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Throughout most of this book, we have been dealing with instantaneous rates of change.
In the chapter on Differential Equations, for example, we saw how a population given by a
differentiable function might be determined if we know the instantaneous rate of change of
the population with respect to time. In many situations in biology, however, the population
only changes at discrete moments in time, such as each spring when new members of the
population are born. Such situations are often described by a discrete dynamical system,
in which the population at a certain stage is determined by the population at a previous
stage. Dynamical systems are an important area of pure mathematical research as well, but
in this chapter we will focus on what they tell us about population biology.

14.1: SEQUENCES

? If we know the size of a fish population this year, how can we use this information to predict
the population for the next four years?

We will answer this question in Example 4 using recursive sequences.
A function whose domain is the set of natural numbers, such as

a(n) = 2n for n = 1, 2, 3, 4, . . .

is a sequence. The sequence a(n) = 2n can be written by listing its terms, 2, 4, 6, 8, · · · ,
2n · · · . The letter n is used instead of x as a variable to emphasize the fact that the domain
includes only natural numbers. For the same reason, a is used instead of f to name the
function. Sequences have many different applications; as we shall see in this chapter, one
important example in the life sciences is the prediction of next year’s population based on
this year’s population.

In our definition of sequence we used the example a(n) = 2n. The range values of this
sequence function,

a(1) = 2, a(2) = 4, a(3) = 6, . . . ,

are called the elements or terms of the sequence. Instead of writing a(5) for the fifth term
of a sequence, it is customary to write a5; for the sequence above

a5 = 10.

In the same way, for the sequence above, a1 = 2, a2 = 4, a8 = 16, a20 = 40, and a51 = 102.
The symbol an is used for the general or nnnth term of a sequence. For example, for

the sequence 4, 7, 10, 13, 16, . . . the general term might be given by an = 1 + 3n. This
formula for an can be used to find any term of the sequence that might be needed. For
example, the first three terms of the sequence are

a1 = 1 + 3(1) = 4, a2 = 1 + 3(2) = 7, and a3 = 1 + 3(3) = 10.

Also, a8 = 25 and a12 = 37.

EXAMPLE 1 Sequences
Find the first four terms of the sequence having general term an = −4n + 2.

Solution Replace n, in turn, with 1, 2, 3, and 4.
If n = 1, a1 = −4(1) + 2 = −4 + 2 = −2.
If n = 2, a2 = −4(2) + 2 = −8 + 2 = −6.
If n = 3, a3 = −4(3) + 2 = −12 + 2 = −10.
If n = 4, a4 = −4(4) + 2 = −16 + 2 = −14.

The first four terms of this sequence are −2, −6, −10, and −14. �

Often sequences are given in recursive form. Rather than giving a formula for an as a
function of n, it is given as a function of an−1, the previous term.
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EXAMPLE 2 Recursive Sequences
For the sequence with an = 3an−1 + 2 and a1 = 2, find the next four terms.

Solution Replace n, in turn, with 2, 3, 4, and 5.

a2 = 3a1 + 2 = 3(2) + 2 = 8
a3 = 3a2 + 2 = 3(8) + 2 = 26
a4 = 3a1 + 2 = 3(26) + 2 = 80
a5 = 3a1 + 2 = 3(80) + 2 = 242

The first five terms of this sequence are 2, 8, 26, 80, and 242. �

The recursive sequence in the previous example could also be thought of as repeated
function composition of the function f(x) = 3x + 2. Notice that a2 = f(a1), a3 = f(a2) =
f(f(a1)), and so forth. To simplify the notation, let us denote f(f(a1)) as f2(a1) (not to
be confused with f (2)(a1), which represents the second derivative of f evaluated at a1).

fn(x) represents f(f(· · · f(x) · · · )), that is, f composed with itself n times. We will say
that f is iterated n times.

EXAMPLE 3 Iterated Function
For the function f(x) = x + 1, find f2(x), f3(x), and fn(x).

