a(u− uh, uh − vh) for all vh ∈ V g
h .

Since uh, vh ∈ V g
h we have uh − vh ∈ V 0

h and therefore, we get
By Galerkin orthogonality (3.9)

a(u− uh, uh − vh) = 0 for all vh ∈ V g
h .

Combining the above results we get

θ‖∇(u− uh)‖2L2(Ω) ≤ a(u− uh, u− vh) for all vh ∈ V g
h .

Using (3.8) we get

θ‖∇(u− uh)‖2L2(Ω) ≤ γ‖∇(u− uh)‖L2(Ω)‖∇(u− vh)‖L2(Ω) for all vh ∈ V g
h .

Dividing by ‖∇(u− uh)‖L2(Ω) we obtain

θ‖∇(u− uh)‖L2(Ω) ≤
γ

θ
‖∇(u− vh)‖L2(Ω) for all vh ∈ V g

h .

The result follows by taking the minimum over vh ∈ V g
h . �

The result (3.12) says that the FEM approximation uh is almost the best approximation to
u in the space Vh when measured in the ‖∇·‖L2(Ω) norm. Next, we give an approximation result
in terms of the mesh size h. The proof of this result which is quite technical will proved in the
next section.

Proposition 2. If u ∈ H2(Ω) then

(3.11) min
vh∈V g

h

‖∇(u− vh)‖L2(Ω) ≤ Ch|u|H2(Ω).

Then the following corollary follows from (3.11) and (3.12).

Corollary 1. Let u solve (2.5) and let uh solve (3.3) and assume that u ∈ H2(Ω), then

(3.12) ‖∇(u− uh)‖L2(Ω) ≤ C h|u|H2(Ω).

where the constant C is independent of u and h.

We now wan to study the error estimates ‖u − uh‖L2(Ω) instead. For simplicity we assume

that g ≡ 0 . To do this we need a result from PDE theory. The following is a standard H2

regularity resullt.

Proposition 3. Let u solve (2.5) with g ≡ 0 and suppose that Ω is a a convex polygon then

(3.13) ‖u‖H2(Ω) ≤ C ‖f‖L2(Ω).

The result seems very reasonable since formally ∆u = −f . So, we that some combination of
second derivatives are controlled by f . The result says that all the second derivatives of u are
controlled by f .

We can now state the desired estimate.
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Theorem 10. Let u solve (2.5) with g ≡ 0 and let uh solve (3.3) and assume that Ω is a a
convex polygon, then

‖u− uh‖L2(Ω) ≤ Ch2‖f‖L2(Ω).

Please note that this result says that ‖u − uh‖L2(Ω) converges to zero with one order higher
than ‖∇(u− uh)‖L2(Ω).

Proof. Let φ ∈ H1
0 (Ω) solve the following problem

a(φ, v) = (u− uh, v) for all v ∈ H1
0 (Ω).

Then, setting v = u− uh we get

‖u− uh‖2L2(Ω) = a(φ, u− uh) = a(u− uh, φ).

If we use Galerkin Orthogonality (3.9) we get

‖u− uh‖2L2(Ω) = a(u− uh, φ− vh) for all vh ∈ V 0
h .

By (3.8) we get

‖u− uh‖2L2(Ω) ≤ γ‖∇(u− uh)‖L2(Ω)‖∇(φ− vh)‖L2(Ω) for all vh ∈ V 0
h .

Using (3.11) and (3.13) we obtain

‖u− uh‖2L2(Ω) ≤ C h‖∇(u− uh)‖L2(Ω)‖u− uh‖L2(Ω).

After dividing by ‖u− uh‖L2(Ω), using (3.12) and (3.13) we obtain the result. �

3.3. Approximation of Piecewise linear functions. We are left to prove (3.11). To be
precise we will use standard results that are used in the analysis of elliptic PDEs. These results
are useful in many other context and not only important for the approximation theory we will
give here.

We will fix a reference triangle: T̂ which is the triangle with vertices (0,0), (1, 0) , (0,1). We
then state a few results.

The first is Poincare’s inequality.

Proposition 4. Poincare’s inequality: Suppose that w ∈ H1(T̂ ) and let w = 1
|T̂ |

∫
T̂ w(x)dx

then,

(3.14) ‖w − w‖L2(T̂ ) ≤ C |w|H1(T̂ ),

where C is independent of w.

The next result is one type Sobolev inequality. There are many Sobolev embedding and
inequalities.

Proposition 5. A Sobolev inequality: If v ∈ H2(T̂ ) then v ∈ C(T̂ ) and the following
inequality holds

(3.15) ‖v‖L∞(T̂ ) ≤ C‖v‖H2(T̂ ).

We will are going to transfer estimates from T ∈ Th to T̂ . The important point here is that
T̂ is fixed. To do this, we need to define an affine transformation from FT : T̂ → T define as

FT (x̂) = BT x̂+ bT .
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Figure 4. An example of an ψi basis function

Not that if T has vertices z0, z1, z2 then the first column of BT is z1 − z0 while the second
column is z2 − z0 and finally bT = z0. That is,

BT =
[
z1 − z0 z2 − z0

]
, bT = z0.

We will state a proof of the size of entries of BT and B−1
T . Here we use strongly the shape

regularity, (3.1)

Lemma 6. There exists a constant C independent of h and T ∈ Th such that

(3.16) |(BT )ij | ≤ C hT |(B−1
T )ij | ≤ Ch−1

T for all T ∈ Th, i, j = 1, 2.

We also use the following notation. Let w be defined as a function on T then define the
function ŵ as function on T̂ given by

ŵ(x̂) = w(FT (x̂)).

Using a change of variable formula we have

(3.17)

∫
T
w(x)dx =

∫
T̂
w(FT (x̂)) det(BT )dx̂.

or

(3.18)

∫
T
w(x)dx =

∫
T̂
ŵ(x̂) det(BT )dx̂.

Now notice that using the chain rule we have

(3.19) ∇xw(x) = ∇xŵ(F−1
T (x)) = B−tT ∇x̂ŵ(F−1

T (x)) = B−tT ∇x̂ŵ(x̂),
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where x = FT (x̂). Note that we write ∇x to denote the gradient with respect to the variable x.
Whereas, ∇x̂ is gradient with respect to x̂.

Hence using (3.17) and (3.19) we obtain

(3.20)

∫
T
∇xw(x) · ∇xv(x)dx =

∫
T̂

(B−tT ∇x̂ŵ(x̂)) · (B−tT ∇x̂v̂(x̂)) det(BT )dx̂.

We can then prove the following results

Lemma 7. It holds,

(3.21)
c1

hT
‖w‖L2(T ) ≤ ‖ŵ‖L2(T̂ ) ≤

c2

hT
‖w‖L2(T ),

(3.22) c1|w|H1(T ) ≤ |ŵ|H1(T̂ ) ≤ c2|w|H1(T ),

(3.23) c1hT |w|H2(T ) ≤ |ŵ|H2(T̂ ) ≤ c2hT ‖w‖L2(T ).

Proof. We only prove (3.22). The proof of the other two proofs follow a similar line of
argument. By (3.20) we have

|w|2H1(T ) = ‖∇w‖2L2(T ) = detBT ‖B−tT ∇ŵ‖
2
L2(T̂ )

.

By (3.16) we have
detBT ≤ C h2

T ,

and
‖B−tT ∇ŵ‖

2
L2(T̂ )

≤ Ch−2
T ‖∇ŵ‖

2
L2(T̂ )

.

The result now follows. �

We can now state a local approximation result known as the Bramble-Hilbert lemma. The
result will follow

Lemma 8. Bramble–Hilbert: Let w ∈ H2(T ) then there exists a v ∈ P 1(T ) such that

‖w − v‖L2(T ) + hT ‖∇(w − v)‖L2(T ) ≤ Ch2
T |w|H2(T ).

Proof. Let v(x) = c0 + c1x1 + c2x2 where x = (x1, x2). We define first c1, c2

ci =
1

|T |

∫
T
∂xiw(x)dx for all i = 1, 2.

Note that since ci = ∂xiv(x) we have that

(3.24)
1

|T |

∫
T
∂xiv(x)dx =

1

|T |

∫
T
∂xiw(x)dx for all i = 1, 2.

Now that we have define c1, c2 we define c0 so that

(3.25)
1

|T |

∫
T
v(x)dx =

1

|T |

∫
T
w(x)dx.

That is,

c0 =
1

|T |

∫
T

(w(x)− (c1x1 + c2x2))dx.

If we define q(x) = w(x)− v(x) and consider q̂(x̂). Note that by (3.24)∫
T
∂xiq(x) = 0 for i = 1, 2
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Again, using (3.17) and (3.19) we get

detBT ((B−tT )i1

∫
T̂
∂x̂1 q̂(x̂)dx̂+ (B−tT )i2

∫
T̂
∂x̂2 q̂(x̂)dx̂) =

∫
T
∂xiq(x)dx,

for i = 1, 2. Hence, we get

(detBT )B−1
T

[∫
T ∂x̂1 q̂(x̂)dx̂∫
T ∂x̂2 q̂(x̂)dx̂

]
=

[
0
0

]
Hence, we get ∫

T̂
∂x̂i q̂(x̂)dx̂ = 0 for i = 1, 2

Similarly, we have ∫
T
q̂(x̂)dx̂ = 0.

Thus, ∂x̂i q̂ ≡ 0 and q̂ ≡ 0 and by Poincare’s inequality we get

|q̂|2
H1(T̂ )

= ‖∂x̂1 q̂‖2L2(T̂ )
+ ‖∂x̂2 q̂‖2L2(T̂ )

≤ C
∑

α1+α2=2

‖∂α1
x̂1
∂α2
x̂2
q̂‖2
L2(T̂ )

= C|q̂|2
H2(T̂ )

.

Using this result with (3.22) gives

|q|H1(T ) ≤ C |q̂|H1(T̂ ) ≤ C |q̂|
2
H2(T̂ )

≤ hT |q|H2(T ).

