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Abstract. We prove a Harnack inequality for nonnegative solutions of
linearized parabolic Monge-Ampère equations

−ut
φt

− tr((D2φ)−1D2u) = 0,

in terms of a variant of parabolic sections associated with φ, where φ
satisfies λ ≤ −φt detD2φ ≤ Λ and C1 ≤ −φt ≤ C2.

1. introduction

In this paper we study linearized parabolic Monge-Ampère equations as
follows:

Lφ(u) = −ut
φt
− tr((D2φ)−1D2u) = 0 in R× Rd, (1.1)

where u is nonnegative, ut = ∂u
∂t , D2u denotes the Hessian of u, (D2φ)−1 is

the inverse of the Hessian of φ, and tr(A) is the trace of a matrix A. We
assume that φ is a strictly parabolic convex function in R×Rd and satisfies
the following inequalities in Rd+1,

0 < λ ≤ −φtdetD2φ ≤ Λ <∞, 0 < C1 ≤ −φt ≤ C2 <∞, (1.2)

where λ, Λ, C1, and C2 are positive constants. We call d, λ,Λ, C1, and C2

structure conditions and the constant depending only on structure condi-
tions are called universal constant. The parabolic convexity is defined in
Section 2.

The purpose of this paper is to establish a Harnack inequality for nonneg-
ative solutions of (1.1) and (1.2) in terms of a variant of parabolic sections
of φ:

Q̃c0(z0, h) = (t0 − c0h, t0]× Sφ(x0,
1

2
h|t0),

where c0 is a positive parameter, z0 = (t0, x0) ∈ Rd+1, h > 0, and

Sφ(x0, h|t0) = {x : φ(t0, x) ≤ φ(t0, x0) +∇φ(t0, x0) · (x− x0) + h},
which is the section in the x variable with height h at time t0. Throughout
this paper, we assume that all the functions are sufficiently smooth. It is
easily seen that our results do not depend on the smoothness of u. The main
result is stated as follows.
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Theorem 1.1. Assume that φ satisfies (1.2) and u ∈ C2 nonnegative solves
(1.1) in Rd+1. Then there exists a universal constant C such that

sup
Q−

u ≤ C inf
Q+

u,

where

Q− = Q̃c0((−c0

2
, x0),

1

16
),

Q+ = Q̃c0((T0, x0), r0),

and x0 ∈ Rd, T0, c0, and r0 are positive universal constants with T0 > c0r0.

We make the following remark regarding Theorem 1.1.

Remark 1.2. First, for simplicity, in our theorem above we assume that u
satisfies (1.1) in Rd+1. Actually we only need to consider (1.1) in a bounded
domain Ω and prove the Harnack inequality for the corresponding cylindrical
domains Q− and Q+. This can be easily seen by scaling and translation of
the coordinates. Second, the assumption that C1 ≤ −φt ≤ C2 is crucial in
our proof. We are able to apply several geometric properties of the sections
in x variable to our proof under this assumption. To our best knowledge,
the case without assuming the upper bound and lower bound of φt remains
open.

By a standard argument, we obtain the following corollary, which implies
the Hölder continuity.

Corollary 1.3. Assume that u is a solution of (1.1) and (1.2). For any
z0 ∈ Rd+1 and 0 < ρ < R, we have

oscQ̃c0 (z0,ρ)u ≤ C(
ρ

R
)αoscQ̃c0 (z0,R)u,

where C,α are universal constants.

Our result extends Huang [11] to a more general setting. In [11] Huang
obtains the Harnack inequality under the condition that φ = −t+ψ, where
ψ is a convex function in Rd and the corresponding Monge-Ampère measure
satisfies the µ∞ condition, see (1.3). Instead of φt = −1, we assume 0 <
C1 ≤ −φt ≤ C2 in our paper. The extension from constant to bounded away
from zero is nontrivial because it is much more delicate to choose a proper
variant of parabolic section. We discuss the difficulties in detail later.

Our work builds upon several previous results on the elliptic and para-
bolic Monge-Ampère equations. We borrow some ideas from the study of
linearized Monge-Ampère equations. Let us mention some previous work as
follows.