Solution

f2(x) = f(f(x))
= f(x) + 1
= (x + 1) + 1
= x + 2

f3(x) = f(f2(x))
= f2(x) + 1
= (x + 2) + 1
= x + 3

Continuing in this manner, we see that fn(x) = x + n + 1. This result can be proven
more formally with a technique known as mathematical induction, which is covered in many
college algebra books.* �

One important application of sequences in the life sciences is describing the size of
populations. For example, suppose a species of fish lays eggs every spring. Putting aside
the issue of random variation (a rather large issue to put aside, but necessary if we want
to keep things simple for now), it is reasonable to expect the population next year to be
a function of the population this year. Letting an be the size of the population in year n,
we have an+1 = f(an). If we label as year 1 the first year in which we keep track of the
population, then a2 = f(a1), a3 = f(a2) = f2(a1), and a4 = f(a3) = f3(a1). In general,
an+1 = f(an) = fn(a1).

Let’s consider what the function f might look like. If this year’s population is too
small to lay many eggs, next year’s population will also be small. In fact, f(0) = 0; if all
the fish die, they can’t breed to produce any for next year. Also, if the population is too
large, overcrowding may cause some fish to starve, so next year’s population will be small.
Somewhere in between there should be a population that’s just the right size, producing a
similar, nicely sized population next year.

* For example, see College Algebra and Trigonometry, 8th ed., by Margaret L. Lial, John
Hornsby, and David I. Schneider, Addison Wesley, 2001, pp. 606-613.
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One function showing such behavior is the logistic growth model described in Sec. 11.1
on Solutions of Elementary and Separable Differential Equations. The differential equation
of that model can be changed to a difference equation, in which an+1 is given in terms
of an:

an+1 = f(an) = k
(
1 − an

N

)
an,

where k is a constant measuring the growth rate and N is the maximum size of the popu-
lation. Notice that f(0) = f(N) = 0, and that f(N/2) = kN/4. Notice also that f(x) is a
quadratic function whose graph is a parabola opening downward, as in Figure 1.

0 N/2 N
FIGURE 1

? EXAMPLE 4 Logistic Growth
Suppose a fish population grows according to the logistic growth model, with N = 1,000
and k = 3. Given that the population begins at a1 = 200, find the population in the next
four years.

Solution For this problem, f(x) = 3(1 − x/1,000)x.

a2 = f(a1) = 3(1 − 200/1000)200 = 480
a3 = f(a2) = 3(1 − 480/1,000)480 = 748.8 ≈ 749
a4 = f(a3) = 3(1 − 749/1,000)749 = 563.997 ≈ 564
a5 = f(a4) = 3(1 − 564/1,000)564 = 737.712 ≈ 738

The population in the next four years is 480, 749, 564, and 738. At each step, we have
rounded the population to the nearest whole number, since the number of fish must be a
whole number. �
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14.1 EXERCISES

List the first 4 terms of the sequence satisfying each of the following conditions.

1. an = 5n + 2 2. an = −7n + 12
3. an = 2(3n) 4. an = 3(2n)

Find the next 4 terms of the sequence satisfying each of the following conditions.

5. an = 2an−1 − 3, a1 = 4 6. an = −3an−1 + 11, a1 = 2
7. an = −5an−1 + 2, a1 = −1 8. an = 4an−1 − 7, a1 = 6

For each function, find f2(x), f3(x), and fn(x).

9. f(x) = x + 2 10. f(x) = x − 3
11. f(x) = 2x 12. f(x) = −3x

Applications

LIFE SCIENCES

13. Ricker Model Another model of population growth which has been used to model
salmon is the Ricker model, given by*

f(x) = xer(1−x/N).

a. Find lim
x→∞

f(x).

b. Show that f ′(x) = er(1−x/N)(1 − rx/N).
c. Using the result of part b, for what values of x is f increasing? decreasing? At what
value of x does f have an absolute maximum?
d. Show that f ′′(x) = er(1−x/N)(rx/N − 2)(r/N).
e. Using the result of part d, for what values of x is f concave upward? concave downward?
At what value of x does f have an inflection point?
f. Using the results from parts a-e, draw a graph of this function.

