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Abstract. We prove optimal convergence rates for the approximation provided by the original
discontinuous Galerkin method for the transport-reaction problem. This is achieved in any dimension
on meshes related in a suitable way to the possibly variable velocity carrying out the transport. Thus,
if the method uses polynomials of degree k, the L2-norm of the error is of order k + 1. Moreover, we
also show that, by means of an element-by-element postprocessing, a new approximate flux can be
obtained which superconverges with order k + 1.
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1. Introduction. We prove optimal convergence properties of the original dis-
continuous Galerkin (DG) [12, 9] method for the convection-reaction problem

β · ∇u + c u = f in Ω, (1.1a)

u = g on Γ−. (1.1b)

Here Ω ⊂ Rd is a bounded polyhedral domain, Γ− := {x ∈ ∂Ω : β · n(x) < 0}, and
n(x) is the outward unit normal at the point x ∈ ∂Ω. The functions f and g are
smooth, c is a bounded function and, more important, β is a smooth, divergence-free
function.

Let us describe our result. It is well known that, for constant transport velocities
β, the DG method for the above problem provides approximations converging with
sub-optimal rates on general meshes. This was shown for the first time in [10] for
a particular type of two-dimensional mesh. The class of meshes for which this sub-
optimal rate of convergence can be demonstrated was recently extended in [13] to
include some two-dimensional smooth, periodically varying meshes. On the other
hand, in a diametrically opposed effort, a class of special multi-dimensional meshes for
which the optimal order of convergence is actually achieved was recently uncovered in
[3]. Here, we continue this effort and prove that a similar result also holds for variable
transport velocities β.

Indeed, we show that, for a special class of triangulations Th,

‖u− uh ‖L2(Th) + ‖ ∂βu− ∂β,huh ‖L2(Th) ≤C hk+1,

where uh is the approximation given by the DG method using polynomials of degree
k, and ∂β,huh is an approximation to ∂βu = β · ∇u obtained by using an element-
by-element postprocessing of uh. The constant C in the above estimate only depends
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on the Hk+1-seminorm of the exact solution u as well as on the regularity of the
transport velocity β.

The special triangulations Th for which the above result holds are strongly related
to the transport velocity as follows. They are made of simplexes K satisfying the
following flow conditions:

Each simplex K has a unique outflow face with respect to β, e+
K . (1.2a)

Each interior face e+
K is included in an inflow face with respect to β

of another simplex. (1.2b)

On each face e 6= e+
K of the simplex K which is not an inflow face, we have

1
|e| | 〈β · n, 1〉e | ≤ Cβ hK , (1.2c)

for some constant Cβ, where hK = diam(K).

As usual, we say that the face e of the simplex K is an outflow (inflow) face with
respect to β if β ·nK |e > (<) 0. We say that a face is interior if it is not included in
∂Ω.

Let us briefly discuss these conditions. The first two conditions define the special
triangulations in the case in which the velocity β is constant; they were introduced
in [3]. Note that in this case, the third condition is automatically satisfied with
Cβ = 0 since β · n = 0 on any face e which is not e+

K or an inflow face. When the
velocity is not constant, our analysis shows that it is not necessary to request such
a stringent condition. Instead, it is enough to require that the average on e of the
normal component of the transport velocity be small enough. This condition is not
difficult to satisfy. It holds, for example, when β ·n(x0) = 0 for any particular point
x0 of the face e. Indeed, since

〈β · n, 1〉e = 〈β · n− β · n(x0), 1〉e,

we have that

1
|e| | 〈β · n, 1〉e | ≤ |β |W 1,∞(e) hK ,

and the third condition is satisfied with Cβ := |β |W 1,∞(Ω).
Of course, the families of triangulations we consider also satisfy the classical

assumption of shape regularity, see [2]. Thus, there is a constant σ > 0 such that

For each simplex K ∈ Th : hK/ρK ≥ σ, (1.3)

where hK denotes the diameter of the simplex K and ρK the diameter of the biggest
ball included in K.