For the Monge-Ampère equation

detD2u = f,

Caffarelli [1] introduced cross-sections of solutions to the Monge-Ampère
equation which play the same role as balls for uniformly elliptic equations.
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Let ψ be a smooth convex function in Rd. For any x ∈ Rd and h ≥ 0, we
define the section with center x and height h as follows:

Sψ(x, h) = {y ∈ Rd : ψ(y) ≤ ψ(x) +∇ψ(x) · (y − x) + h}.
If there is no confusion, we omit ψ in the definition of the sections. We
review several properties of sections in Section 2. For more related work
and the development of the Monge-Ampère equation, we refer the reader to
[2, 3, 4, 9, 7, 16, 17], and the references therein.

For the parabolic Monge-Ampère equation, Gutièrrez and Huang [10]
proved W 2,p estimates for

−utdetD2u = f,

with some suitable conditions on f . Besides the parabolic Monge-Ampère
equation mentioned above, Krylov introduced some other types of parabolic
Monge-Ampère operators in [12]. Moreover, Daskalopoulos and Savin [6]
obtained a C1,α estimate for the following parabolic Monge-Ampère equa-
tion:

ut = b(t, x)(detD2u)p,

where p > 0 and λ ≤ b ≤ Λ.
For the linearized Monge-Ampère equations, Caffarelli and Gutiérrez [5]

established the Harnack inequality in terms of sections for nonnegative so-
lutions of the following linearized Monge-Ampère equations

tr((D2φ)−1D2u) = 0 in Rd,
where φ is a convex function and the corresponding Monge-Ampère measure
satisfies the µ∞ condition. Specifically, let

dµ = detD2φdx

in the Alexandrov sense, see [9, Chapter 1], and µ satisfies the following
condition: Given δ1 ∈ (0, 1], there exists δ2 ∈ (0, 1], so that, for all sections
S and measurable set E ⊂ S,

|E|
|S|

< δ2 implies
µ(E)

µ(S)
< δ1, (1.3)

where | · | is the Lebesgue measure. The µ∞ condition above implies the
following doubling property: There exist constants C > 0, 0 < α < 1 such
that

µ(S(x, h)) ≤ Cµ(αS(x, h)), (1.4)

for every section S(x, h), where αS(x, h) denotes the α-dilation of the set
S(x, h) with respect to the center of mass, which is used later in this paper.
For more recent work related to the linearized Monge-Ampère equation near
the boundary, we refer the reader to [13, 14].

The proof of Theorem 1.1 uses some ideas in [5] and [11]. However, unlike
the elliptic case in [5], we have to overcome the difficulties caused by the t
dependence of the solution u, which is also the general reason that estimates
for parabolic equations are subtler than for elliptic equations. On the other
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hand, we cannot use the method in [20], since the equation lacks the property
of uniform ellipticity. Therefore we work on the variant of parabolic sections.
Furthermore, the assumption in [11] is φt = −1, so the parabolic section used
there is a cylindrical domain (t0− r

2 , t0 + r
2)×S(x0, r). Notice that S(x0, r)

does not evolve with respect to time. But in our case, the evolvement in t
of the variant of parabolic sections makes the estimate much more delicate.
We need to compare the sections in x variable at different time levels. To
this end, we apply a conclusion in [10]

S(x, h|t1) ⊂ S(x, θh|t2),

for certain t1, t2, and h, where θ > 1 is a universal constant. After choosing
small parameter c0, we show the following critical density argument: For
any h > 0, if

inf
Q̃c0 (z1,θh)

u ≤ 1,

then there exists a large universal constant M such that

|Q̃c0(z0, h) ∩ {u ≤M}| ≥ ε|Q̃c0(z0, h)|,

where z0 = (t0, x0), z1 = (t0 + c0θh, x0), and ε is a small universal con-
stant. Moreover, the Calderón-Zygmund decomposition holds in terms of
the following cylindrical domains for δ ≤ c0

Q̃δc0(z, h) = (t− c0h, t+ δh)× S(x,
1

2
h|t).

For δ sufficiently small, we are able to combine the Calderón-Zygmund de-
composition with our critical density argument to show a power decay of
the distribution function of the solution u. In this way we derive a weak
Harnack inequality and then the Harnack inequality.

The paper is organized as follows. In the next section, we introduce some
preliminary results and properties that we use in our proof. In Section 3, we
prove the critical density argument and some necessary preparations for the
estimate of the distribution function. In Section 4, we prove the Calderón-
Zygmund decomposition. Finally, we show the Harnack inequality in Section
5.

2. preliminary

In this section, we recall some basic properties of (parabolic) convex so-
lutions to the (parabolic) Monge-Ampère equation.