✎ g. In your own words, describe in what ways the graph in part f is similar to the graph of
the logistic growth model, and in what ways it is different.

14. Ricker Model For the Ricker model of Exercise 13 with N = 1,000, r = 3, and
an initial population of 200, find the population for the next four years, where an is the
population in year n and an+1 = f(an). Be sure to round the population each year to the
nearest integer.

15. Ricker Model For the Ricker model of Exercise 13 with N = 2,000, r = 2.5, and
an initial population of 500, find the population for the next four years, where an is the
population in year n and an+1 = f(an). Be sure to round the population each year to the
nearest integer.

16. Beverton-Holt Model Another model of population growth which has been used to
model salmon is the Beverton-Holt model, given by†

f(x) =
rx

1 + x/b
.

* Ricker, W.E., “Stock and Recruitment,” Journal of the Fisheries Research Board of Canada,
Vol. 11, 1957, pp. 559-623.

† Cook, R. M., A. Sinclair, and G. Stefánsson, “Potential Collapse of North Sea Cod Stocks,”
Nature, Vol. 385, Feb. 6, 1997, pp. 521-522.
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a. Find lim
x→∞

f(x).

b. Show that f ′(x) =
r

(1 + x/b)2
.

c. Using the result of part b, for what values of x is f increasing? decreasing? Does f
have an absolute maximum?

d. Show that f ′′(x) =
−2r

b(1 + x/b)3
.

e. Using the result of part d, for what values of x is f concave upward? concave downward?
Does f have an inflection point?
f. Using the results from parts a-e, draw a graph of this function.

✎ g. In your own words, describe in what ways the graph in part f is similar to the graph
of the logistic growth model and to the Ricker model of Exercise 13, and in what ways it is
different.

17. Beverton-Holt Model For the Beverton-Holt model of Exercise 16 with b = 1,000,
r = 3, and an initial population of 500, find the population for the next four years, where
an is the population in year n and an+1 = f(an). Be sure to round the population each
year to the nearest integer.

18. Beverton-Holt Model For the Beverton-Holt model of Exercise 16 with b = 2,000,
r = 4.5, and an initial population of 1,500, find the population for the next four years, where
an is the population in year n and an+1 = f(an). Be sure to round the population each
year to the nearest integer.

19. Shepherd Model The Shepherd model, a modification of the Beverton-Holt model
of Exercise 16, is given by*

f(x) =
rx

1 + (x/b)2
.

For this exercise, assume c = 2.
a. Find lim

x→∞
f(x).

b. Show that f ′(x) =
r[1 − (x/b)2]
[1 + (x/b)2]2

.

c. Using the result of part b, for what values of x is f increasing? decreasing? At what
value of x does f have an absolute maximum?

d. Show that f ′′(x) =
−2rx[3 − (x/b)2]

b2(1 + x/b)3
.

e. Using the result of part d, for what values of x is f concave upward? concave downward?
At what value of x does f have an inflection point?
f. Using the results from parts a-e, draw a graph of this function.

✎ g. In your own words, describe in what ways the graph in part f is similar to the graph
of the logistic growth model and to the Ricker model of Exercise 13, and in what ways it is
different.

20. Shepherd Model For the Shepherd model of Exercise 19 with b = 1,000, r = 3, and
an initial population of 500, find the population for the next four years, where an is the
population in year n and an+1 = f(an). Be sure to round the population each year to the
nearest integer.

21. Shepherd Model For the Shepherd model of Exercise 19 with b = 2,000, r = 4.5,
and an initial population of 1,500, find the population for the next four years, where an is
the population in year n and an+1 = f(an). Be sure to round the population each year to
the nearest integer.

* Cook, R. M., A. Sinclair, and G. Stefánsson, “Potential Collapse of North Sea Cod Stocks,”
Nature, Vol. 385, Feb. 6, 1997, pp. 521-522.
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14.2: EQUILIBRIUM POINTS

? If a simple model is used to describe the change in a population from one year to the next,
will the behavior of the population be simple?