Finally, let us briefly discuss a technicality arising from the fact that the transport
velocity β is variable. In order to prove the L2-stability of the DG method in this
case, we assume that

1
2

β(x) · β(x) + c(x) ≥ γ > 0 for all x ∈ Ω, (1.4)

for a fixed γ > 0. A somewhat stronger assumption of this type was used in [6].
The paper is organized as follows. In Section 2 we state and prove our main

results and, in Section 3, we carry out numerical experiments validating them. We
end in Section 4 with some concluding remarks.
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2. The main results.

2.1. The DG method. Let us introduce the original DG method for our prob-
lem (1.1). Suppose we have a family of triangulations {Th} of Ω satisfying the flow
conditions (1.2). To each triangulation Th, we associate the number h = supK∈Th

hK ,
where hK = diam(K), and the finite-dimensional space V k

h which is composed of
functions that are polynomials of degree at most k on each simplex K ∈ Th. Then,
the DG approximation uh ∈ Vh of the solution of (1.1) is defined as the solution of

B(uh, vh) =(f, vh)Th
− 〈g, vh β · n〉Γ− , for all vh ∈ Vh, (2.1a)

where

B(w, v) :=− (w, ∂βv)Th
+ 〈ŵ, v β · n〉∂Th\Γ− + (cw, v)Th

, (2.1b)

for any w, v in H1(Th). Here, the numerical trace of a function w on a point z ∈ ∂K
for a simplex K ∈ Th is given by

ŵ :=w−, (2.1c)

where w±(z) = limδ↓0 w(z ± δβ(z)) where z ∈ e. We are using the notation

(σ, v)Th
:=

∑

K∈Th

∫

K

σ(x) · v(x) dx, (ζ, ω)Th
:=

∑

K∈Th

∫

K

ζ(x) ω(x) dx,

〈ζ, v · n〉∂Th
:=

∑

K∈Th

∫

∂K

ζ(γ)v(γ) · n dγ,

for any functions σ, v in H1(Th) := [H1(Th)]d and ζ, ω in H1(Th). The outward
normal unit vector to ∂K is denoted by n.

Before we present our main result we need to state the following stability result
for the DG method.

Lemma 2.1. Suppose that condition (1.4) holds and assume that wh satisfies
B(wh, v) = F (v) for all v ∈ Vh where F is a linear form. Then, for h sufficiently
small

‖wh‖L2(Th) ≤ Cs max
v∈Vh

|F (v)|
‖v‖L2(Th)

,

where Cs depends on the regularity of β.
Of course, stability results like this are standard. For constant β the proof is in

[7]. The case of variable β, but imposing a stronger condition on the coefficients than
(1.4), is contained in [6]. We sketch the proof of this Lemma in the appendix.

2.2. The approximation of u. Our main result is the following.
Theorem 2.2. Assume that the positivity condition (1.4) holds. Assume also

that the triangulation Th satisfies the flow conditions (1.2) and the shape-regularity
condition (1.3). Then, if h is small enough, we have

‖u− uh ‖L2(Th) ≤ C hk+1,

where C = C (1 + |β |W 1,∞(Ω) + Cβ) |u |Hk+1(Th) and C depends on Cs.
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Note that, just as the corresponding result for the case of constant velocity in [3],
this result is optimal in both the order of convergence as well as in the regularity of
the exact solution. To prove it, we follow [3]. We proceed in several steps.

