SUB-OPTIMAL CONVERGENCE OF NON-SYMMETRIC
DISCONTINUOUS GALERKIN METHODS FOR ODD
POLYNOMIAL APPROXIMATIONS
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ABSTRACT. We numerically verify that the non-symmetric interior penalty
Galerkin method and the Oden-Babuska-Baumann method have sub-optimal
convergence properties when measured in the L?-norm for odd polynomial
approximations. We provide numerical examples that use piece-wise linear
and cubic polynomials to approximate a second-order elliptic problem in one
and two dimensions.

1. INTRODUCTION

It is well known that non-symmetric discontinuous Galerkin (DG) methods for
elliptic problems converge in a sub-optimal way when measured in the L2-norm
when piece-wise polynomials of even degree are used; see [3, 8]. It was expected
that odd degree polynomial approximations also converge in a sub-optimal way.
The reason for this is that a non-symmetric method can produce an inconsistency
error when a duality argument is used; see [2]. However, a counter-example with
sub-optimal converge rates has not appeared in the literature for odd polynomial
approximations. In fact, many papers reported observing optimal convergence rates
when odd polynomial approximations are used; see for example [4], [3] and [1].
Moreover, two different papers prove that these method, in fact, converge in an
optimal way if uniform meshes are used in one dimension; see [6] and [5]. Here
we give examples of meshes in one dimension for which we clearly observe sub-
optimal convergence rates for both the Oden-Babuska-Baumann method [3] and
the non-symmetric interior penalty Galerkin (NIPG) method [7]. Two-dimensional
counter-examples can easily be constructed as well; see Section 3.

We consider the elliptic problem on the interval (0, 1):

—u(z) =f(z), 0<z<1, (1.1)

u(x) =0, x=0,1. (1.2)

In order to describe our numerical counter-example in one dimension, we need some
notation. Let 0 = zg < 1 < --- < zxy = 1 be nodes of our approximation and

denote this collection of points by T = {x; : 0 <i < N}. For a fixed integer k > 1
we define the approximation space V(7) as

V(T) ={v e L*([0,1]) : v|1, € P*(L), V1 <i < N},

where I; = [z;_1, ;] and P¥(I;) is the space of polynomials of degree at most k
defined on I;. The length of the interval I; is denoted by |I;|.
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The DG approximation U € V(7) satisfies

a(U,v) = fodz, VoveV(T),
[0,1]

where

N N—-1
oU.0)i=3 [ Ude+ 3 (AU R [+ R I0L+ 7 0B )

—U'(zn)v(zn) + U'(zo)v(ze) + ' (2n)U(2n) — v (20)U (20)

+ L U(zo)v(xo) + ——U(zn)v(zy).

/.
11 1IN |

Here I; = W and the jumps and averages are defined as

[v]i =v(7) — v(z])

o) +olay)

{v} —f,

where
o))

limi v(x; +0).

6—0

Here n is a constant non-negative number. The Oden-Babuska-Baumann
method is given if n = 0 and k£ > 2. If n > 0 we get the NIPG method. As
mentioned earlier, optimal error estimates in the L?-norm when k is odd where
proved in the case that the nodes {x;} are equally distributed (i.e. uniform mesh).
In fact, they also proved that in this case the jumps superconverge. One might
conjecture that the two are related. However, as we will see, there are many exam-
ples of meshes such that the jumps do not superconverge at the nodes, but optimal
convergence rates in the L?2-norm are observed.

Meshes that produce sub-optimal approximations are meshes which result from
sub-dividing each sub-interval of a uniform mesh into three sub-intervals. More
precisely, let z; = ih for i = 0,..., M where h = ﬁ and xj; = 1, then we define
the nodes of our mesh as follows

T3i =Z4,
T3i41 =x3; + ah,

Z3i+2 =T3i41 + Bh.

Here a and [ are positive numbers that satisfy a + § < 1. For example, if « =
1/3 = 3 then the resulting mesh is still uniform. However, if for example we choose
a=1/7and § = 1/5, then sub-optimal convergence rates will be observed.

It is interesting that we need to divide each sub-interval of a uniform mesh into
three sub-intervals rather than two sub-intervals. Indeed, if we only divide each sub-
interval of a uniform mesh into two sub-intervals, then we always observe optimal
convergence rates. For these type of meshes the jumps of the approximation U do
not superconverge at the nodes, but we still observe optimal convergence rates in
the L?-norm.