We say a function φ parabolic convex if φ is nonincreasing with respect
to t for each x and convex in x for each t. Furthermore, if φ is strictly
decreasing with respect to t and strictly convex with respect to x, then φ
is strictly parabolic convex. Denote B(0, r) to be the Euclidean ball in Rd
with center 0 and radius r. We say an open bounded convex set S ⊂ Rd is
normalized if

B(0, αd) ⊂ S ⊂ B(0, 1),
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where αd ∈ (0, 1) is a constant depending only on d. We mention the fol-
lowing lemma due to F. John: Let S be a convex set in Rd with nonempty
interior. Then there exists an (invertible) orientation preserving affine trans-
formation T : Rd → Rd which normalizes S, i.e.,

B(0, αd) ⊂ T (S) ⊂ B(0, 1). (2.5)

In particular,
αddωd
|S|

≤ detT ≤ ωd
|S|

,

where |S| is the Lebesgue measure of S and ωd = |B(0, 1)|.
Next, we collect some properties of the sections to the strictly convex

functions. Let ψ be a strictly convex function in Rd and dµ = detD2ψ dx
be the corresponding Monge-Ampère measure. Assume that µ satisfies the
doubling condition (1.4) with α = 1/2. As shown in [9, Chapter 3], Sψ(x, h)
satisfies some strong geometric properties and we briefly recall several of
them as follows:

(i) There exists a universal constant θ > 1 such that, if S(x, h)∩S(y, h) 6=
∅, then S(y, h) ⊂ S(x, θh), for any x, y ∈ Rd, h > 0. This is also called the
engulfing property.

(ii) Let S(x0, r0) and S(x1, r1) be sections with r0 ≤ r1 such that

S(x0, r0) ∩ S(x1, r1) 6= ∅,
and T be an affine transformation that normalizes S(x1, r1), then there exist
universal constants K1,K2,K3, and ε such that

B(Tx0,K2
r0

r1
) ⊂ T (S(x0, r0)) ⊂ B(Tx0,K1(

r0

r1
)ε),

and Tx0 ∈ B(0,K3).
(iii) Let S(x0, 1) be a section. There exist constants p, C > 0, such that

for 0 < r < s < 1 and x ∈ S(x0, r),

S(x,C(s− r)p) ⊂ S(x0, s).

(iv) There exist 0 < τ, λ < 1 such that for all x0 ∈ Rd and r > 0

S(x0, τr) ⊂ λS(x0, r).

(v) Assuming 0 < λ < 1, for any r > 0, we have

λS(x0, r) ⊂ S(x0, (1− (1− λ)
αd
2

)r),

where αd is the constant in (2.5).
We state the following lemma and corollary of [9, Chapter 3].

Lemma 2.1. Let Ω ⊂ Rd be a bounded open convex set. Assume that ψ
is a convex function in Ω such that ψ ≤ 0 on ∂Ω. If x ∈ Ω and l(y) =
ψ(x) + p · (y − x) is a supporting hyperplane to ψ at (x, ψ(x)), then

|p| ≤ −ψ(x)

dist(x, ∂Ω)
.
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Corollary 2.2. Let ψ be convex in Ω with 0 < k ≤ detD2ψ ≤ K, where
k,K are positive constants. Assuming Sψ(x0, h) ⊂ Ω, for any h small, we
have

|Sψ(x0, h)| ≈ hd/2.

For an open connected domain Q ⊂ Rd+1, we define the parabolic bound-
ary of Q to be a set of all points X0 = (t0, x0) ∈ ∂Q, such that there exists
a continuous function x = x(t) on an interval [t0, t0 + δ) with values in Rd
satisfying x(t0) = x0 and (t, x(t)) ∈ Q for all t ∈ (t0, t0 + δ). Here x = x(t)
and δ > 0 depend on X0. For any Q ⊂ Rd+1, we define

Q(t) = {x : (t, x) ∈ Q}.
We say a set Q ⊂ Rd+1 is a bowl-shaped domain if Q(t) is convex for each
t and Q(t1) ⊂ Q(t2) for t1 ≤ t2. Let Q ⊂ Rd+1 be a bowl-shaped domain
and denote t0 = inf{t : (t, x) ∈ Q}. Then the parabolic boundary of a
bowl-shaped domain Q is

∂pQ := {t0} ×Q(t0) ∪
⋃
t∈R

({t} × ∂Q(t)),

where Q(t0) denotes the closure of Q(t0) and ∂Q(t) denotes the boundary
of Q(t). For a parabolic convex function φ, the canonical parabolic section
at point z0 = (t0, x0) with height h is