Step 1: The Projection P. We begin by recalling the definition of the pro-
jection P, defined on triangulations Th satisfying the flow condition (1.2a); see [4, 3].
The function Pu ∈ Vh restricted to K ∈ Th is given by

(Pu− u, v)K = 0, for all v ∈ Pk−1(K) if k > 0, (2.2a)

〈Pu− u,w〉e+
K

= 0, for all w ∈ Pk(e+
K), (2.2b)

where P`(D) stands for the space of polynomials of total degree at most ` defined on
the set D. The projection P has the following approximation property [3]

‖Pu− u‖L2(K) ≤ Chk+1|u |Hk+1(K). (2.3)

Since we have that

‖u− uh‖L2(Th) ≤ ‖u− Pu‖L2(Th) + ‖E ‖L2(Th),

where E = uh−Pu, if we assume the shape-regularity condition (1.3) on the triangu-
lation Th, by the approximation property of the projection P (2.3), we have that

‖u− uh ‖L2(Th) ≤ C |u |Hk+1(Th) hk+1 + ‖E ‖L2(Th),

whenever u ∈ Hk+1(Th). It remains to estimate the projection of the error E.

Step 2: Estimate of E. By the error equation

B(u− uh, v) = 0 for all v ∈ Vh,

and so, for all v ∈ Vh, we have that

B(E, v) =B(u− Pu, v) =
3∑

i=1

Ti(v),

where, by definition of the bilinear form B(·, ·), (2.1b),

T1(v) :=− (u− Pu, β · ∇v)Th
,

T2(v) :=〈u− P̂u, v β · n〉∂Th\Γ− ,

T3(v) :=(c (u− Pu), v)Th
.

Thus, by Lemma 2.1, we obtain

‖E‖L2(Th) ≤ Cs

3∑

i=1

sup
v∈Vh

|Ti(v) |
‖ v ‖L2(Th)

,

for h small enough.
It remains to estimate the linear forms Ti(v), i = 1, 2, 3. To do that, we are going

to use the auxiliary vector-valued function βo defined as follows. On each simplex
K ∈ Th, βo is a constant vector defined by

〈(β − βo) · n, 1〉e = 0 for all faces e of K.
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The vector βo is nothing but the lowest-order Raviart-Thomas projection of β. Note
that, since ∇ · β = 0, βo is constant on K.

Step 3: Estimate of T1. Let us estimate T1(v). We have

T1(v) =− (u− Pu, (β − βo) · ∇v)Th
,

by the definition of the projection P, (2.2a), and by the definition of βo. This implies
that

|T1(v) | ≤
∑

K∈Th

‖u− Pu ‖L2(K) ‖β − βo ‖L∞(K) ‖∇v ‖L2(K),

and, by a standard inverse inequality, that

|T1(v) | ≤
∑

K∈Th

‖u− Pu ‖L2(K) ‖β − βo ‖L∞(K) CK h−1
K ‖ v ‖L2(K)

≤C max
K∈Th

{h−1
K ‖β − βo ‖L∞(K)} ‖u− Pu ‖L2(Th) ‖ v ‖L2(Th)

≤C |β |W 1,∞(Th) ‖u− Pu ‖L2(Th) ‖ v ‖L2(Th)

≤C |β |W 1,∞(Th) hk+1 |u |Hk+1(Th) ‖ v ‖L2(Th),

by the approximation properties of β0, the shape-regularity assumption on the mesh
(1.3), and by the approximation properties of P [3].

Step 4: Estimate of T2. Let us now estimate T2(v). We begin by writing T2(v)
as

T2(v) =U1(v) + U2(v),

where

U1(v) =
∑

K∈Th

〈u− P̂u, v (β − βo) · n〉∂K\Γ−

U2(v) =
∑

K∈Th

〈u− P̂u, v βo · n〉∂K\Γ− .

Next, let us estimate U1(v). We have

|U1(v) | ≤
∑

K∈Th

‖u− P̂u ‖L2(∂K) ‖ v ‖L2(∂K) ‖ (β − βo) · n ‖L∞(∂K)

≤
∑

K∈Th

CK h
k+1/2
K |u |Hk+1(K) ‖ v ‖L2(∂K) hK |β |W 1,∞(∂K),

by the approximation properties of P and βo. Then, after applying a simple inverse
inequality, we get

|U1(v) | ≤C |β |W 1,∞(Ω) hk+1 |u |Hk+1(Th) ‖ v ‖L2(Th).
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Let us estimate U2(v). To do that, we rewrite U2(v) as

U2(v) = S1(v) + S2(v)

where

S1(v) =
∑

K∈Th

〈u− P̂u, v βo · n〉(∂K\eo
K)\Γ− ,

S2(v) =
∑

K∈Th

〈u− P̂u, v βo · n〉eo
K\Γ− .

