QUADRATURE AND SCHATZ'S POINTWISE ESTIMATES FOR FINITE ELEMENT METHODS*

J. GUZMÁN^{1,**}

¹Center for Applied Mathematics, Cornell University, 657 Rhodes Hall, Ithaca, NY 14853, USA. email: jguzman@cam.cornell.edu

Abstract.

We investigate numerical integration effects on weighted pointwise estimates. We prove that local weighted pointwise estimates will hold, modulo a higher order term and a negative-order norm, as long as we use an appropriate quadrature rule. To complete the analysis in an application, we also prove optimal negative-order norm estimates for a corner problem taking into account quadrature. Finally, we present an example to show that our result is sharp.

AMS subject classification (2000): 65N15.

Key words: finite elements, numerical integration.

1 Introduction.

Weighted pointwise estimates obtained by Schatz, [9], greatly improve previous local W^1_{∞} estimates. They show that the finite element approximation, in some cases, approximates the solution in a very sharp local sense. That is, the approximation error at a point x is more heavily influenced by the behavior of the solution near x rather than far from x. This has proven to be useful for superconvergence results [10] and pointwise a posteriori estimates [5]. We prove that these estimates are preserved, modulo a higher order term and a negative-order norm, if we use a quadrature rule of high enough order.

Let $\Omega \subset \mathbb{C} \mathbb{R}^N$ and consider the equation

(1.1)
$$Lu \equiv \sum_{i,j} \frac{\partial}{\partial x_j} \left(a_{ij}(x) \frac{\partial u}{\partial x_i} \right) = f \quad \text{in } \Omega.$$

We assume f and a_{ij} are smooth and (a_{ij}) is uniformly elliptic in Ω .

If $\Omega_1 \subset \subset \Omega$, then u solves the local equation

(1.2)
$$A(u,v) = \int_{\Omega_1} f v dx, \text{ for all } v \in \mathring{H}^1(\Omega_1)$$

^{*} Received October 2004. Accepted September 2005. Communicated by Anders Szepessy.

^{**} The author was supported by a Ford Foundation fellowship and a Cornell-Sloan fellowship.

where

$$A(w,v) = \int_{\Omega} \sum_{ij} a_{ij} \frac{\partial w}{\partial x_i} \frac{\partial v}{\partial x_j}.$$

Let $S_{r-1}^h \subset W_\infty^1(\Omega)$ be a one parameter family of finite element spaces. From now on $\Omega_1 \subset \subset \Omega$ will denote a fixed domain with the following properties. We assume that the family of meshes when restricted to Ω_1 is quasi-uniform and that each element intersecting Ω_1 is a simplex. If $\mathring{S}_{h,r-1}(\Omega_1)$ denotes those functions in S_{r-1}^h with compact support in the interior of Ω_1 , then we require that $\mathring{S}_{h,r-1}(\Omega_1)$ be composed of continuous functions supported in Ω_1 such that their restriction to each simplex of our decomposition is a polynomial of degree at most r-1 (i.e. we consider Lagrange finite elements of degree r-1 in Ω_1).

The finite element solution \bar{u}_h with exact quadrature will satisfy

(1.3)
$$A(u - \bar{u}_h, v) = 0$$
, for all $v \in \check{S}_{h,r-1}(\Omega_1)$.

In Propositions 1.1–1.3 we shall review some known results. First we state the W_1^{∞} estimates for the finite element approximation with exact quadrature found in [12].

PROPOSITION 1.1. Let $\Omega_0 \subset \subset \Omega_1 \subset \subset \Omega$. If $t \geq 0$, there exists a constant C independent of h, u and \bar{u}_h such that

$$|u - \bar{u}_h|_{W^1_{\infty}(\Omega_0)} \le C \inf_{\chi \in S^h_{r-1}} ||u - \chi||_{W^1_{\infty}(\Omega_1)} + C||u - \bar{u}_h||_{H^{-t}(\Omega_1)}.$$

Applying the techniques in [12], one can prove local W_1^{∞} estimates for the finite element approximation with numerical quadrature, let us denote it by u_h . Quadrature rules employed will be precisely defined in Section 2.

PROPOSITION 1.2. Let $\Omega_0 \subset \subset \Omega_1 \subset \subset \Omega$ and $t \geq 0$. If a quadrature rule of order 2(r-1)-2+q $(q \geq 0)$ is used to compute u_h , then there exists a constant C independent of h, u, and u_h such that

$$|u - u_h|_{W^1_{\infty}(\Omega_0)} \leq C \inf_{\chi \in S^h_{r-1}} ||u - \chi||_{W^1_{\infty}(\Omega_1)} + C||u - u_h||_{H^{-t}(\Omega_1)} + Ch^{r-1+q} \log(1/h)(||u||_{W^r_{\infty}(\Omega_1)} + ||f||_{W^{r-1+q}_{\infty}(\Omega_1)}).$$

The case q = 0 is Corollary 5.1 [12]. Following that proof, one can easily generalize this result to q > 0. The first term of the right hand side of (1.4) can be bounded using the Bramble-Hilbert lemma, to get $\inf_{\chi \in S_h^{r-1}} ||u - \chi||_{W_{\infty}^1}(\Omega_1) \leq Ch^{r-1}|u|_{W_{\infty}^r}(\Omega_1)$. Therefore, if q > 0 one, in some sense, preserves the local estimates, modulo a higher order term and a negative-order norm. In the case q = 0, the last term in the right hand side of (1.4) is of the same order as the typical order of the first term. Quadrature rules of order 2(r-1) - 2 (q = 0) are used in [4] to prove H^1 error estimates.