Qφ(z0, h) = {z = (t, x) : φ(z) ≤ φ(z0) +∇φ(t0, x0) · (x− x0) + h, t ≤ t0}.
Moreover if it is clear, we omit φ in the definition of the parabolic sections
as well. Throughout this paper, we use C(·) to denote constants and their
dependences. For example, C(α, β) is a constant depending on α and β.
We also use abbreviations as follows: if a constant C depends on β and the
structure conditions, we simply denote C = C(β). Furthermore, the constant

may vary from line to line. If z = (0, 0), we denote Q̃(h) := Q̃c0((0, 0), h).

3. Critical density argument

As hinted in the introduction, in this section we prove that the level sets
of u satisfy the critical density argument, which is important in our proof of
the Harnack inequity.

First we state Lemma 4.2 in [10] about the engulfing property of sections
in the x variable at different time.

Lemma 3.1. Let φ satisfy (1.2). Suppose that (t1, x1), (t2, x2) ∈ Q(z0, h).
Then there exists θ > 1 depending only on d, λ,Λ, C1, and C2 such that

S(x1, h|t1) ⊂ S(x2, θh|t2), S(x2, h|t2) ⊂ S(x1, θh|t1).

We use Lemma 3.1 frequently in our proofs especially for the case x1 = x2.
Note that under the condition (1.2), there exists ĉ0 = ĉ0(C2) sufficiently
small such that for any h > 0 and c0 ≤ ĉ0

(t0 − c0h, x0) ∈ Q((t0, x0),
h

2θ
), (3.6)
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which, by Lemma 3.1, implies

S(x0,
h

2θ
|t0 − c0h) ⊂ S(x0,

h

2
|t0) ⊂ S(x0,

hθ

2
|t0 − c0h). (3.7)

In the rest of the paper, we restrict c0 < ĉ0/2. We note that dividing ĉ0

by 2 is a technical requirement in Lemma 4.1. We introduce the following

notation. Let z = (t, x) ∈ Rd+1, t0 = t, and tk = t +
∑k

j=1 c0ρθ
j for k ≥ 1,

where θ is the constant in Lemma 3.1. Denote K0(z, ρ) = Q̃c0(z, ρ) and

Ki(z, ρ) = Q̃c0((ti, x), ρθi). (3.8)

Notice that by (3.7), it is easy to see for any ρ > 0, j ≥ 0

S(x,
ρθj

2
|tj) ⊂ S(x,

ρθj+1

2
|tj+1). (3.9)

Then we have the following observation.

Lemma 3.2. Let T0 = θĉ0, and z = (t, x) ∈ Q̃(1). Then there exist univer-
sal constants c0 < ĉ0 and r0 such that for c0 < c0 and ρ > 0

Q̃c0((T0, 0), r0) ⊂ (∪∞j=1Kj(z, ρ)) ∩ {t ∈ (0, T0]}.

Proof. Let k be the integer such that tk ≤ T0 < tk+1, which implies that

θk ≤ (T0 − t)(θ − 1)

c0ρθ
+ 1 < θk+1. (3.10)

Since c0 ≤ ĉ0 and tk+1 ≤ T0 + c0ρθ
k+1, by (3.7) we have

S(x,
ρθk

2
|T0) ⊂ S(x,

ρθk+1

2
|tk+1),

which by (3.10) implies

S(x,
(T0 − t)(θ − 1)

2c0θ2
+

ρ

2θ
|T0) ⊂ S(x,

1

2
ρθk+1|tk+1).

Since t ≤ 0 and ρ > 0,

S(x,
T0(θ − 1)

2c0θ2
|T0) ⊂ S(x,

1

2
ρθk+1|tk+1). (3.11)

Because x ∈ S(0, 1
2 |0), by the engulfing property 0 ∈ S(x, 1

2θ|0). Since
T0 = ĉ0θ, from (3.7),

S(x,
1

2
θ|0) ⊂ S(x,

1

2
θ2|T0). (3.12)

Now let us choose c0 so small that

θ2

2
≤ T0(θ − 1)

8c0θ2
, (3.13)

i.e.,
ĉ0

c0
≥ 4θ3

θ − 1
.
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For c0 ≤ c0, from (3.12) and (3.13),

0 ∈ S(x,
T0(θ − 1)

4c0θ2
|T0).