Where eo
K is the collection of faces of K that are neither inflow nor outflow faces.

By the first flow condition on the mesh (1.2a), it is easily follows that

S1(v) =
∑

K∈Th

〈u− P̂u, (v− − v+)βo · n〉e+
K

,

and, by the definition of the numerical trace P̂u, (2.1c), that

S1(v) =
∑

K∈Th

〈u− Pu, (v− − v+)βo · n〉e+
K

.

But, since, by the second flow condition on the mesh (1.2b), (v− − v+)βo · n|e+
K
∈

Pk(e+
K), we can conclude that, by the definition of the projection P, (2.2b),

S1(v) = 0.

It remains to estimate S2(v). We have

|S2(v) | ≤
∑

K∈Th

‖u− P̂u ‖L2(∂K) ‖ v ‖L2(∂K) ‖βo · n ‖L∞(eo
K\Γ−),

and by the third flow condition on the mesh (1.2c),

|S2(v) | ≤
∑

K∈Th

‖u− P̂u ‖L2(∂K) ‖ v ‖L2(∂K) Cβ hK

≤ C Cβ hk+1 |u |Hk+1(Th) ‖ v ‖L2(Th),

proceeding as before. This implies that

|T2(v) | ≤ C(Cβ + |β |W 1,∞(Ω)) |u |Hk+1(Th) ‖ v ‖L2(Th).

Step 5: Estimate of T3. A simple application of the Cauchy-Schwarz inequality
gives

|T3(v) | ≤ ‖ c (u− Pu) ‖ ‖ v ‖L2(Th)

≤C |u |Hk+1(Th) hk+1 ‖ v ‖L2(Th),
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by the approximation properties of P.

Step 6: Conclusion. We have

‖u− uh ‖L2(Th) ≤ C |u |Hk+1(Th) hk+1 + ‖E ‖L2(Th), by Step 1,

≤ C |u |Hk+1(Th) hk+1 + Cs

3∑

i=1

sup
v∈Vh

|Ti(v) |
‖ v ‖L2(Th)

, by Step 2,

≤C (1 + |β |W 1,∞(Ω) + Cβ) hk+1 |u |Hk+1(Th),

by Steps 3, 4 and 5. This completes the proof of Theorem 2.2.

2.3. Post-processing: The approximation to ∂βu. Next we postprocess uh

to get a superconvergent approximation of ∂βu. We follow [3] and, for each simplex
K we define qh ∈ Pk(K) + xPk(K) to be the solution of

(qh − βuh, v)K = 0, for all v ∈ Pk−1(K) if k > 0, (2.4a)

〈(qh − βλh) · n, w〉e = 0, for all w ∈ Pk(e), for all faces e of K, (2.4b)

where λh = P∂g on Γ− and λh = ûh otherwise; here Pk(K) := [Pk(K)]d. The
existence and uniqueness of qh is well known; see, for example, [1]. We then define

∂β,huh := ∇ · qh in Th.

We can now state the error estimate between ∂β,huh and ∂βu.
Theorem 2.3. Assume that the positivity condition (1.4) is satisfied. As-

sume also that the triangulation Th satisfies the flow conditions (1.2) and the shape-
regularity condition (1.3). Then, if h is small enough, we have

‖∂β,huh − P(∂βu)‖L2(Th) ≤ C C hk+1.

Proof. Following exactly the same argument use in [3], we can show that, if Th is
an arbitrary, shape-regular triangulation of Ω, we have

‖∂β,huh − P(∂βu)‖L2(Th) ≤ C ‖ c (u− uh) ‖L2(Th).

Then, for the special triangulation Th under consideration, we get that

‖∂β,huh − P(∂βu)‖L2(Th) ≤ C C hk+1,

by Theorem 2.2. This completes the proof.