Now we compare these estimates to the sharper weighted pointwise estimates of Schatz. In the case of exact quadrature we have (Theorem 1.2 [9]):

696

QUADRATURE

PROPOSITION 1.3. Let $\Omega_0 \subset \subset \Omega_1 \subset \subset \Omega$ and consider $x \in \Omega_0$. Let $0 \leq s \leq r-1$, u solve (1.2) and \bar{u}_h satisfy (1.3). If $t \geq 0$, there exists a C independent of h, u, and \bar{u}_h such that

$$\begin{aligned} |\nabla(u - \bar{u}_h)(x)| &\leq C \bigg(\log \frac{1}{h} \bigg)^{\bar{s}} \inf_{\chi \in S_{r-1}^h} ||u - \chi||_{W^1_{\infty}(\Omega_1), x, s} \\ &+ C ||u - \bar{u}_h||_{H^{-t}(\Omega_1)}. \end{aligned}$$

Here $\bar{s} = 0$ if $0 \le s < r - 1$ and $\bar{s} = 1$ if s = r - 1.

The weighted norm is defined as

$$||v||_{W^1_{\infty}(\Omega_1),x,s} = ||\sigma^s_x v||_{L_{\infty}(\Omega_1)} + ||\sigma^s_x \nabla v||_{L_{\infty}(\Omega_1)}$$

where $\sigma_x(y) = h/(|x-y|+h)$. Note that if y = x, then $\sigma_x^s(y) = 1$. On the other hand, if |y-x| = O(1), then $\sigma_x^s(y) = O(h^s)$. If s = 0, we get Proposition 1.1. The improvement comes when s > 0.

We now state the main result of this note which is the corresponding weighted pointwise estimates with numerical quadrature.

THEOREM 1.4. Let $\Omega_0 \subset \subset \Omega_1 \subset \subset \Omega$ and consider $x \in \Omega_0$. Let $0 \leq s \leq r-1$, u solve (1.2) and u_h satisfy (2.1) where we use a quadrature rule of order 2(r-1)-2+q with $q \geq s$. If $t \geq 0$, there exists a C independent of h, x, u, and u_h such that

$$|\nabla(u-u_h)(x)| \le C \left(\log\frac{1}{h}\right)^s \inf_{\chi \in S_{r-1}^h} ||u-\chi||_{W^1_{\infty}(\Omega_1),x,s} + C||u-u_h||_{H^{-t}(\Omega_1)}$$

$$(1.5) \qquad + C \left(\log\frac{1}{h}\right) h^{r-1+q} (||u||_{W^r_{\infty}(\Omega_1)} + ||f||_{W^{r-1+q}_{\infty}(\Omega_1)}).$$

Here $\bar{s} = 0$ if $0 \le s < r - 1$ and $\bar{s} = 1$ if s = r - 1.

If q > s, we preserve the weighted pointwise estimates, modulo a higher order term and a negative-order norm. In the case q = s, the third term in the right hand side of (1.5) is of the same order, modulo a logarithmic factor, as $\sigma_x^s(y)\nabla(u-\chi)(y)$ for |y-x| = O(1); however, closer to x the local structure of Schatz's results are preserved.

In the next section we describe the quadrature rules that we consider. In Section 3 we prove Theorem 1.4. In Section 4 we complete the picture for an application by estimating $||u-u_h||_{H^{-t}(\Omega)}$ in a polygonal domain with refinements at the corners. Finally, in Section 5 we show that Theorem 1.4 is sharp.

2 Quadrature.

Let the simplex T denote a reference element, and assume we are using a quadrature rule that approximates $\int_{\hat{T}} g dx$:

$$Q_{\hat{T}}(g) = \sum_{i} \hat{w}_l g(\hat{b}_l),$$

where the $\hat{w}_l > 0$ and $\hat{b}_l \in \hat{T}$. Q is of order k if $Q_{\hat{T}}(p) = \int_{\hat{T}} p dx$ for all polynomials p of degree less then or equal to k, but fails to integrate a polynomial of degree

J. GUZMÁN

k+1 exactly. We know that $Q_{\hat{T}}$ induces a quadrature rule for any simplex T,

$$Q_T(g) = \sum_i w_l g(b_l).$$

Here $w_l = J(R_T)\hat{w}_l$ and $b_l = R_T(\hat{b}_l)$ where $R_T : \hat{T} \to T$ is our standard affine map. We define the error of our quadrature in \hat{T} and T as

$$E_{\hat{T}}(\hat{g}) = Q_{\hat{T}}(\hat{g}) - \int_{\hat{T}} \hat{g} d\hat{x},$$

$$E_T(g) = Q_T(g) - \int_T g dx.$$

Here $\hat{g}(\hat{x}) = g(R_T(\hat{x}))$. Notice that $E_T(g) = J(R_T)E_{\hat{T}}(\hat{g})$. Let us suppose that we use this type of quadrature in Ω_1 . Then, our finite element approximation u_h will satisfy

(2.1)
$$A(u - u_h, v) = F(v), \quad \forall v \in \mathring{S}_{h, r-1}(\Omega_1)$$

where $F = F_1 + F_2$,

$$F_1 = \sum_T F_1^T(v), \quad F_1^T(v) = E_T\left(\sum_{ij} a_{ij} \frac{\partial u_h}{\partial x_i} \frac{\partial v}{\partial x_j}\right),$$

and

$$F_2(v) = \sum_T F_2^T(v), \ F_2^T(v) = E_T(fv).$$

3 Main result.

Now we prove Theorem 1.4.