We repeat the same argument above with time T0 − b instead of T0, where
b is a small constant depending on θ, c0, and ĉ0 so that

1

2
θ2 ≤ (T0 − b)(θ − 1)

4c0θ2
. (3.14)

This yields that for c0 ≤ c0,

0 ∈ S(x,
(T0 − b)(θ − 1)

4c0θ2
|T0 − b).

By property (iii), we know that there exists a constant r1 such that

S(0, r1|T0) ⊂ S(x,
T0(θ − 1)

2c0θ2
|T0), (3.15)

S(0, r1|T0 − b) ⊂ S(x,
(T0 − b)(θ − 1)

2c0θ2
|T0 − b). (3.16)

It is easy to see that (3.15) combining with (3.11) yields

S(0, r1|T0) ⊂ S(x,
1

2
ρθk+1|tk+1).

Furthermore, from (3.14) r1 does not depend on b. Hence we may restrict
b < r1/(θC2) if necessary so that

(T0 − b, 0) ∈ Q((T0, 0),
r1

θ
).

From Lemma 3.1, it yields

S(0,
r1

θ
|T0) ⊂ S(0, r1|T0 − b). (3.17)

We claim that

(T0 − b, T0]× S(0,
r1

θ
|T0) ⊂ (∪∞j=0Kj(z, ρ)) ∩ {t ∈ (0, T0]}. (3.18)

Indeed, let k̃ be the integer such that tk̃ ≤ T −b < tk̃+1. Therefore, by (3.17)

and (3.16) we have

{T0 − b} × S(0,
r1

θ
|T0) ⊂ Kk̃+1(z),

which combining with (3.9) and (3.17) yields (3.18). Now we pick a section
included in the cylindrical domain (T0 − b, T0]× S(0, r1θ |T0) and centered at
(T0, 0) with height r0 = min{r1/θ, b/c0}:

Q̃c0((T0, 0), r0) ⊂ (T0 − c0, T0]× S(0, r0|T0).

Therefore, the proof is completed. �
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Next we discuss the scaling property of the linearized parabolic Monge-
Ampère equation. Let T be an affine transformation which normalizes
S(x0, h|t0) and define φ̃ as follows

φ̃(s, y) =
1

h
(φ(t0 + sh, T−1y)−∇φ(t0, x0) · (T−1y − x0)− φ(x0)). (3.19)

With a simple calculation, one can see that

−φ̃t detD2φ̃(s, y) = − 1

hd(detT )2
φt detD2φ(t, x).

From (1.2),

λ

C2
≤ detD2φ(t, x) ≤ Λ

C1
.

Combining the fact that detT ≈ |S(x0, h|t0)|−1 with Corollary 2.2, we know
that

λ̃ ≤ −φ̃t detD2φ̃(s, y) ≤ Λ̃, (3.20)

where λ̃, Λ̃ are universal constants. Define

ũ(s, y) = u(t0 + sh, T−1y). (3.21)

By a simple calculation, it is easy to check that

Lφ̃ũ = − ũs
φ̃s
− tr((D2φ̃)−1D2ũ) = 0.

We state the following version of the Alexandroff-Bakelman-Pucci-Krylov-
Tso (ABP) estimate of the parabolic type, the proof of which can be found
in [19] and [12].

Lemma 3.3. Assume that u is smooth in a bowl-shape domain Q and u ≥ 0
on ∂pQ. Then

sup
Q

(u−) ≤ C(

∫∫
Γ(u)
|ut detD2u| dx dt)

1
d+1 ,

where u− = −min{u, 0}, C is a universal constant, and Γ(u) = {(t, x) ∈
Q : u ≤ 0, ut ≤ 0, D2u ≥ 0}.

Now we are ready to prove the following lemma.

Lemma 3.4. Let z0 ∈ Rd+1 and h > 0. There exists a universal constant ĉ1

such that the following statement holds: For any c0 ≤ ĉ1, if u nonnegative
satisfies (1.1)–(1.2) in Q̃c0(z0, 2h) and infQ̃c0 (z0,h) u ≤ 1, then there exists a

constant ε0 = ε0(d, λ,Λ, C1, C2, c0) so that

|{u ≤ 8} ∩ Q̃c0(z0, 2h)| ≥ ε0|Q̃c0(z0, 2h)|.
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Proof. Let T be an affine transformation that normalizes S(x0, h|t0) and

define ũ and φ̃ as follows,

ũ(s, y) = u(t0 + sh, T−1y),

φ̃(s, y) =
1

h
(φ(t0 + sh, T−1y)−∇φ(t0, x0) · (T−1y − x0)− φ(t0, x0))− 1.

Define Tp : Rd+1 → Rd+1 to be

Tp(t, x) = (
t− t0
h

, Tx). (3.22)

It is sufficient to prove

|Tp({u ≤ 8} ∩ Q̃c0(z0, 2h))| ≥ ε0|Tp(Q̃c0(z0, 2h))|,

i.e.,

|{ũ ≤ 8} ∩ {(−2c0, 0)× T (S(x0, h|t0))}| ≥ ε0|{(−2c0, 0)× T (S(x0, h|t0))}|.

By the definition of ũ and infQ̃c0 (z0,h) u ≤ 1, it follows

inf
(−c0,0)×T (S(x0,

1
2
h|t0))

ũ ≤ 1.

From the definition of φ̃,

φ̃ ≤ −1

2
on {0} × T (S(x0,

1

2
h|t0)).

Since

C1 ≤ −φ̃t ≤ C2,

we can choose ĉ1 small, which depends on C2, such that for c0 ≤ ĉ1

φ̃ ≤ −1

4
on (−c0, 0]× T (S(x0,

1

2
h|t0)).

It is easy to see that φ̃ ≥ 0 on (−2c0, 0] × ∂T (S(x0, h|t0)) and φ̃ ≥ −1
on {−2c0} × T (S(x0, h|t0)). We choose a decreasing smooth function ψ :
[−2c0, 0] → R such that ψ(−2c0) = 1 and ψ(t) = 0 for t ∈ [−c0, 0]. There
exists N1 = N1(c0) satisfying |ψt| ≤ N1.

Let us consider w := ũ(z) + 8(φ̃(z) + ψ(t)) in Tp(Q̃c0(z0, 2h)), which

satisfies w ≥ 0 on ∂p(Tp(Q̃c0(z0, 2h))). By Lemma 3.3 and noticing that

inf
(−c0,0)×T (S(x0,

1
2
h|t0))

w ≤ −1,

we have

1 ≤ sup(w−) ≤ C(

∫∫
Γ(w)
|wt detD2w| dx dt)

1
d+1 . (3.23)
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By the inequality of arithmetic and geometric means, the definition of Γ(w),
and (3.20),∫∫

Γ(w)
|wt detD2w| dx dt =

∫∫
Γ(w)
|wt detD2w

φ̃t detD2φ̃
||φ̃t detD2φ̃| dx dt

≤ Λ̃

∫∫
Γ(w)
|wt detD2w

φ̃t detD2φ̃
|dxdt

≤ Λ̃

(d+ 1)d+1

∫∫
Γ(w)
| − wt

φ̃t
− tr((D2φ̃)−1D2w)|d+1 dx dt. (3.24)

Since w = ũ+ 8(φ̃+ ψ), we get

| − wt

φ̃t
− tr((D2φ̃)−1D2w)| = |Lφ̃ũ− 8(d+ 1 +

ψt

φ̃t
)| ≤ 8(d+ 1 +

N1

C1
),

which, combining with (3.24) implies that∫∫
Γ(w)
|wt detD2w| dx dt ≤ Λ̃

(d+ 1)d+1
8d+1(d+ 1 +

N1

C1
)d+1|Γ(w)|. (3.25)

On the other hand, Γ(w) ⊂ {w ≤ 0}, which implies Γ(w) ⊂ {ũ ≤ −8(φ̃+ψ)}.
Moreover, it is easily seen that

min
Tp(Q̃c0 (z0,2h))

φ̃(t0, x) ≥ −1.

Combining the fact that ψ ≥ 0, we have Γ(w) ⊂ {ũ ≤ 8}. From (3.23) and
(3.25), we prove that

|{ũ ≤ 8} ∩ Tp(Q̃c0(z0, 2h))| ≥ 1

C
=
|Tp(Q̃c0(z0, 2h))|
C|Tp(Q̃c0(z0, 2h))|

,

where C is universal. Because T (S(x0, h|t0)) is normalized and Tp(Q̃c0(z0, 2h)) =
(−2c0, 0)× T (S(x0, h|t0)), it is easy to obtain that ε0 depending on c0 and
the structure conditions. Therefore, we prove the lemma. �

Now we fix the parameter c0 = min{c0, ĉ1, ĉ0/2}, where c0 and ĉ1 are in
Lemma 3.2 and Lemma 3.4 respectively, and ĉ0 is defined in the beginning
of this section. Since c0, ĉ1, and ĉ0 are all universal constants, so is c0. It
follows that ε0 is universal as well. With the help of Lemma 3.1, we are
ready to prove the following corollary of Lemma 3.4.

Corollary 3.5. Assume that u is a nonnegative solution of (1.1) and (1.2).
Then there exists a universal constant τ such that the following property
holds: For any z0 = (t0, x0) ∈ Rd+1, h > 0, and τ̂ ≤ τ , denote

Z = (t0, t0 + τ̂h]× S(x0,
h

2θ
|t0 + τ̂h),

where θ is the constant in Lemma 3.1. If infZ u ≤ 1, then there exists a
universal constant ε1 such that

|{u ≤ 8} ∩ Q̃c0(z0, 2h)| ≥ ε1|Q̃c0(z0, 2h)|.
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Proof. First note that for τ < 1/(C2θ
2), we have (t0, x0) ∈ Q((t0+τh, x0), h/θ2).

Then from Lemma 3.1, we get

S(x0,
h

θ
|t0 + τh) ⊂ S(x0, h|t0), S(x0,

h

θ2
|t0) ⊂ S(x0,

h

θ
|t0 + τh). (3.26)

Denote zτ = (t0+τh, x0). Second, if τ < c0/θ, infZ u ≤ 1 implies infQ̃(zτ ,
h
θ

) u ≤
1. Hence, from Lemma 3.4, we know that

|{u ≤ 8} ∩ Q̃(zτ ,
2h

θ
)| ≥ ε0|Q̃(zτ ,

2h

θ
)|,

which can be written as

|{u ≤ 8} ∩ ((t0, t0 + τh]× S(x0,
h

θ
|t0 + τh))|

+ |{u ≤ 8} ∩ ((t0 + τh− c0
2h

θ
, t0]× S(x0,

h

θ
|t0 + τh))|

≥ 2c0ε0h

θ
|S(x0,

h

θ
|t0 + τh)|.

This implies that

|{u ≤ 8} ∩ ((t0 + τh− c0
2h

θ
, t0]× S(x0,

h

θ
|t0 + τh))|

≥ (
2c0ε0h

θ
− τh)|S(x0,

h

θ
|t0 + τh)|.

From (3.26), we obtain that

|{u ≤ 8}∩ ((t0 + τh− c0
2h

θ
, t0]×S(x0, h|t0))| ≥ (

2c0ε0h

θ
− τh)|S(x0,

h

θ2
|t0)|.

(3.27)
Since τ > 0 and θ > 1, it follows from (3.27)

|{u ≤ 8} ∩ Q̃(z0, 2h)| ≥ (
2c0ε0h

θ
− τh)|S(x0,

h

θ2
|t0)|.

From property (v), we know that

|S(x0,
h

θ2
|t0)| ≥ C(θ)|S(x0, h|t0)|,

where C(θ) is a universal constant. Therefore, we get

|{u ≤ 8} ∩ Q̃(z0, 2h)| ≥ (
2c0ε0

θ
− τ)

C(θ)

2c0
|S(x0, h|t0)|2c0h.

After taking τ = min{c0ε0/θ, c0/θ, 1/(C2θ
2)}, we can choose

ε1 =
C(θ)ε0

2θ

to prove the lemma. �
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Now we take

ε = min{ε0, ε1}, (3.28)

and Lemma 3.4 and Corollary 3.5 hold with ε in place of ε0 and ε1, respec-
tively. Next we define the following four domains:

Q4 = (t0 − 4Kh, t0]× S(x0, 2θh|t0),

Q3 = (t0 − 4(K − β)h, t0]× S(x0, 2θ(1− β)h|t0),

Q2 = (t0 − 4(K − σ)h, t0]× S(x0, θh|t0),

Q1 = (t0 − 4Kh, t0]× S(x0,
1

2
h|t0).

where K > σ > β > 0, β < 1
2 .

Lemma 3.6. Let K,σ, β, and Qi, i = 1, 2, 3, 4, be as above and K ≤ c0θ.
Suppose that u is a nonnegative solution of (1.1) and (1.2) in Q4. Then
there exists a small universal constant γ0 > 0 such that if K − β ≤ γ0,
then the following property holds: If infQ1 u ≥ 1, then infQ2 u ≥ 1

L , where L
depends on K,β, and the structure conditions.

Proof. Let T be an affine transformation that normalizes S(x0, 2θh|t0) and
Tp : Rd+1 → Rd+1 be as follows,

Tp(s, y) = (
s− t0
h

, Ty).

Define φ̃ and ũ as in (3.19) and (3.21) respectively and Zi = Tp(Qi) for
i = 1, 2, 3, 4. Denote y0 = Tx0 and for l, h > 0, S∗(y0, l|0) = T (S(x0, lh|t0)),
for instance S∗(y0, 2θ|0) = T (S(x0, 2θh)|t0). Moreover, it is obvious that S∗

is the section of φ̃ in the x variable.
Since S∗(y0, 2θ|0) is normalized, from [9, Corollary 3.3.6 ],

dist(∂S∗(y0, 2θ|0), S∗(y0, 2θ(1− β)|0)) ≥ C(β), (3.29)

where C(β) is a constant depending on β.
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Consider Hη = {z ∈ Z3 : ∆φ̃ ≥ 1
η} and it is easy to show that

|Hη| ≤ η
∫ 0

−4(K−β)

∫
S∗(y0,2θ(1−β)|0)

∆φ̃ dx dt

≤ η
∫ 0

−4(K−β)

∫
∂S∗(y0,2θ(1−β)|0)

|∇φ̃| ds dt, (3.30)

where |Hη| is the Lebesgue measure of Hη. Since we restrict K ≤ θc0, by
(3.6) we have

Z4 ⊂ Qφ̃((0, y0), 4θ).

From (3.29), for each t ∈ (−4(K − β), 0),

dist(S∗(y0, 2θ(1− β)|0), ∂Qφ̃((0, y0), 4θ)(t)) ≥ C(β). (3.31)

After subtracting 4θ, we obtain (φ̃− 4θ)|∂P (Qφ̃((0,y0),4θ)) ≤ 0. By Lemma 2.1

and (3.31), we find that there exists a constant C(β) depending on β such
that

|∇φ̃| ≤ C(β) on (−4(K − β), 0)× ∂S∗(y0, 2θ(1− β)|0).

Combining (3.30) with the fact that S∗(y0, 2θ|0) is normalized, we obtain

|Hη| ≤ C(β)(K − β)η.

Let

g = −φ̃t detD2φ̃.

Set H̃η be an open subset in Z4 such that Hη ⊂ H̃η and |H̃η \ Hη| ≤ η.

Take fη(x) to be a smooth function such that fη ∈ C∞0 (H̃η), 0 ≤ fη ≤ 1,
and fη = 1 on Hη. Consider the boundary value problem for the following
parabolic Monge-Ampère equation:

−wt detD2w = fηg/(α)d+1 in (−4K, 0)× S∗(y0, 2θ|0),

w = ζ(x)− ε(t+ 4K) on ∂p((−4K, 0)× S∗(y0, 2θ|0)).

Here ε > 0 is a small constant, α is a large constant to be determined
later, and ζ is a strictly convex function in x with |ζ(x)| < ε, ζ|∂S∗(y0,2θ|0)=0.
From the existence result in [21], we know that the equation above has a
unique classical solution w ∈ C1,2(Z4) ∩ C(Z4), which is parabolic convex.
By applying Lemma 3.3 to w − inf∂pZ4 w, we obtain that

sup
Z4

(w−) ≤ sup
∂pZ4

(w−) + C(α, d)(

∫∫
Z4

fηg dx dt)
1
d+1

≤4Kε+ C(Λ̃, α, d)|H̃η| ≤ 4Kε+ C(Λ̃, α, d)η, (3.32)

where we use the fact that λ̃ ≤ g ≤ Λ̃ and C(Λ̃, α, d) is a constant depending
on Λ, α, and d.

Now let us recall some properties of φ̃. Since 0 ≤ φ̃ ≤ 1/2 in {0} ×
S∗(y0,

1
2 |0) and K ≤ c0θ, we can choose a large constant C3 = C3(K,C1, C2)
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such that 0 ≤ φ̃/C3 ≤ 1/2 in (−4K, 0)× S∗(y0,
1
2 |0). Then we take α = C3

and consider

min
Z4

{ũδ − (w − φ̃

α
)},

where δ > 0 to be determined later. Assume that the minimum is attained
at P = (tp, xp).

First, suppose that P ∈ Z1 and it is obvious that

ũδ(t, x)− (w(t, x)− φ̃(t, x)

α
) ