
APMA 2811Q

Homework #1

Due: 9/25/13

1.1 Ill-posed problems

(a) Consider I : W 1,1
0 (0, 1) 7→ R defined by

I[f ] =

∫ 1

0

exp
(
−f ′(x)2

)
dx,

where W 1,1
0 (0, 1) =

{
f ∈W 1,1(0, 1) : f(0) = f(1) = 0

}
. Show that I has no minimizer in A.

(This problem is not coercive or convex).

Proof. Clearly, from strict positivity of the function g(x) = exp(−x2) it follows that ∀f ∈ A
that I[f ] > 0. Now consider the sequence of functions defined by

fn(x) =

{
nx, 0 < x < 1

2

−nx+ n, 1
2 < x < 1

.

Calculating it follows that

I[fn] =

∫ 1

0

e−n
2

dx = e−n
2

and hence lim
n→∞

I[fn] = 0. Therefore, ∀f ∈ A there exists N ∈ N such that I[f ] > I[fN ] > 0

proving there is no minimum in A.

Remark: Notice that the minimizing sequence need not converge to anything. In fact, this is
to be expected since the problem is neither convex nor coercive.

(b) Consider I : A 7→ R defined by

I[f ] =

∫ 1

0

xf ′(x)2 dx,

where A = {f ∈ W 1,2(0, 1) : f(0) = 1, f(1) = 0}. Show that I has no minimizer in A. (This
problem shows that lack of coercivity at one point is enough to guarantee non-existence of a
minimum).

Proof. Clearly ∀f ∈ A, I[f ] ≥ 0. Let fn be defined by

fn(x) =

{
1 0 < x < 1

n

− ln(x)
ln(n)

1
n < x < 1

.

Therefore,

I[fn] =

∫ 1

1
n

1

x ln(n)2
dx =

1

ln(n)

and consequently lim
n→∞

I[fn] = 0. Now, suppose ∃f ∈ A such that I[f ] = 0. Then f ′(x) = 0 a.e.

which is not compatible with the boundary conditions.
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Remark: The construction of the minimizing sequence is not trivial. The reason is if you try
to confine the derivative to a small region then from dimensional analysis the value of I in this
region will scale like an O(1) quantity. Instead, what I did was concentrate f(x) = 1 into a
small region and then spread out the derivative over the interval (0, 1).

(c) Consider I : A 7→ R defined by

I[f ] =

∫ 1

0

|f ′(x)| dx,

where A = {f ∈ W 1,1(0, 1) : f(0) = 0, f(1) = 1}. Prove that minimizers of I are not unique.
(You first need to find a potential minimizer and prove that it is indeed a minimizer).

Proof. From the Fundamental Theorem of Calculus it follows that ∀f ∈ A, I[f ] ≥ 1. The lower
bound is obtained by any smooth monotone increasing function and hence the minimizer is not
unique.

(d) Consider I : A 7→ R defined by

I[f ] =

∫ 1

−1
(2x− f ′(x))

2
f(x)2 dx,

where A = {f ∈ C∞(−1, 1) : f(−1) = 0, f(1) = 1}. Show that I has no minimum in A. What
is the correct admissible set we should have considered this problem in?

Proof. Clearly, I[f ] ≥ 0. Moreover, this lower bound is obtained by the non-smooth function f
defined by

f(x) =

{
0 −1 < x < 0

x2 0 < x < 1
.

To obtain a minimizing sequence take any function fn ∈ A satisfying fn → f strongly in
W 1,2(0, 1).

Now, suppose ∃g ∈ A such that I[g] = 0 a.e.. Then for every x in (0, 1) we have that g′(x) = 2x
or g(x) = 0 which for our boundary conditions cannot be satisfied by a smooth function. The
correct space we should have considered is W 1,2(0, 1).

1.2 Euler-Lagrange Equations

(a) Consider I : A 7→ R defined by

I[f ] =

∫ 1

0

(
1− f ′(x)2

)2
+ ε2

∫ 1

0

f ′′(x)2 dx,

where A = W 2,2
0 (0, 1) = {f ∈ W 2,2(0, 1) : f(0) = f(1) = f ′(0) = f ′(1) = 0}. Determine the

Euler-Lagrange equations for this functional. Find at least one solution to this equation and
show that it cannot be a minimum for all values of ε. (This is an example of a bifurcation).

Proof. The formal calculation yields

δI[f ] = −
∫ 1

0

4(1− f ′(x)2)f ′(x)(δf(x))′ dx+ 2ε2
∫ 1

0

f ′′(x)(δf(x))′′ dx

=

∫ 1

0

(
4
(
1− f ′(x)2

)
f ′(x) + 2ε2

∫ 1

0

f (iv)(x)

)
δf(x) dx.
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Consequently, the Euler-Lagrange equations are

ε2f (iv)(x) + 2
d

dx

[(
1− f ′(x)2

)
f ′(x)

]
= 0.

One obvious solution is the function f1(x) = 0. To show that this cannot be a minimizer for all
values of ε we will rewrite the functional as

I[f ] = I1[f ] + ε2I2[f ].

f1(x) minimizes I2[f ] alone. For large values of ε where I2 is dominate over I1 we expect f1
to be a minimizer. As ε decreases I1 dominates over I2 and we expect the minimizer to look
something like

f2(x) = −
∣∣∣∣x− 1

2

∣∣∣∣+
1

2
.

However, f2 does not satisfy our boundary conditions and is too rough. We need to smooth out
the corners of the function. For simplicity we will only smooth out near x = 0 and argue from
symmetry. Define,

gw(x) =

{
x2

2w2 0 < x < w

0 w < x < 1

Then I[gw] ≤ 2w + ε2

w . Minimizing over the choice of w we find that w =
√

2ε. Now, there are
three corners so we get the upper bound that

inf
f∈A

I[f ] ≤ 3

(
2
√

2 +
1√
2

)
ε.

Consequently, for ε small enough it follows that f1 cannot be a minimizer since I[f1] = 1.

(b) Consider I : A′ 7→ R defined as above with A′ = W 2,2(0, 1). Determine the natural boundary
conditions that must be satisfied by a smooth minimizer of this functional.

Proof. The formal calculation yields

δI[f ] = −
∫ 1

0

4(1− f ′(x)2)f ′(x)(δf(x))′ dx+ 2ε2
∫ 1

0

f ′′(x)(δf(x))′′ dx

=

∫ 1

0

(
4
d

dx

[(
1− f ′(x)2

)
f ′(x)

]
+ 2ε2

∫ 1

0

f (iv)(x)

)
δf(x) dx

+ 4
(
1− f ′(x)2

)
f ′(x)δf(x)

∣∣1
0

+ 2ε2f ′′(x) (δf(x))
′∣∣1
0
− 2 ε2f (iii)(x)δf(x)

∣∣∣1
0

Consequently, the natural boundary conditions are:

−4
(
1− f ′(0)2

)
f ′(0) = 2f (iii)(0)

−4
(
1− f ′(1)2

)
f ′(1) = 2f (iii)(1)

f ′′(0) = 0

f ′′(1) = 0.
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1.3 Weak-Convergence

(a) Prove that if 1 ≤ p < ∞ and un ⇀ u in Lp([0, 1]), vn → v in Lq([0, 1]) with 1
p + 1

q = 1 then

unvn ⇀ uv in L1([0, 1]).

Proof. Let g ∈ L∞([0, 1]). Then,∣∣∣∣∫ 1

0

(unvn − uv)g dx

∣∣∣∣ =

∣∣∣∣∫ 1

0

gun(vn − v) dx+

∫ 1

0

gv(un − u) dx

∣∣∣∣
≤
∫ 1

0

|g||un||(vn − v)| dx+

∣∣∣∣∫ 1

0

gv(un − u) dx

∣∣∣∣
≤ ‖g‖L∞M‖vn − v‖Lq +

∣∣∣∣∫ 1

0

gv(un − u)

∣∣∣∣ dx,
where M = supn ‖un‖Lq < ∞ by boundedness of weakly convergent sequences. Since gv ∈
L2([0, 1]) the result follows from taking the limit.

(b) Prove that if un ⇀ u in L2([0, 1]) and u2n ⇀ u2 in L1([0, 1]) then un → u inL2([0, 1]).

Proof.

‖un − u‖2L2 = ‖un‖2L2 − 2

∫ 1

0

unu dx+ ‖u‖2L2 .

Since 1 ∈ L2([0, 1]) it follows that ‖un‖2L2 → ‖u‖2L2 . The results thus follows from taking the
limit.

(c) Prove that for 1 ≤ p ≤ ∞ the unit ball in Lp([0, 1]) is not strongly compact.

Proof. Let fn(x) = sin(2πnx). Clearly for all n, ‖fn‖Lp ≤ 1. Moreover, ‖fn‖L1 = 2
π and since

the Lp norms are monotone increasing in p it follows for all p that ‖fn‖Lp ≥ 2
π . Now, for q

satisfying 1
q + 1

p = 1 it follows for all g ∈ Lq ∩ L2 that∫ 1

0

fn(x)g(x) dx = an,

where an are the coefficients in the sine Fourier series of g. Hence, an → 0 and consequently if
fn has a strongly convergent subsequence it must converge to zero. However, from the bounds
above this is a contradiction.

(d) Give an example of a bounded sequence in L1([0, 1]) that does not have a weakly convergent
subsequence.

Proof. The delta sequence fn defined by

fn(x) =

{
n 1

2 −
1
2n < x < 1

2 + 1
2n

0 o.w.

does not weakly converge to an L1 function.

(e) Find a sequence of functions fn with the property that fn ⇀ 0 in L2([0, 1]), fn → 0 in L
3
2 ([0, 1])

but fn does not converge strongly in L2([0, 1]).
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Proof. The sequence of functions defined by

fn(x) =

{√
n 1

2 −
1
2n < x < 1

2 + 1
2n

0 o.w.

works.
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