2. NUMERICAL EXPERIMENTS

Although many choices of the right-hand side f will give us the results we are
after, we take f so that the exact solution of (1.1) is u(z) = (1 — x):ce*xz. For the
NIPG method we take n = 1. However, this choice of 7 is not crucial.

2.1. Piecewise linear approximations, £k = 1. In this case, the Oden-Babuska-
Baumann method is not well-defined, so we only display results for the NIPG
method. In Table 1 we present results for the choice o = 3 = 1/3 (uniform mesh)
and the choice (o, 8) = (1/7,1/5), (e, ) = (1/7,1/7) and («, 8) = (1/4,1/2). We
present several errors: first the error is measured in the L? norm. Then, a semi-
norm denoted by | - |5 measures the jumps. Finally we compute the averages of the
error at the nodes with a quantity denoted by |-|a. Both ||y and |- |o are defined
as follows

N-1 N-1
ju=Uly:= (Y L [u=UID'? Ju=Ula:= (> L {fu-U)"
i=1 i=1

TABLE 1. History of convergence for the NIPG with £ = 1. Three
sub-intervals for each sub-interval of a uniform mesh.

h= g | llu="Ull2e lu—Uls lu—Ula
o, B i error order | error order | error order
3 75e-3 - 43e-3 - .88e-3 -
4 18e-3  2.06 | .1le-3 2.01 | .24e-3  1.89
i1 5 0.50e-4  1.86 | .26e-4  2.00 | .72e-4 1.72
6 23e-4 112 | .66e-5 2.00 | .29e-4  1.31
7 13e-4 .85 | .17e-5 2.00 | .1de-4 1.04
8 69e-5 .89 | .4le-6 2.00 | .72¢-5 0.98
9 36e-5 .94 | .10e-6  2.00 | .36e-5 0.98
10 19e-5 .97 | 47e-7  2.00 | .18e-5  0.99
3 .66e-3 - .73e-4 - .89e-3 -
4 16e-3  2.01 | .13e-4 2.52 | .22e-3  2.00
14 5 A4le-4 201 | .23e-5 251 | .56e-4  2.00
6 10e-4  2.00 | .40e-6 2.50 | .lde-4  2.00
7 .25e-5  2.00 | .70e-7 2.50 | .35e-5  2.00
8 63e-6  2.00 | .12e-7 2.50 | .87e-6  2.00
9 16e-6  2.00 | .22e-8  2.50 | .22e-6  2.00
3 1le-2 - .93e-3 - .10e-2 -
4 29e-3 191 | .22e-3  2.01 | .28e-3  1.89
i1 5 Tde-4 196 | .57e-4  2.01 | .7Tde-4 1.95
6 19e-4  1.98 | .14e-4 2.00 | .19e-4 1.97
7 ATe-5  1.99 | .36e-5 2.00 | .47e-5  1.99
8 12e-5  1.99 | .89e-6  2.00 | .12e-5 1.99
9 .30e-6  2.00 | .22e-6  2.00 | .30e-6  2.00
3 42e-3 - .40e-3 - .70e-3 -
4 10e-3  2.01 | .10e-3 1.98 | .17e-3  2.00
11 5 26e-4  2.00 | .26e-4 1.99 | .44e-4  2.00
6 66e-5  2.00 | .64e-5 1.99 | .1le-4 2.00
7 16e-5  2.00 | .16e-5 2.00 | .27e-5  2.00
8 A4le-9  2.00 | .40e-6 2.00 | .68e-6  2.00
9 10e-9  2.00 | .10e-6  2.00 | .17e-6  2.00

We observe that the order of convergence for the L?-norm is only one if o =
1/7,8 =1/5. Hence, this mesh produces sub-optimal approximations. Notice that
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when a uniform mesh (o = 1/3 = 3) is used the L?-norm converges with the best
possible order, two. Moreover, the semi-norm of jumps superconverge with order
two and a half. Finally, when a non-uniform mesh given by the choice « = 1/7 =
or a = 1/4, 3 = 1/2 is used optimal order of convergence is observed in the L2-
norm. However, the jumps do not superconverge. We would like to mention that
in addition to the choices & = 1/7 and 8 = 1/5, there are many more choices of
« and 3 that lead to approximations that converge in a sub-optimal way. We also
mention that in all the cases the error measured in the |u — U] s semi-norm behaves
like the L? error.

