1 Solutions to Monday’s Review Session

1.1 What is the domain of the functions \(f(x) = \frac{1}{x-3} \) and \(g(x) = \frac{\sqrt{x+2}}{x-3} \).

A lot of times when you are doing a domain problem you want to ask yourself where the function is undefined. For \(f(x) \), we could have a problem of dividing by zero. So, we must have that \(x \neq 3 \). Therefore, the domain for \(f(x) \) is simply:

\[
D : x \neq 3
\]

Now, for \(g(x) \) we have the added problem that we cannot take the square root of a negative number. Therefore we must make sure that everything underneath the radical is positive or greater than zero. Written in math symbols this means that:

\[
\begin{align*}
x + 2 & \geq 0 \\
\Rightarrow x & \geq -2.
\end{align*}
\]

Also, we have that \(x \neq 3 \) since we still don’t want to divide by zero. Therefore, the domain for \(g(x) \) is given by

\[
D : x \geq -2 \text{ and } x \neq 3.
\]

1.2 If \(f(x) = \sqrt{x} \), evaluate and completely simplify the difference quotient: \(\frac{f(x+h)-f(x)}{h} \).

The goal with any difference quotient problem is to eliminate the \(h \) in the denominator. What makes this problem difficult is the square root. To ”get rid” of the square root I am going to multiply the top and bottom of the fraction by the conjugate.

\[
\begin{align*}
\frac{f(x+h) - f(x)}{h} &= \frac{\sqrt{x+h} - \sqrt{x}}{h} \\
&= \frac{\sqrt{x+h} - \sqrt{x}}{h} \cdot \frac{\sqrt{x+h} + \sqrt{x}}{\sqrt{x+h} + \sqrt{x}} \\
&= \frac{x+h - x}{h(\sqrt{x+h} + \sqrt{x})} \\
&= \frac{h}{h(\sqrt{x+h} + \sqrt{x})} \\
&= \frac{1}{\sqrt{x+h} + \sqrt{x}}.
\end{align*}
\]
1.3 Find a possible formula for the following tables:

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>f(x)</td>
<td>7</td>
<td>12</td>
<td>17</td>
<td>22</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>g(x)</td>
<td>3</td>
<td>5.1</td>
<td>8.67</td>
<td>14.739</td>
<td>25.89151</td>
</tr>
</tbody>
</table>

The first function is linear. To check if a table is a linear function check if it has a constant slope. The first table has a constant slope of 5. Also, the table has a y-intercept of 3. Therefore, the formula for the function is given by:

\[f(x) = 5x + 3. \]

The second table is exponential. The way you check if a table is exponential is to take the quotient (i.e. divide) of consecutive \(y \) values and see if you get a constant. For this table we have that

\[
\frac{5.1}{3} = 1.7 \\
\frac{8.67}{5.1} = 1.7 \\
\frac{14.739}{8.67} = 1.7 \\
\frac{25.89151}{14.739} = 1.7.
\]

Therefore, this table is an exponential function.

Now, let’s see why this works. Suppose we have a function in the form \(g(x) = ab^x \) that fits the data points of some table. Now, let’s see what happens if we divide two consecutive \(y \)-values. For \(x = 2 \) and \(x = 1 \) we have that

\[g(2)/g(1) = (ab^2)/(ab^1) = b \]

Now, let’s pick an arbitrary input \(n \). The next consecutive input is \(n + 1 \). If we then divide there corresponding outputs we have that

\[g(n + 1)/g(n) = (ab^{n+1})/(ab^n) = b. \]

It follows that no matter what two consecutive points you pick their quotient will always be the constant \(b \).

So, if we return to our table above we have that \(b = 1.7 \) and \(a = 3 \), which is the \(y \)-intercept. So, the equation for \(g(x) \) is simply

\[g(x) = 3(1.7)^x. \]

Also, recall that \(b = 1 + r \) where \(r \) is the decimal representation of the percent rate of change. Therefore, every time \(x \) increases by 1, \(g(x) \) increases by 70%.

Finally, let’s convert our exponential function into the form \(g(x) = ae^{kx} \). We already know that \(a = 3 \), so all we need to do is find \(k \). Well, since this is just another way to represent the same exponential function we must have that for all values of \(x \) the following must be true:

\[
\begin{align*}
3(1.7)^x &= 3e^{kx} \\
\Rightarrow \ln(1.7^x) &= \ln(e^{kx}) \\
\Rightarrow x \ln(1.7) &= kx \\
\Rightarrow \ln(1.7) &= k.
\end{align*}
\]

Remember that \(k \) is called the continuous growth rate.
1.4 What is the range and domain of the function $f(x) = 3 + 2 \ln(x - 4)$.

First, you cannot use your calculator to do this problem. One way to do this problem is to think about this as a transformation of the base graph $g(x) = \ln(x)$. The graph of $g(x) = \ln(x)$ is given below: Now, $\ln(x)$ has a range of $(-\infty, \infty)$ and a domain of $(0, \infty)$. Now, $f(x)$ just is this graph shifted right 4, vertically expanded by a factor of 2, and then vertically shifted up 3. This means that the range gets shifted to $(-\infty, \infty)$ (no change) and the domain is shifted to $(4, \infty)$.

Another way to do this problem is to think about the inverse of $f(x)$. The inverse of $f(x)$ is given by

$$f^{-1}(x) = e^{1/2(x-3)} + 4.$$

Now, the domain of $f^{-1}(x)$ is easily seen to be all real numbers since you can input any number. Now, the range of $f^{-1}(x)$ is easy to find since this is basically an exponential function that is shift up vertically 4 units. Therefore, the range is $(4, \infty)$. This means that $f(x)$ must have the opposite domain and range. In this case this means that the domain of $f(x)$ is $(4, \infty)$ and the range of $f(x)$ is $(-\infty, \infty)$.

Finally, the only asymptote of $f(x)$ is the line $x = 4$.
1.5 If \((2, 3)\) lies on the graph of \(f(x)\). What point must lie on the graph of \(g(x) = -2 \cdot f(x - 4) + 3\).

This is a simple transformation problem. The graph of \(g(x)\) is related to the graph of \(f(x)\) by first shifting right 4, vertically expanding by 2, reflecting across the \(x\)-axis, and then shifting up 3. Therefore, \((2, 3)\) gets translated to the point \((6, -3)\).

Another way to think about this problem is to use our knowledge that \(f(2) = 3\). So if we evaluate \(g(6)\) we have that

\[
g(6) = -2 \cdot f(2) + 3 = -2 \cdot 3 + 3 = -3.
\]

This means that the point \((6, -3)\) lies on the graph of \(g(x)\).

1.6 Determine which of the following functions are odd, even, or neither.

- \(f(x) = \frac{x^2 + 1}{x^6 - 1}\)

\[
f(-x) = \frac{(-x)^2 + 1}{(-x)^6 - 1} = \frac{x^2 + 1}{x^6 - 1} = f(x).
\]

This function is even.

- \(f(x) = \frac{|x|}{x - 2}\)

\[
f(-1) = 1/(-3) = -1/3.
f(1) = 1/(-1) = -1.
\]

This function is neither even or odd.

- \(f(x) = \sin(x) \cos(x)\)

\[
f(-x) = \sin(-x) \cos(-x) = -\sin(x) \cos(x) = -f(x).
\]

This function is odd.