As we shall see in Example 2, the answer to this question is “No.” Even a simple model can
result in very complex behavior.

Let’s return to the logistic model of the previous section:

f(x) = rx(1 − x/N).

Recall that N is the maximum size that the population can reach. To simplify matters in
this section, we will set N = 1, so that x measures the fraction of the maximum possible
population. For example, if x = 0.75, this means that the population is 75% of its maximum
value. One advantage of this change is that we now have only one parameter, r, to worry
about. Also, we no longer need to worry about rounding values of x to the nearest integer.
For the rest of this section, then,

f(x) = rx(1 − x).

One question of interest to biologists is whether there is a population size that never
changes, that is, for which xn = xn+1, so the population next year is the same as this
year. Such a value of x is called an equilibrium point. (The term fixed point is also
used.) We saw this concept in Section 11.5 on Nonlinear Systems of Differential Equations,
where we found the equilibrium point by setting the derivative equal to 0. Here, to find any
equilibrium points, set f(x) = x, since x is this year’s population and f(x) in next year’s.

f(x) = x

rx(1 − x) = x

rx − rx2 = x

0 = rx2 − (r − 1)x
0 = x[rx − (r − 1)]

x = 0 or x = (r − 1)/r

The first solution is trivial. Of course, if there are no fish this year, there won’t be any fish
next year, assuming no fish enter from outside. The second solution is only meaningful if
r > 1.

So what happens if r ≤ 1? It’s easy to check with a graphing calculator for a specific
value of r; we will illustrate using a TI-83. For example, let r = 0.8. Suppose a1 = 0.6.
We will keep the current population size in the variable X with the command .6→ X. To
update the population size, use the command .8X(1-X)→ X. Continue to hit ENTER to
repeatedly update the population. You should find that

a2 = 0.192,

a3 = 0.1241088,

a4 = 0.0869646446,

a5 = 0.0635214362,

and so forth.
Notice that the population seems to be declining towards 0. We can see graphically why

this is so. Figure 2 on the next page shows a TI-83 graph of y = f(x) = 0.8x(1−x) and y = x
on the same axes. Suppose we start at x = a1 = 0.6, as shown in Figure 2. Follow a vertical
line to see where it intersects the graph y = f(x). At this point, y = f(a1) = a2 = 0.192.
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Now follow a horizontal line until it hits the graph of y = x. At this point, x = a2 = 0.192
and we repeat the process. The first several steps of the process are shown in Figure 2, and
we can see that x is approaching 0. Such a graph is called a cobweb diagram. We will see
shortly why it has this name. Cobweb diagrams are useful in economics as well as biology.

0.4

0 1
0

FIGURE 2

It’s easy to generate graphs such as Figure 2 on a TI-83. First make sure any StatPlots
are off. Then press the MODE button and change the setting from Func to Seq. Press
the FORMAT button and change the setting on the first line to Web. Under the Y= menu,
set u(n)=.8u(n-1)(1-u(n-1)) (the “X,T,θ,n” button gives you n), and set u(nMin)={.6}.
With the window set as in Figure 2 (and making sure PlotStart is set to 1), press GRAPH.
After the graph is generated, press TRACE, and then repeatedly press the right arrow key.

Now let’s see what happens when r > 1. There are now two fixed points, the trivial
one (x = 0) and x = (r − 1)/r. For example, consider the case when r = 2.9. The fixed
point is (r − 1)/r = (2.9 − 1)/2.9 ≈ 0.655. If the population ever reaches 0.655, it will stay
there forever, because f(0.655) = 0.655.

As an experiment to see what might happen for the function f(x) = rx(1 − x) with
r = 2.9 starting with a value of the population other than 0.655, let a1 = 0.5. Then we can
generate successive values of the sequence using our calculator as we did before. Verify that
the results are as follows:

a2 = 0.725,

a3 = 0.5781875,

a4 = 0.707271473,

a5 = 0.6004117557.