PROOF. From now on set $e = u - u_h$. Let us consider $y \in \Omega_0$. Let $\Omega_0 \subset \subset \Omega_2$ $\subset \subseteq \Omega_1$. By Theorem 1.2 in [9], there exists a C independent of y such that

(3.1)
$$|e(y)| + |\nabla e(y)| \le C \left(\log \frac{1}{h} \right)^s \inf_{\chi} ||u - \chi||_{W^1_{\infty}(\Omega_2), y, s} + C||e||_{H^{-t}(\Omega_2)} + C \left(\log \frac{1}{h} \right) |||F|||_{-1, \Omega_2}$$

where $\bar{s} = 0$ if $0 \le s \le r - 1$ and $\bar{s} = 1$ if $s = r - 1$. Here

0 If $0 \leq s < r$ -1 and s = 1 if s = r - 1. Here

$$|||F|||_{-1,G} = \sup_{\substack{\psi \in \dot{W}_1^1(G) \\ ||\psi||_{W_1^1(G)} = 1}} F(\psi)$$

First we multiply (3.1) by $\sigma_x^s(y)$, and take the supremum over $y \in \Omega_0$. Then, by noting that $\sigma_x(y)\sigma_y(z) \leq 2\sigma_x(z)$ and $\sigma_x(y) \leq 1$, we obtain

(3.2)
$$||e||_{W^{1}_{\infty}(\Omega_{0}),x,s} \leq C \left(\log \frac{1}{h} \right)^{s} \inf_{\chi} ||u - \chi||_{W^{1}_{\infty}(\Omega_{2}),x,s}$$
$$+ C ||e||_{H^{-t}(\Omega_{2})} + C \left(\log \frac{1}{h} \right) ||F||_{-1,\Omega_{2}}.$$

698

By using the Bramble-Hilbert lemma (see Corollary 5.1 in [12]), we see that

$$|||F_1|||_{-1,\Omega_2} \le Ch^{r-1+q} ||u_h||_{W^{r-1,h}_{\infty}(\Omega_2)}.$$

The broken norm is defined as $||v||_{W^{r-1,h}_{\infty}(G)} = \sup_{T} ||v||_{W^{r-1}_{\infty}(T \cap G)}$ for $G \subset \Omega$.

A slight modification of Theorem 4.1.5 in [4] (which uses the Bramble-Hilbert lemma) shows that

$$|||F_2|||_{-1,\Omega_2} \le Ch^{r-1+q} ||f||_{W^{r-1+q}_{\infty}(\Omega_2)}.$$

Therefore, we have that

(3.3)
$$|||F|||_{-1,\Omega_2} \le h^{r-1+q}(||u_h||_{W^{r-1,h}_{\infty}(\Omega_2)} + ||f||_{W^{r-1+q}_{\infty}(\Omega_2)}).$$

By the triangle inequality and inverse estimates, we get

(3.4)
$$||u_h||_{W^{r-1,h}_{\infty}(\Omega_2)} \le Ch^{2-r}||e||_{W^1_{\infty}(\Omega_2)} + C||u||_{W^r_{\infty}(\Omega_2)}.$$

After observing that $h^s \leq C\sigma_x^s(z)$ for $z \in \Omega_2$, and combining (3.2), (3.3) and (3.4), we find that for all M

$$(3.5) \quad ||e||_{W^{1}_{\infty}(\Omega_{0}),x,s} \leq C \left(\log \frac{1}{h} \right)^{s} \inf_{\chi} ||u - \chi||_{W^{1}_{\infty}(\Omega_{2}),x,s} + C ||e||_{H^{-t}(\Omega_{2})} \\ + C \left(\log \frac{1}{h} \right) h^{r-1+q} (||u||_{W^{r}_{\infty}(\Omega_{2})} + ||f||_{W^{r-1+q}_{\infty}(\Omega_{2})}) \\ + C \left(\log \frac{1}{h} \right) h^{1+q-s} ||e||_{W^{1}_{\infty}(\Omega_{2}),x,s}.$$

If we apply (3.5) M times on a sequence of nested domains and then apply (3.2) and (3.3), we get that

$$\begin{aligned} ||e||_{W^{1}_{\infty}(\Omega_{0}),x,s} &\leq C \left(\log \frac{1}{h} \right)^{s} \inf_{\chi} ||u - \chi||_{W^{1}_{\infty}(\Omega_{1}),x,s} + C ||e||_{H^{-t}(\Omega_{1})} \\ &+ C \left(\log \frac{1}{h} \right) h^{r-1+q} (||u||_{W^{1}_{\infty}(\Omega_{1})} + ||f||_{W^{r-1+q}_{\infty}(\Omega_{2})}) \\ &+ C \left(\left(\log \frac{1}{h} \right) h \right)^{M} ||u_{h}||_{W^{r-1,h}_{\infty}(\Omega_{1})}. \end{aligned}$$