Also, using (3.21), Poincare’s inequality and the previous inequality we get

‖q‖L2(T ) ≤ ChT ‖q̂‖L2(T̂ ) ≤ ChT |q̂|H1(T̂ ) ≤ ChT ‖q‖L2(T ) ≤ Ch2
T |q|H2(T ).

�

We will also need an inverse estimate. We can prove this result with more elementary results.
We give a proof that is generalizable to other finite element spaces.

Lemma 9. Inverse inequality : Let T ∈ Th then for every v ∈ P 1(T )

|v|H1(T ) ≤
C

hT
‖v‖L2(T )

where the constant C is independent of T and v.

Proof. By (3.22)

(3.26) |v|H1(T ) ≤ C|v̂|H1(T̂ )

Note that v̂ ∈ P 1(T̂ ). Since P 1(T̂ ) is a finite dimensional space we know that norms are
equivalent. Hence,

|v̂|H1(T̂ ) ≤ Ĉ‖v̂‖L2(T̂ ).

where the constant Ĉ is independent v̂. Note that we are using that T̂ is fixed. Using (3.21) we
get

‖v̂‖L2(T̂ ) ≤
C

hT
‖v‖L2(T ).

Combining the above inequalities gives the result. �

We can state a simple corollary.

Corollary 2. Let T ∈ Th with vertices zi (i = 0, 1, 2) then for every v ∈ P 1(T )

(3.27) |v|H1(T ) ≤ C max{v(z0), v(z1), v(z2)}.
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Proof. We easily see that

‖v‖2L2(T ) =

∫
T
v2(x)dx ≤ |T |‖v‖2L∞(T ).

Hence,

‖v‖L2(T ) ≤
√
|T |‖v‖L∞(T ).

Since the maximum of |v| occurs at the vertices and so we have

‖v‖L2(T ) ≤
√
|T |max{v(z0), v(z1), v(z2)}.

Using that the mesh is shape regular (3.1) we easily have that
√
|T | ≤ ChT . Hence, combining

the above inequality with (3.26). �

In order to prove our main result (3.11) we need to define the interpolant operator.

Definition 3.1. For w ∈ C(Ω) we define Ihw = Vh by

Ihw(z) = w(z) for all z ∈ S.

3.4. Proof of (3.11). First we see that Ihu ∈ V g
h and so

inf
v∈V g

h

‖∇(u− v)‖L2(Ω) ≤ ‖∇(u− Ihu)‖L2(Ω).

Let us write

(3.28) ‖∇(u− Ihu)‖2L2(Ω) =
∑
T∈Th

‖∇(u− Ihu)‖2L2(T ).

From the Bramble-Hilbert Lemma we have there exists q ∈ P 1(T ) so that

(3.29) ‖u− q‖L2(T ) + hT ‖∇(u− q)‖L2(T ) ≤ C h2
T |u|H2(T ).

Using the triangle inequality we get

(3.30) ‖∇(u− Ihu)‖L2(T ) ≤ C(‖∇(u− q)‖L2(T ) + ‖∇(q − Ihu)‖L2(T )).

We let w = (q − Ihu)|T and use (3.27) to get

‖∇(q − Ihu)‖L2(T ) = ‖∇w‖L2(T ) ≤ C max{w(z0), w(z1), w(z2)},

where zi (i = 0, 1, 2) are the vertices of T . However, w(zi) = q(zi) − Ihu(zi) = q(zi) − u(zi) by
the definition of Ih. Hence,

max{w(z0), w(z1), w(z2)} ≤ ‖u− q‖L∞(T ).

Therefore, we have

(3.31) ‖∇(q − Ihu)‖L2(T ) ≤ C ‖u− q‖L∞(T ).

Clearly we have

‖u− q‖L∞(T ) ≤ ‖û− q̂‖L∞(T̂ ).

By (3.15) and definition of H2-norm

‖û− q̂‖L∞(T̂ ) ≤ C‖û− q̂‖H2(T̂ ) ≤ C(|û− q̂|H2(T̂ ) + |û− q̂|H1(T̂ ) + ‖û− q̂‖L2(T̂ )).

Then, combining the above inequalities and using (3.21), (3.22), (3.23) we have

‖u− q‖L∞(T ) ≤ C(hT |u− q|H2(T ) + |u− q|H1(T ) +
1

hT
‖u− q‖L2(T )).
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If we combine this inequality with this inequality with (3.31) and (3.30) we get

‖∇(u− Ihu)‖L2(T ) ≤ C(hT |u− q|H2(T ) + |u− q|H1(T ) +
1

hT
‖u− q‖L2(T )).

Using (3.29) we get
‖∇(u− Ihu)‖L2(T ) ≤ C hT |u|H2(T ),

where we also used that the second derivatives of q ∈ P 1(T ) are zero since. Hence, using (3.28)
we get

‖∇(u− Ihu)‖2L2(Ω) ≤ C h
2
∑
T∈Th

|u|2H2(T ) = Ch2|u|2H2(Ω).

The result now follows after taking the square root of both sides.
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