In order to demonstrate the importance of using the above meshes to find
a counter-example, we display numerical results for meshes that are obtained by
subdividing each sub-interval of a uniform mesh into only two sub-intervals; see
Table 2. That is,

Toi =T
T2i41 =T2; + Oh,
where 0 < 8 < 1. As you can see, for all the choices of 6 in Table 2 optimal
convergence rates are observed although the jumps do not superconverge. We
tried many other choices of , and we always observe optimal convergence rates.

Therefore, it was important to subdivide each sub-interval of a uniform mesh into
at least three sub-intervals for sub-optimal convergence.

TABLE 2. History of convergence for the NIPG with £ = 1. Two
sub-intervals for each sub-interval of a uniform mesh.

h=2 | llu-Ulpe | lu-Uls lu—Ula
0 i error order | error order | error order
3 9le-3 - 1le-2 - dle-2 -
4 .23e-3 1.95 .28e-3 1.94 .29e-3  1.99
1 5 0.59e-4  1.98 | .72e-4 1.98 | .73e-4 1.99
6 .15e-4 1.99 .18e-4 1.99 18e-4  1.99
7 .37e-5 1.99 45e-5  2.00 46e-5  2.00
8 .94e-6 2.00 1le-5  2.00 1le-5 2.00
9 .23e-6 2.00 .29e-6  2.00 .29e-6  2.00
3 12e-2 - 17e-2 - 1le-2 -
4 .33e-3 1.89 43e-3 1.95 .29e-3  1.90
i 5 .86e-4 1.95 1le-3 1.98 .76e-4  1.95
6 22e-4 1.98 27e-4 1.99 19e-4  1.97
7 .54e-5 1.99 .68e-5  2.00 49e-5 1.99
8 .14e-5 1.99 A7e-5 2.00 12e-5  1.99
9 .34e-6 2.00 43e-6  2.00 .3le-6  2.00
3 2le-2 - 24e-2 - .16e-2 -
4 .57e-3 1.86 .62e-3 1.96 46e-3  1.81
% 5 .15e-3 1.94 .16e-3 1.98 12e-3 191
6 .38e-4 1.97 | .39e-4 1.99 3le-4  1.96
7 .96e-5 1.99 .98e-5  2.00 .80e-5 1.98
8 .24e-5 1.99 .24e-5  2.00 .20e-5 1.99
9 .60e-6 2.00 .6le-6  2.00 .50e-6  1.99

2.2. Piecewise cubic approximations, £ = 3. In this section we use the meshes
from the previous subsection and display the errors produced by the Oden-Babuska-
Baumann approximation for £ = 3. The order of convergence for the NIPG method



are similar, so we do not present them here. Table 3 shows that the numerical rate
is suboptimal for the choice & = 1/7 and 8 = 1/5. As before we observe that the
jumps do not superconverge. In the case « = § =1/7or a = 1/4, 8 = 1/2, the
convergence rates are optimal for the error in the L? norm, but the jumps do not
superconverge. The superconvergence rate h*° is obtained for the uniform case
a=p=1/3.

We now consider two subintervals and the results are given in Table 4. For all
choices of f we obtain optimal convergence rates in the L? norm.

TABLE 3. History of convergence for the Oden-Babuska-Baumann
method with & = 3. Three sub-intervals for each sub-interval of a
uniform mesh.