Applying an inverse estimate, we observe that

$$||u_h||_{W^{r-1,h}_{\infty}(\Omega_1)} \le Ch^{-(r-1)-t-N/2}||u_h||_{H^{-t}(\Omega_1)}.$$

By the triangle inequality $||u_h||_{H^{-t}(\Omega_1)} \leq ||e||_{H^{-t}(\Omega_1)} + ||u||_{H^{-t}(\Omega_1)}$. Choosing M large enough we arrive at

$$\begin{aligned} ||u - u_h||_{W^1_{\infty}(\Omega_0), x, s} &\leq C \bigg(\log \frac{1}{h} \bigg)^s \inf_{\chi} ||u - \chi||_{W^1_{\infty}(\Omega_1), x, s} \\ &+ C \bigg(\log \frac{1}{h} \bigg)^{r-1+q} (||u||_{W^r_{\infty}(\Omega_1)} + ||f||_{W^{r-1+q}_{\infty}(\Omega_1)})h \\ &+ C ||u - u_h||_{H^{-t}(\Omega_1)}. \end{aligned}$$

Our result now follows by noting that $|\nabla(u-u_h)(x)| \leq ||u-u_h||_{W^1_{\infty}(\Omega_0),x,s}$. \Box

J. GUZMÁN

For various problems we can use standard duality arguments to find bounds for $||u - \bar{u}_h||_{H^{-t}(\Omega_1)}$ which will be better then h^{r-1} . However, we need to keep in mind that u_h is the FEM solution with numerical quadrature. Therefore, in the next section we give an application that guarantees the optimal negative-order norm estimate taking into account numerical quadrature.

4 Negative-order norm estimates with quadrature.

Banerjee and Osborn [3] proved negative-order norm estimates with numerical quadrature in one dimension. We extend their result to a problem on a polygonal domain in two dimensions assuming we have appropriate refinements near the corners. This was done for the L_2 -norm in [8]. Our proof follows the same lines.

Let Ω be a polygonal domain. Let $Vtx = x_1, x_2, x_3, \ldots, x_q$ be the set of vertices. We introduce some weighted norm spaces that the solution belongs to, as in [2].

DEFINITION 4.1. Let m be a positive integer, $a \in R$ and define $\rho(x) = dist(x, Vtx)$. Then for $G \subset \Omega$ define the weighted space

$$K_a^m(G) = \left\{ u \in L_2^{loc}(G), \ \rho^{|\alpha| - a - 1} D^{\alpha} u \in L_2(G) \right\}.$$

This space is equipped with the norm

$$||u||_{K_a^m(G)}^2 = \sum_{|\alpha| \le m} ||\rho^{|\alpha| - a - 1} D^{\alpha} u||_{L_2(G)}^2$$

Now we state a result about existence and uniqueness in plane polygonal domains for (1.1). This is a simple consequence of the results in [7] and [6].

LEMMA 4.1. Let m be a non-negative integer. There exists a $\eta > 0$ such that for every $0 < \beta < \eta$ and every $f \in K^m_{\beta-2}(\Omega)$ there exists a unique $u \in K^{m+2}_{\beta}(\Omega)$ satisfying (1.1) and u = 0 on $\partial\Omega$ with the bound

$$||u||_{K^{m+2}_{\beta}(\Omega)} \le C||f||_{K^{m}_{\beta-2}(\Omega)}$$

where C is independent of f and u.

PROOF. Following a similar argument as was done for Laplace's equation in Theorem 2.6.1 in [7], we have that there exists a $\eta > 0$ such that for every $|\beta| < \eta$ and $f \in K^m_{\beta-2}(\Omega)$ there exists a $u \in K^{m+2}_{\beta}(\Omega)$. By Theorem 1.4.1 in [7] we have that there exists a C independent of u and f such that

$$||u||_{K^{m+2}_{\beta}(\Omega)} \le C(||f||_{K^{m}_{\beta-2}(\Omega)} + ||u||_{L_{2}(\Omega)}).$$

Using the weak form of the PDE and the uniform ellipticity condition we have

$$||\nabla u||_{L_2(\Omega)}^2 \le C \int_{\Omega} |fu| dx \le C \left(\int_{\Omega} \rho^2 f^2 dx \right)^{1/2} \left(\int_{\Omega} \rho^{-2} u dx \right)^{1/2}$$

Since $u \in \mathring{H}^1(\Omega)$, we have by Lemma 6.6.1 in [6] that

$$\left(\int_{\Omega} \rho^{-2} u^2 dx\right)^{1/2} \le C ||\nabla u||_{L_2(\Omega)}$$

Furthermore, since $\beta > 0$, we have that $(\int_{\Omega} \rho^2 f^2 dx)^{1/2} \leq C(\int_{\Omega} \rho^{2(1-\beta)} f^2)^{1/2} \leq C||f||_{K^m_{\beta-2}(\Omega)}$. This shows that $||\nabla u||_{L_2(\Omega)} \leq C||f||_{K^m_{\beta-2}(\Omega)}$. The result now follows since $||u||_{L_2(\Omega)} \leq C||\nabla u||_{L_2(\Omega)}$.