The values are slowly approaching 0.655, alternating higher and lower. If we follow this
sequence long enough, we eventually get as close to 0.655 as we like. For example, a30 =
0.6583197205. Once again, the cobweb diagram in Figure 3 on the next page shows why
this is so. As before, we start with a value of x, namely a1 = 0.5. We follow a vertical line
until it intersects the graph of y = f(x). We then follow a horizontal line until it intersects
the graph of y = x. This gives us a new value whose x-coordinate equals the y-coordinate
of the previous point on the graph. We then repeat the process. Notice that the resulting
graph resembles a spider’s web, hence the name cobweb diagram.

For situations in which the population moves toward the equilibrium point, the equi-
librium point is said to be stable. (Some books use the term attracting.)

EXAMPLE 1 Equilibrium Point
Consider the logistic model with r = 3, that is,

y = f(x) = 3x(1 − x).
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0.8

0 1
0

FIGURE 3

a. Find any equilibrium points.

Solution As always for the logistic model, we have the trivial equilibrium point x = 0.
In addition, we have x = (r − 1)/r = (3 − 1)/3 = 2/3 ≈ 0.6667.

b. Starting with a population a1 = 0.5, find the next four terms in the sequence.

Solution

a2 = f(a1) = 3(0.5)(1 − 0.5) = 0.75
a3 = f(a2) = 0.5625
a4 = f(a3) = 0.73828125
a5 = f(a4) = 0.5796661377

c. Sketch the cobweb diagram for the sequence found in part b.

Solution
0.8

0
0 1

FIGURE 4

The cobweb diagram is shown in Figure 4.

d. Determine whether the equilibrium point found in part a is stable or not.

Solution Notice from the results in part b and the cobweb diagram in part c that the
population seems to be slowly moving toward the equilibrium point. Generate more
points on your own to verify this fact. Thus the equilibrium point appears to be stable.
�

? EXAMPLE 2 Equilibrium Point
Consider the logistic model with r = 4, that is,

y = f(x) = 4x(1 − x).
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a. Find any equilibrium points.

Solution As always for the logistic model, we have the trivial equilibrium point x = 0.
In addition, we have x = (r − 1)/r = (4 − 1)/4 = 3/4 = 0.75.

b. Starting with a population a1 = 0.6, find the next five terms in the sequence. Repeat
with a1 = 0.61.

Solution

a2 = f(a1) = f(0.6) = 0.96
a3 = f(a2) = 0.1536
a4 = f(a3) = 0.52002816
a5 = f(a4) = 0.9983954912
a6 = f(a5) = 0.0064077373

The equilibrium point in this case is clearly not stable. With a1 = 0.61, which is very
close to the previous value of a1, we might expect similar behavior.

a2 = f(a1) = f(0.61) = 0.9516
a3 = f(a2) = 0.18422976
a4 = f(a3) = 0.6011566221
a5 = f(a4) = 0.9590693512
a6 = f(a5) = 0.1570213231

After only five steps, the population is quite different from what it was before. The
values of the population no longer approach the equilibrium point, which means that
the equilibrium point is unstable. �

We encourage you to try Example 2 on your calculator and continue to press ENTER,
going beyond the values we have generated so far. Any pattern that you might see emerging
from the data breaks down as you continue. The numbers appear to be chaotic. In fact,
such behavior is known as chaos, in which the numbers appear chaotic and without pattern.
Changing the starting value very slightly, from 0.6 to 0.61, causes major changes later in the
sequence. This is known as the butterfly effect, so called because the weather is just as
sensitive to small changes, so that a butterfly taking off from a flower in Brazil could result
in a tornado in Kansas months later (or some other dramatic meteorological event). This
type of behavior in a dynamical system was first noticed by the French mathematician Henri
Poincaré in the late nineteenth century. It was only in the 1960’s, however, when American
meteorologist E. N. Lorenz observed such behavior in a computer program running simple
mathematical models for the weather, that chaos began to receive serious study.

In the next section, we will explore more definite ways for determining if an equilibrium
point is stable or unstable.
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14.2 EXERCISES

Find equilibrium points x, 0 ≤ x ≤ 1, for each of the following functions.

1. f(x) = 1 − |2x − 1| 2. f(x) =
2
3
−

∣
∣
∣
∣

4
3
x − 2

3

∣
∣
∣
∣

3. f(x) = 6x2(1 − x) 4. f(x) = 6x(1 − x)2

For each of the following functions, already studied in Exercises 1-4, find the next six values
of the sequence, starting with (a) x1 = 0.15, (b) x1 = 0.4, (c) x1 = 0.65, and (d) x1 = 0.85.
Then determine whether each of the equilibrium points found in the corresponding exercise
above appears to be stable or unstable.

5. f(x) = 1 − |2x − 1| 6. f(x) =
2
3
−

∣
∣
∣
∣

4
3
x − 2

3

∣
∣
∣
∣

7. f(x) = 6x2(1 − x) 8. f(x) = 6x(1 − x)2

For each of the following functions, already studied in Exercises 1-8, draw a cobweb diagram,
starting with x1 = 0.4 and iterating four times.

9. f(x) = 1 − |2x − 1| 10. f(x) =
2
3
−

∣
∣
∣
∣

4
3
x − 2

3

∣
∣
∣
∣

11. f(x) = 6x2(1 − x) 12. f(x) = 6x(1 − x)2

Applications

LIFE SCIENCES

13. Ricker Model In Exercise 13 of the previous section, we considered the Ricker model,
given by

f(x) = xer(1−x),

where we have changed N to 1, as in the text.

a. Find any equilibrium points.

For each of the following initial populations and values of r, find the next five values of the
sequence, and determine whether the equilibrium value is stable or unstable.
b. a1 = 0.6, r = 2
c. a1 = 0.6, r = 3
d. Draw a cobweb diagram corresponding to the values in part b.
e. Draw a cobweb diagram corresponding to the values in part c.

14. Beverton-Holt Model In Exercise 16 of the previous section, we considered the
Beverton-Holt model, given by

f(x) =
rx

1 + x
.

where we have changed b to 1, as in the text.

a. Find any equilibrium points.
For each of the following initial populations and values of r, find the next five values of the
sequence, and determine whether the nontrivial equilibrium value appears to be stable or
unstable.
b. a1 = 1.4, r = 2
c. a1 = 2.2, r = 4
d. Draw a cobweb diagram corresponding to the values in part b.
e. Draw a cobweb diagram corresponding to the values in part c.
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15. Shepherd Model In Exercise 19 of the previous section, we considered the Shepherd
model, given by

f(x) =
rx

1 + x2
.

where we have changed b to 1, as in the text, and let c = 2 as before.

a. Find any equilibrium points.

For each of the following initial populations and values of r, find the next five values of the
sequence, and determine whether the nontrivial equilibrium value appears to be stable or
unstable.
b. a1 = 4, r = 2
c. a1 = 4, r = 10
d. Draw a cobweb diagram corresponding to the values in part b.
e. Draw a cobweb diagram corresponding to the values in part c.
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14.3: DETERMINING STABILITY

? Suppose a population grows according to the logistic model. How can we determine whether
any equilibrium points are stable?

A result in this section will give us an answer to this question.
In the previous section, we saw that sometimes equilibrium points are stable, so that the

population approaches the equilibrium point over time, and sometimes they are unstable,
so that the population moves away from the equilibrium point and can even jump around
chaotically. In this section, we wish to find methods for determining the nature of any
equilibrium points.

As we saw back in Chapter 3, any smooth curve resembles a straight line when viewed
closely enough. So let’s look closely enough at an equilibrium point that the graph of
y = f(x) appears to be a straight line. In Figure 5, we have shown the neighborhood of the
equilibrium point, with y = f(x) having a negative slope that is between −1 and 0. The
cobweb diagram starts by going up the longer vertical line on the left, and then spiraling in
a clockwise direction toward the equilibrium point. The equilibrium point is stable because
the cobweb moves toward it.

FIGURE 5

In Figure 6, we have a similar graph, but the slope of f ′(x) is less than −1. This time
the cobweb starts by going up the longer line near the center of the diagram, and then
spirals in a clockwise direction away from the equilibrium point, which must be unstable.

FIGURE 6

In Figure 7 on the next page, we have a function y = f(x) with a positive slope that
is less than 1. Notice how the population moves toward the equilibrium point. In Figure 8,
the function y = f(x) has a positive slope that is greater than 1, and the population moves
away from the equilibrium point.

These results can be summarized by the following theorem.

STABILITY OF EQUILIBRIUM POINTS
Suppose a function y = f(x) has an equilibrium point at x = a. Then the equilibrium

point is stable if |f ′(a)| < 1 and unstable if |f ′(a)| > 1.
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FIGURE 7 FIGURE 8

The situation is more complicated if |f ′(a)| = 1; whether or not the equilibrium point
is stable depends upon the nature of the function.

? EXAMPLE 1 Equilibrium Point
Consider the logistic model

y = f(x) = rx(1 − x).

Determine the stability of the equilibrium point x =
r − 1

r
.

Solution First calculate f ′(x) :

f ′(x) = rx(−1) + r(1 − x) = r(1 − 2x).

Next, evaluate the derivative at the equilibrium point.

f ′
(

r − 1
r

)
= r

(
1 − 2

(
r − 1

r

))
= 2 − r.

Now find what values of r result in
∣∣∣∣f ′

(
r − 1

r

)∣∣∣∣ < 1.

|2 − r| < 1
−1 < 2 − r < 1
−1 < r − 2 < 1 Multiply by −1 and reverse the order.

1 < r < 3

This is why, with r = 2.9 in the example before Example 1 of the previous section, the
equilibrium point was stable, but with r = 4 in Example 2, the equilibrium point was
unstable. Notice that with r = 3 in Example 1, for which |f ′(x)| = 1 at the equilibrium
point, the equilibrium point was stable. This will not always be the case when |f ′(x)| = 1
at the equilibrium point, as we will see in Exercise 7.
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14.3 EXERCISES

For each of the following functions studied in exercises in the previous section, use the
method of this section to determine the stability of any equilibrium points.

1. f(x) = 1 − |2x − 1| 2. f(x) =
2
3
−

∣∣∣∣43x − 2
3

∣∣∣∣
3. f(x) = 6x2(1 − x) 4. f(x) = 6x(1 − x)2

For each of the following functions, use a graphing calculator to estimate any equilibrium
points. Then, using the graphing calculator to estimate the derivative of the function at the
equilibrium point, determine whether the equilibrium point is stable or unstable.

5. f(x) = cos x 6. f(x) = sin 3x

7. Consider the function
f(x) = 4x2(1 − x).

a. Find any equilibrium points where f(x) = x.

b. Determine the derivative at each of the equilibrium points found in part a.

c. What does the theorem on the Stability of Equilibrium Points tell us about each of the
equilibrium points found in part a?

d. Starting with x1 = 0.4, find the next four iterations of the function.

e. Starting with x1 = 0.7, find the next four iterations of the function.

f. Describe the behavior of successive iterations of the function found in parts d and e,
and how this relates to the stability results found in part c.

When the function has no stable equilibrium points, many outcomes are possible, such as
the chaotic behavior described in the previous section. Another outcome is a stable cycle of
period 2, in which the points tend to vary between two values. Using the logistic function
with each of the following values of r, and starting with x1 = 0.5, iterate repeatedly until
you can determine the x-values in the cycle to three decimal places.

8. r = 3.1 9. r = 3.2

Applications

LIFE SCIENCES

10. Ricker Model In Exercise 13 of the previous section, we considered the Ricker model,
given by

f(x) = xer(1−x),

where r is a positive constant. Use the theorem on the Stability of Equilibrium Points to
determine the stability of any equilibrium points and how they depend on r.

11. Beverton-Holt Model In Exercise 14 of the previous section, we considered the
Beverton-Holt model, given by

f(x) =
rx

1 + x
.

where r is a positive constant. Use the theorem on the Stability of Equilibrium Points to
determine the stability of any equilibrium points and how they depend on r.

12. Shepherd Model In Exercise 15 of the previous section, we considered the Shepherd
model, given by

f(x) =
rx

1 + x2
.

where r is a positive constant, and let c = 2 as before. Use the theorem on the Stability
of Equilibrium Points to determine the stability of any equilibrium points and how they
depend on r.
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Answers to Odd Numbered Exercises

Sec. 14.1

1. 7, 12, 17, 22 3. 6, 18, 54, 162 5. 5, 7, 11, 19 7. 7, −33, 167, −833
9. x + 4, x + 6, x + 2n 11. 4x, 8x, 2nx 13. a. 0 c. Increasing for 0 ≤ x < N/r,
decreasing for x > N/r, maximum at x = N/r. e. Concave downward for 0 ≤ x < 2N/r,
concave upward for x > 2N/r, inflection point at x = 2N/r.

f. | 15. 3260, 675, 3537, 518 17. 1000, 1500, 1800, 1929
N/r

19. a. 0 c. Increasing for 0 ≤ x < b, decreasing for x > b, maximum at x = b.
e. Concave downward for 0 ≤ x <

√
3b, concave upward for x >

√
3b, inflection point at

x =
√

3b.

f. | 21. 4320, 3431, 3916, 3646
b

Sec. 14.2

1. 0, 2/3 3. 0, (3 ±
√

3)/6 5. 0.3, 0.6, 0.8, 0.4, 0.8, 0.4; 0.8, 0.4, 0.8, 0.4, 0.8,
0.4; 0.7, 0.6, 0.8, 0.4, 0.8, 0.4; 0.3, 0.6, 0.8, 0.4, 0.8, 0.4; 0 and 2/3 are unstable. 7.
0.11475, 0.0699395082, 0.0272965396, 0.0043485744, 1.129672023 × 10−4, 7.656088294 ×
10−8; 0.576, 0.844038144, 0.6666437209, 0.8888888857, 0.5267489824, 0.7878621148;
0.88725, 0.5325492985, 0.7954386698, 0.7765835552, 0.8084306426, 0.7512125347; 0.65025,
0.8872983937, 0.5323787927, 0.7952193576, 0.7769875109, 0.807808673; 0 is stable; (3 +√

3)/6 and (3 −
√

3)/6 are unstable.
1 1

9. 0 11. 0
0 1 0 1

13. a. 0, 1 b. 1.335325, 0.682854, 1.287649, 0.724351, 1.257115; stable c. 1.992070,
0.101567, 1.504202, 0.331428, 2.462978; unstable
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2 3

d. 0 e. 0
0 3 0 3

15. a. 0,
√

r − 1 b. 0.470588, 0.770538, 0.966963, 0.999436, 0.9999998; stable
c. 2.352941, 3.599788, 2.578927, 3.370766, 2.726702; stable

1 5

d. 0 e. 0
0 5 0 5

Sec. 14.3

1. 0 and 2/3 are unstable. 3. 0 is stable; (3 +
√

3)/6 and (3 −
√

3)/6 are unstable.
5. 0.73908513 is stable 7. a. 0, 1/2 b. 0, 1 c. 0 is stable; we do not know
about 1/2. d. 0.384, 0.363331584, 0.3361859827, 0.300099736 e. 0.588, 0.569786112,
0.5586864474, 0.5509897614 f. Values of x less than 0.5 move toward 0, while values of
x greater than 0.5 move toward 0.5. 9. 0.513, 0.799 11. x = 0 is stable if 0 < r < 1
and unstable if r > 1; x = r − 1 only exists if r > 1, and it is stable.
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