3. Numerical Results. In this section we present two numerical experiments
which validate our theoretical results. Let us motivate them.

Physically, the model equation (1.1) describes transport-reaction phenomena in-
cluding neutron transport and radiative transfer. We take two examples from geo-
metrical optics and quantum mechanics where the model equation is the so-called
Liouville equation.

In geometrical optics for wave propagation, we need to solve Liouville equa-
tions efficiently and accurately to be able to compute the multivalued traveltime
and the amplitude, see [11, 5, 8]. In the case of acoustic waves, the Hamiltonian
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defining the Liouville operator has the form H(x, y) = xy and the resulting velocity
β(x, y) = (Hy,−Hx) = (x,−y). This is our first test problem. In semi-classical ap-
proximation for quantum mechanics, we also need to solve the Liouville equation to
compute multivalued phases and densities to construct semi-classical solutions to the
Schrödinger equation. In the case of harmonic oscillators, the Hamiltonian defining
the Liouville operator has the form H(x, y) = 1

2 (x2 + y2) and the resulting velocity is
β(x, y) = (Hy,−Hx) = (y,−x). This is our second test problem. Therefore, the re-
sults presented here lay down theoretical foundation for developing fast and accurate
algorithms for solving Liouville equations.

In both numerical experiments, the domain is Ω = (1, 2)× (1, 2), and the reaction
coefficient is c(x, y) = y. We choose the right-hand side f so that the solution is
u(x, y) = (x + 1/2)3 sin(y).
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Fig. 3.1. Meshes satisfying the flow condition with respect to β = (x,−y): The streamlines of
β and the nodes of the mesh (left) and the actual mesh (` = 3) (right).

Table 3.1
History of convergence for the acoustic waves problem.

mesh ‖u− uh‖L2(Ω) ‖∂βu− ∂β,huh‖L2(Ω)

k ` error order error order

1 .15e+1 - .37e+1 -
2 .81e-0 0.90 .19e+1 0.93

0 3 .42e-0 0.96 .98e-0 0.96
4 .21e-0 0.98 .50e-0 0.98
5 .11e-0 0.99 .25e-0 0.99

1 .86e-1 - .23e-0 -
2 .23e-1 1.90 .62e-1 1.88

1 3 .59e-2 1.96 .16e-1 1.95
4 .15e-2 1.98 .41e-2 1.98
5 .38e-3 1.99 .10e-2 1.99

1 .26e-2 - .49e-2 -
2 .31e-3 3.08 .66e-3 2.89

2 3 .37e-4 3.08 .85e-4 2.96
4 .44e-5 3.05 .11e-4 2.98
5 .54e-6 3.03 .15e-5 2.89
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In the first numerical experiment, the convection coefficients is β(x, y) = (x,−y).
We choose the nodes of the meshes so that all of them lie on streamlines of β as seen
in Fig. 3.1 left. In this way, the three conditions on the mesh (1.2) are satisfied; see
Fig. 3.1 right. A mesh ` means the mesh size is h = 1

2` .
In Table 3.1, we display the history of convergence for the approximate solution

using polynomials of degree k = 0, 1, 2. We see that the order k + 1 is observed for
both ‖u− uh‖L2(Ω) and ‖∂βu− ∂β,huh‖L2(Ω) just as the theory predicts.
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Fig. 3.2. Meshes satisfying the flow condition with respect to β = (y,−x): The streamlines of
β and the nodes of the mesh (left) and the actual mesh (` = 3) (right).

Table 3.2
History of convergence for the harmonic oscillator problem.

mesh ‖u− uh‖L2(Ω) ‖∂βu− ∂β,huh‖L2(Ω)

k ` error order error order

1 .14e+1 - .31e+1 -
2 .75e-0 0.92 .16e+1 1.02

0 3 .39e-0 0.97 .77e-0 1.01
4 .19e-0 0.98 .38e-0 1.01
5 .98e-1 0.99 .19e-0 1.00

1 .84e-1 - .84e-1 -
2 .22e-1 1.94 .22e-1 1.94

1 3 .56e-2 1.98 .56e-2 1.98
4 .14e-2 1.99 .14e-2 1.99
5 .35e-3 2.00 .35e-3 2.00

1 .22e-2 - .76e-2 -
2 .27e-3 3.04 .93e-3 3.03

2 3 .33e-4 3.02 .11e-3 3.02
4 .41e-5 3.01 .14e-4 3.01
5 .51e-6 3.01 .18e-5 2.95

In the second numerical experiment, we take the convection coefficient to be
β(x, y) = (y,−x). Similarly, We choose the nodes of the meshes so that all of them
lie on streamlines of β; see Fig. 3.2 left. Again, the three conditions on the mesh
(1.2) are satisfied; see Fig. 3.1 right.

In Table 3.2, we display the history of convergence for the approximate solution
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using polynomials of degree k = 0, 1, 2. We see that order k + 1 is observed for
‖u− uh‖L2(Ω) and ‖∂βu− ∂β,huh‖L2(Ω) just as the theory predicts.

4. Concluding remarks. In this paper, we have uncovered a class of meshes for
which the DG method converges in an optimal way thus extending the results in [3]
for constant transport velocities β to divergence-free, variable ones. The extension of
these results to more general transport velocities β and to curved-boundary domains
Ω constitutes the subject of ongoing work.

5. Appendix: Sketch of Proof of Lemma 2.1. We modify the proof of [7]
to allow for a variable velocity β. To this end, we set ψ(x) = e−(x−x0)·β(x) where
x0 ∈ ∂Ω is fixed. Then, by using integration by parts, we can easily show that

B(wh, ψwh) =(wh, (
1
2

β · β + c) ψ wh)Th

+
1
2

∑

e∈E 0
h

‖
√

ψ |β · n| (w+
h − w−h )‖2L2(e) +

1
2

∑

e∈E ∂
h

‖
√

ψ |β · n| wh‖2L2(e),

where E 0
h is the collection of interior edges and E ∂

h is the collection of boundary edges.
Next we use the fact that there exists a constant δ > 0 such that |ψ(x)| ≥ δ for all
x ∈ Ω and the positivity condition (1.4) to obtain that

δ min{1
2
, γ}‖wh‖2h ≤ B(wh, ψwh) (5.1)

where

‖wh‖2h :=‖wh‖2L2(Th) +
1
2

∑

e∈E 0
h

‖
√
|β · n| (w+

h − w−h )‖2L2(e) +
1
2

∑

e∈E ∂
h

‖
√
|β · n|wh‖2L2(e).

Since ψwh is not in the finite element space we consider its L2-projection, P(ψwh),
to get

B(wh, ψwh) =B(wh,P(ψwh)) + B(wh, ψwh − P(ψwh))
=F (P(ψwh)) + B(wh, ψwh − P(ψwh)). (5.2)

It remains to bound the last two terms of the right-hand side. Clearly,

F (P(ψwh)) ≤ ‖P(ψwh)‖L2(Th) max
v∈Vh

|F (v)|
‖v‖L2(Th)

≤ ‖ψwh‖L2(Th) max
v∈Vh

|F (v)|
‖v‖L2(Th)

≤ C‖wh‖L2(Th) max
v∈Vh

|F (v)|
‖v‖L2(Th)

. (5.3)

Following the argument giving in [7], where we use here that β is smooth, we can
show that

B(wh, ψwh − P(ψwh)) ≤ ε‖wh‖2h +
C h

ε
‖wh‖2L2(Th)

where ε > 0 is arbitrary.
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Choosing ε = δ
4 min{1

2 , γ} and assuming h is sufficiently small, we get that

B(wh, ψwh − P(ψwh)) ≤ δ

2
min{1

2
, γ)‖wh‖2h. (5.4)

Finally, we conclude the proof by combining (5.1), (5.2), (5.3) and (5.4).
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