If we are solving Laplace's equation, then $\eta = \frac{\pi}{\alpha}$ where α is the largest interior angle. More generally, η is a computable number which depends on the local frozen coefficient problems on each vertex. One can prove a more precise statement. In that case, one would have to define a norm that is weighted differently near each vertex. For simplicity we considered the present setting.

For the following we choose $\beta \leq 1$ and, of course, $0 < \beta < \eta$. Now we use the mesh refinement condition in [1], [8] and [2]. Let h_T be the mesh size of the element T, set $h = \max_T h_T$, and $d_T = dist(T, Vtx)$. Then we require

$$h_T \le \begin{cases} Chd_T^{((r-1)-\beta)/(r-1)} & \text{if } d_T > 0\\ Ch^{(r-1)/\beta} & \text{if } d_T = 0. \end{cases}$$

We let S_k^h denote the Lagrange finite element space of order k on Ω . We can show as in [8] that the following lemma holds.

LEMMA 4.2. Let $w \in K^m_{\beta}(\Omega)$. If $k \ge m-1$ we have

(4.1)
$$||\nabla(w - w_I)||_{L_2(\Omega)} \le Ch^{m-1} ||w||_{K^m_{\beta}(\Omega)}$$

where $w_I \in S_k^h$ is the continuous interpolant of w.

By the work in [8] we have the following.

LEMMA 4.3. Let $u_h \in S_{r-1}^h$ be our FEM approximation with quadrature of order at least 2(r-1)-2. Then

$$||\nabla(u-u_h)||_{L_2(\Omega)} \le Ch^{r-1}||u||_{K^r_{\beta}(\Omega)}$$

This next lemma corresponds to Lemma 6.2 in [3]. We give a proof since it is slightly different.

LEMMA 4.4. Suppose that we are using a quadrature rule that is of order r-2+q and l is chosen such that r-1+q>2/l. If $v \in P_q(T)$, then

$$\left|F_{2}^{T}(v)\right| \leq meas(T)^{1/l-1/2}h_{T}^{r-1+q}||f||_{W_{l}^{r-1+q}(T)}||v||_{H^{q}(T)}.$$

Here $P_q(T)$ denotes the space of polynomials of degree less than or equal to q.

PROOF. We have

(4.2)
$$F_2^T(v) = E_T(fv) = J(R_T)E(\hat{f}\hat{v})$$

where \hat{T} is the reference element and R_T is the affine map from \hat{T} to T.

For $\hat{\psi} \in W_l^{r-1+q}(\hat{T})$, we then have

$$E_{\hat{T}}(\hat{\psi}) \le C |\hat{\psi}|_{L_{\infty}(\hat{T})} \le C ||\hat{\psi}||_{W_{l}^{r-1+q}(\hat{T})}$$

where we used imbedding theorems in the last inequality. By the Bramble-Hilbert lemma, we have

$$E_{\hat{T}}(\hat{\psi}) \le C |\hat{\psi}|_{W_l^{r-1+q}(\hat{T})}.$$

Setting $\hat{\psi} = \hat{f}\hat{v}$, we get

$$E_{\hat{T}}(\hat{f}\hat{v}) \le C(|\hat{f}|_{W_{l}^{r-1+q}(\hat{T})}|\hat{v}|_{L_{\infty}(\hat{T})} + \dots + |\hat{f}|_{W_{l}^{r-1}(\hat{T})}|\hat{v}|_{W_{\infty}^{q}(\hat{T})}).$$

If we use the equivalence of norms in finite dimensional space, we obtain

$$E_{\hat{T}}(\hat{f}\hat{v}) \le C(|\hat{f}|_{W_l^{r-1+q}(\hat{T})}|\hat{v}|_{L_2(\hat{T})} + \dots + |\hat{f}|_{W_l^{r-1}(\hat{T})}|\hat{v}|_{H^q(\hat{T})}).$$

Scaling back to the physical element we get that

$$E_{\hat{T}}(\hat{f}\hat{v}) \le Ch_T^{r-1+q} J(R_T)^{-1/2-1/l} (|f|_{W_l^{r-1+q}(T)} |v|_{L_2(T)} + \dots + |f|_{W_l^{r-1}(T)} |v|_{H^q(T)}).$$

After using (4.2) we arrive at our result.

Following similar arguments we can bound F_1^T (see Lemma 6.1 in [3]).

LEMMA 4.5. Suppose that we are using a quadrature rule of order r - 2 + q. If $v \in P_q(T)$ then

$$F_1^T(v) \le Ch_T^{r-1+q} ||u_h||_{H^{r-1}(T)} ||v||_{H^q(T)}.$$

Now we can state and prove our main result of this section.

THEOREM 4.6. Let u solve (1.1) with u = 0 on $\partial\Omega$. Let $u_h \in S_{r-1}^h$ be the FEM solution with a quadrature rule of order $\max(2(r-1)-2, r-2+q)$ with $1 \le q \le r-1$. Then

(4.3)
$$||u - u_h||_{H^{-(q-1)}(\Omega)} \le Ch^{r-1+q}.$$

PROOF. We know by a duality argument (see Problem 4.1.3 [4])

$$||u - u_h||_{H^{-(q-1)}(\Omega)} \le C \sup_{\substack{g \in H^{q-1}(\Omega) \\ ||g||_{H^{q-1}(\Omega)} = 1}} (||\nabla(u - u_h)||_{L_2(\Omega)} ||\nabla(\phi - \phi_I)||_{L_2(\Omega)} + F(\phi_I))$$

where ϕ satisfies $L\phi = g$ and vanishes on the boundary and $\phi_I \in S_q^h$ is the continuous interpolant of ϕ . By Lemma 4.2, Lemma 4.1 and the fact that $||g||_{K_{\beta-2}^{q-1}(\Omega)} \leq ||g||_{H^{q-1}(\Omega)}$, we observe that

(4.4)
$$||\nabla(\phi - \phi_I)||_{L_2(\Omega)} \le Ch^q.$$

702

QUADRATURE

Therefore, after using this fact and Lemma 4.3, we have that

$$||u - u_h||_{H^{-(q-1)}(\Omega)} \le Ch^{r-1+q} + C \sup_{\substack{g \in H^{q-1}(\Omega) \\ ||g||_{H^{q-1}(\Omega)} = 1}} F(\phi_I).$$

We first bound F_2 . By Lemma 4.4 we have

$$F_2(\phi_I) \le \sum_T h_T^{r-1+q} ||\phi_I||_{H^q(T)} ||f||_{W_l^{r-1+q}(T)} meas(T)^{1/l-1/2}$$

For $d_T > 0$, using approximation properties of ϕ_I and the definition of h_T , we get

$$h_T^{r-1+q} ||\phi_I||_{H^q(T)} \le h^{r-1+q} d_T^{(r-1-\beta)(1+q/(r-1))} ||\phi||_{H^{q+1}(T)}.$$

It is clear that $q - \beta \leq (r - 1 - \beta)(1 + q/(r - 1))$. Since $d_T \leq \rho(x) \quad \forall x \in T$, we have

$$h_T^{r-1+q} ||\phi_I||_{H^q(T)} \le h^{r-1+q} ||\phi||_{K^{q+1}_\beta(T)}.$$

Now assume $d_T = 0$. One can show that $||\phi - \phi_I||_{H^1(T)} \leq ||\phi||_{W_1^2(T)}$ (see [11]). Also, since $d_T = 0$ we have that $||\phi||_{W_1^2(T)} \leq h_T^\beta ||\phi||_{K_{\beta}^2(T)}$. Therefore, using these inequalities, an inverse inequality and the triangle inequality, we get

$$h_T^{r-1+q} ||\phi_I||_{H^q(T)} \le C h_T^r ||\phi||_{K^2_\beta(T)}.$$

Since $h_T \leq h^{(r-1)/\beta} \leq h^{r-1} (\beta \leq 1)$, we have that

$$h_T^{r-1+q} ||\phi_I||_{H^q(T)} \le h^{(r-1)+q} ||\phi||_{K_{\beta}^{q+1}(T)}$$

where we have used that $1 \le q \le r-1$ and $r \ge 2$. Finally, using the generalized Hölder inequality, we get that

(4.5)
$$F_2(\phi_I) \le h^{r-1+q} ||\phi||_{K^{q+1}_{\beta}(\Omega)} ||f||_{W^{r-1+q}_l(\Omega)} meas(\Omega)^{1/2-1/l}.$$

Now we bound $F_1(\phi_I)$. Using Lemma 4.5

$$F_1(\phi_I) \le \sum_T h_T^{r-1+q} ||u_h||_{H^{r-1}(T)} ||\phi_I||_{H^q(T)}.$$

We employ the triangle inequality to get

$$F_{1}(\phi_{I}) \leq \sum_{T} h_{T}^{r-1+q} ||u_{I}||_{H^{r-1}(T)} ||\phi_{I}||_{H^{q}(T)} + \sum_{T} h_{T}^{r-1+q} ||u_{h} - u_{I}||_{H^{r-1}(T)} ||\phi_{I}||_{H^{q}(T)}.$$

Using inverse estimates, the triangle inequality and Lemmas 4.2 and 4.3, we get

$$\begin{split} \sum_{T} h_{T}^{r-1+q} || u_{h} - u_{I} ||_{H^{r-1}(T)} || \phi_{I} ||_{H^{q}(T)} \\ &\leq C \sum_{T} h_{T}^{1+q} || u_{h} - u_{I} ||_{H^{1}(T)} || \phi_{I} ||_{H^{q}(T)} \\ &\leq C || u_{h} - u_{I} ||_{H^{1}(\Omega)} \left(\sum_{T} \left(h_{T}^{1+q} || \phi_{I} ||_{H^{q}(T)} \right)^{2} \right)^{1/2} \\ &\leq C h^{r-1} \left(\sum_{T} \left(h_{T}^{1+q} || \phi_{I} ||_{H^{q}(T)} \right)^{2} \right)^{1/2}. \end{split}$$

Now by considering two separate cases $(d_T > 0 \text{ and } d_T = 0)$, and using arguments as above in bounding F_2 , we get

$$\left(\sum_{T} \left(h_{T}^{1+q} ||\phi_{I}||_{H^{q}(T)}\right)^{2}\right)^{1/2} \leq Ch^{1+q} ||\phi||_{K_{\beta}^{q+1}(\Omega)}.$$

Therefore, we have

$$\sum_{T} h_{T}^{r-1+q} ||u_{h} - u_{I}||_{H^{r-1}(T)} ||\phi_{I}||_{H^{q}(T)} \le Ch^{r+q} ||\phi||_{K_{\beta}^{q+1}(\Omega)}.$$

Next, we bound $\sum_T h_T^{r-1+q} ||u_I||_{H^{r-1}(T)} ||\phi_I||_{H^q(T)}$. If $d_T > 0$,

$$\begin{split} h_T^{r-1+q} || \, u_I ||_{H^{r-1}(T)} || \phi_I ||_{H^q(T)} \\ &\leq C h_T^{r-1+q} || u ||_{H^r(T)} || \phi ||_{H^{q+1}(T)} \\ &\leq h^{r-1+q} d_T^{r-1-\beta} || u ||_{H^r(T)} d_T^{q(r-1-\beta)/(r-1)} || \phi ||_{H^{q+1}(T)} \\ &\leq h^{r-1+q} || u ||_{K_{\beta}^r(T)} || \phi ||_{K_{\beta}^{q+1}(T)}. \end{split}$$

In the first inequality we used approximation properties of u_I and ϕ_I . In the second inequality we used the definition of h_T . Finally, in the third inequality we used that $q(r-1-\beta)/(r-1) \ge q-\beta$.

If $d_T = 0$,

$$\begin{split} h_T^{r-1+q} || \, u_I ||_{H^{r-1}(T)} || \phi_I ||_{H^q(T)} \\ &\leq h_T^2 || u_I ||_{H^1(T)} || \phi_I ||_{H^1(T)} \\ &\leq h_T^2 || u ||_{K_{\beta}^2(T)} || \phi ||_{K_{\beta}^2(T)} \\ &\leq h^{2(r-1)/\beta} || u ||_{K_{\beta}^2(T)} || \phi ||_{K_{\beta}^2(T)} \\ &\leq h^{r-1+q} || u ||_{K_{\beta}^r(T)} || \phi ||_{K_{\beta}^{q+1}(T)}. \end{split}$$

In the first inequality we used an inverse estimate. For the second inequality we used an argument as was done to bound F_2 . In the third inequality we used the definition of h_T . We used that $1 \leq q \leq r-1$, $r \geq 2$ and $\beta \leq 1$ in the last inequality.

Therefore, we have that

$$\sum_{T} h_{T}^{r-1+q} ||u_{I}||_{H^{r-1}(T)} ||\phi_{I}||_{H^{q}(T)} \le h^{r-1+q} ||u||_{K^{r}_{\beta}(\Omega)} ||\phi||_{K^{q+1}_{\beta}(\Omega)}.$$

We conclude that

(4.6)
$$F_1(\phi_I) \le Ch^{r-1+q} ||\phi||_{K^{q+1}_{\beta}(\Omega)}$$

Finally, using (4.5), (4.6) and Lemma 4.1 we arrive at our conclusion.

5 Sharpness of result.

In order to prove the sharpness of Theorem 1.4, we need to state a corollary to this result with q = s (see [9]).

COROLLARY 5.1. Let $\Omega_0 \subset \subset \Omega_1 \subset \subset \Omega$ and let $x \in \Omega_0$. Let u solve (1.2) and let u_h satisfy (2.1) where we use a quadrature rule of order 2(r-1) - 2 + s. Let $\gamma \leq r - 1 + s$. Suppose that $\sum_{r \leq |\alpha| \leq \gamma} |D^{\alpha}u(x)| = 0$, then

(5.1)
$$|\nabla(u-u_h)(x)| \le C \log\left(\frac{1}{h}\right) h^{\gamma}$$

provided that

(5.2)
$$||u - u_h||_{H^{-t}(\Omega_1)} \le C_1 h^{\gamma} \quad for \ some \ t.$$

Here C is independent of h, x, u, and u_h .

Let now $\Omega = (-1, 1)$ and consider the problem

(5.3)
$$-((x^{r-1+s-1}+2)u'(x))' = f(x) \ x \in \Omega,$$
$$u(-1) = u'(1) = 0.$$

Suppose that u is a linear function with slope one in an interval I containing x = 0. Suppose also that we have a uniform mesh of mesh size h and that x = 0 is always a mesh point. Suppose further that we are using elements of polynomial order r - 1 to approximate u. Let us first assume that we use a quadrature rule of order 2(r-1) - 2 + s with $1 \le s \le r - 1$. For this problem we can easily show that $||u - u_h||_{H^{-(s-1)}(\Omega)} \le Ch^{r-1+s}$. As we have shown in higher dimensions, Corollary 5.1, we have superconvergence on I. More precisely, $||(u - u_h)'||_{L_{\infty}(I)} \le C \log(1/h)h^{r-1+s}$.

However, as we shall now show, if we use a quadrature rule of order 2(r-1) - 2 + s - 1 then we no longer have a superconvergence result of this order. This would show that are results are sharp.