h=gr | llu=Ullpzeq, lu —Uls lu —Ula
o, B i error order error order error order
3 .T4e-6 - .3le-6 - .40e-6 -
4 55e-7  3.74 | .19e-7  4.00 | .39e-7  3.37
1L 5 57e-8 327 | .12e-8  4.00 | .50e-8  2.96
6 70e-9  3.02 | .75e-10 4.00 | .67e-9  2.90
7 89e-10  2.97 | 47e-11  4.00 | .88e-10  2.93
8 1le-10  2.98 | .29e-12  4.00 | .11e-10  2.95
3 79e-7 - 67e-8 - 72e-7 -
4 48e-8  4.03 | .28e-9  4.60 | .45e-8  3.99
11 5 29e-9  4.01 | .12e-10 4.54 | .28e-9  4.00
6 18e-10  4.01 | .52e-12  4.52 | .18e-10  4.00
7 12e-11  4.00 | .23e-13  4.51 | .1le-11  4.01
3 .10e-5 - .35e-6 - .68¢-6 -
4 62e-7  4.02 | .22-7  4.00 | 44e-7  3.94
i1 5 38-8 4.0l | .14-8  4.00 | .28e-8  3.98
6 24e-9  4.01 | .86e-10 4.00 | .18e-9  3.99
7 15e-10  4.00 | .53e-11  4.00 | .11e-10  3.99
8 95e-12  3.96 | .33e-12  4.00 | .79e-12  3.82
3 .25e-6 - 15e-6 - 13e-6 -
4 15e-7  4.00 | .93e-8  4.01 | .82e-8  4.00
11 5 96e-9  4.00 | .58e-9  4.00 | .5le-9  4.00
6 .60e-10  4.00 | .36e-10  4.00 | .32e-10  4.00
7 38e-11  3.99 | .22e-11  4.00 | .20e-11  3.98

3. EXTENSIONS TO TwO-DIMENSIONAL PROBLEMS

Based on the one-dimensional counter-example, we can easily define a two-
dimensional counter-example on a rectangular mesh. Let the domain be the unit
square [0,1] x [0,1]. We let the exact solution to Laplace’s equation be u(z,y) =
e="=%’. On each axis, we apply the same subdivision as in the one-dimensional
case. We choose the parameters o = 1/7 and 8 = 1/3 (see Fig. 1). We vary the
local discrete space to be Py or the tensor product space Q. For either spaces,
we obtain sub-optimal convergence rates for the L? norm for the NIPG method.
We note that the we get similar results for the Oden-Babuska-Baumann method.
Table 3 gives the errors and rates when using the space Q; for the NIPG method.
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TABLE 4. History of convergence for the Oden-Babuska-Baumann
method with & = 3. Two sub-intervals for each sub-interval of a
uniform mesh.

h=2 | lu=Ull2g lu—Uls lu—Ula
0 i error order error order error order
3 .10e-5 - .67e-6 - 44e-6 -
4 .63e-7 4.00 44e-7 3.95 .28e-7 3.99
% 5 .39e-8 4.00 .28e-8 3.97 17e-8 3.99
6 .24e-9 4.00 17e-9 4.00 1le-9 4.00
7 .15e-10  4.00 | .11le-10 4.00 .69e-11  4.00
8 97e-12  3.98 | .68e-12  4.00 43e-12  3.98
3 .15e-5 - .89e-6 - .70e-6 -
4 .92e-7 4.01 .58e-7 3.95 45e-7 3.96
i 5 .57e-8 4.01 .37e-8 3.98 .28e-8 3.98
6 .35e-9 4.00 .23e-9 3.99 .18e-9 3.99
7 .22e-10  4.00 | .14e-10 4.00 .11le-10  4.00
8 .14e-11  4.00 | .90e-12  4.00 .70e-12  3.99
3 .22e-5 - 9le-6 - 14e-5 -
4 .13e-6 4.01 .58e-7 3.95 .94e-7 3.92
% 5 .85e-8 4.01 .37e-8 3.98 .60e-8 3.97
6 .53e-9 4.01 .23e-9 3.99 .38e-9 3.99
7 .33e-10  4.00 | .14e-10  3.99 .24e-10  3.99
8 .20e-11 3.99 | .9le-12 4.00 .15e-11  3.94

FIGURE 1. Example of non-uniform two dimensional mesh with
h=1/8 a=1/7and 8 =1/3

4. CONCLUDING REMARKS

In this paper we showed numerically that the NIPG method and the Oden-
Babuska-Baumann method have sub-optimal convergence properties for odd poly-
nomial approximations. To the best or our knowledge, this is the first time that an
example has been presented that clearly demonstrates sub-optimal convergence.



TABLE 5. History of convergence for the NIPG method using the
local space Q. On each axis there are three sub-intervals for each
sub-interval of a uniform mesh.

h=2 | llu=Ullp2

«a, B 4 error  order
3 .28e-3 -

4 .76e-4 1.89

14 5 23e-4 170

6 .87e-5 1.40

7 .38e-5 1.16
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