J. GUZMÁN

For simplicity let us suppose that we integrate the right hand side $(\int_{\Omega} f v dx)$ exactly. Suppose we use a quadrature rule of order 2(r-1) - 2 + s - 1 for the left hand side. We show that the error in I can not be of order h^{γ} if $\gamma > 2(r-1) - 2 + s - 1$. To this end, let T = (0, h). We conveniently choose a continuous v in the following way: v(x) = 0 if x < 0, v(x) = 1 if x > h and $v(x) = (x/h)^{r-1}$ on T. Since $v' \equiv 0$ outside of T,

$$Q_T(au'_hv') = \int_{\Omega} fv dx$$

where $a(x) = x^{r-1+s-1} + 2$. Of course, the exact solution will satisfy

$$\int_T au'v'dx = \int_\Omega fvdx$$

Therefore, for this v, we have the relationship

(5.4)
$$\int_{T} au'v'dx - Q_T(au'v') = Q_T(a(u_h - u)'v').$$

Now we investigate the left hand side of (5.4). Note that $\int_T 2u'v' = Q_T(2u'v')$ since 2u'v' is polynomial of degree $r-2 \leq 2(r-1)-2+s-1$ on T. Since u'(x) = 1 and $v'(x) = (r-1)(1/h)(x/h)^{r-2}$, we get after a change of variables that

$$\int_{T} au'v'dx - Q_{T}(au'v')$$

= $(r-1)h^{r-1+s-1} \left(\int_{0}^{1} \hat{x}^{2(r-1)-2+s} d\hat{x} - Q(\hat{x}^{2(r-1)-2+s}) \right).$

Of course, since we are using a quadrature rule of order 2(r-1) - 2 + s - 1, we have that

$$\int_0^1 \hat{x}^{2(r-1)-2+s} d\hat{x} - Q(\hat{x}^{2(r-1)-2+s}) = C_2 \neq 0.$$

Therefore, for the left hand side in (5.4),

$$\int_T au'v'dx - Q_T(au'v') = C_2(r-1)h^{r-1+s-1}.$$

On the other hand, if $||(u - u_h)'||_{L_{\infty}(T)} \leq Ch^{\gamma}$ for $\gamma > r - 1 + s - 1$, then for the right hand side in (5.4),

$$Q_T(a(u_h - u)'v') \le Ch^{\gamma} ||av'||_{L_{\infty}(T)} Q_T(1) \le Ch^{\gamma}$$

Which leads to a contradiction. Therefore, $(u - u_h)'$ is at most $O(h^{r-1+s-1})$ on *I*. This, of course, shows that Corollary 5.1 is sharp, and in turn, implies that Theorem 1.4 is sharp.

QUADRATURE

Acknowledgement.

The author would like to thank Lars Wahlbin and Alfred Schatz for their guidance. The author benefited greatly from the fruitful discussions with Victor Nistor.

REFERENCES

- 1. I. Babuška, *Finite element method for domains with corners*, Computing, 6 (1970), pp. 264–273.
- C. Bacuta, V. Nistor and L. T. Zikatanov, Improving the rate of convergence of 'higher order finite elements' on polygons and domains with cusps, Numer. Math., 100 (2005), pp. 165–184.
- 3. U. Banerjee and J. E. Osborn, Estimation of the effect of numerical integration in finite element eigenvalue approximation, Numer. Math., 56 (1990), pp. 735–762.
- P. G. Ciarlet, The Finite Element Methods for Elliptic Problems, North-Holland, Amsterdam, 1978.
- W. Hoffmann, A. H. Schatz, L. B. Wahlbin and G. Wittum, Asymptotically exact a posteriori error estimators for the pointwise gradient error on each element on irregular grids. I. A smooth problem and globally quasi-uniform meshes. Math. Comput., 70 (2001), pp. 897–909.
- V. A. Kozlov, V. G. Maz'ya and J. Rossman, *Elliptic Boundary Value Problems in Domains with Point Singularities*, Mathematical Surveys and Monographs, vol. 52, Amer. Math. Soc., Providence, Rhode Island, 1997.
- V. A. Kozlov, V. G. Maz'ya and J. Rossman. Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations, Mathematical Surveys and Monographs, vol. 85, Amer. Math. Soc., Providence, Rhode Island, 2000.
- G. Raugel, Rèsolution Numèrique de Problémes Elliptiques Dans des Domaines Avec Coins, Thesis, University of Rennes, 1978.
- A. H. Schatz, Pointwise error estimates and asymptotic expansion inequalities for the finite element method on irregular grids: Part II. Interior estimates, SIAM J. Numer. Anal., 38 (2000), pp. 1269–1293.
- A. H. Schatz, Perturbation of forms and error estimates for the finite element method at a point, with an application to improved superconvergence error estimates for subspaces that are symmetric with respect to a point, SIAM J. Numer. Anal., 42 (2005), pp. 2342– 2365.
- 11. A. H. Schatz, V. Thomée and W. L. Wendland, Mathematical Theory of Finite and Boundary Element Methods, Birkhäuser, Basel, 1990.
- A. H. Schatz and L. B. Wahlbin, Interior maximum-norm estimates for finite element methods, Part II, Math. Comput., 64 (1995), pp. 907–928.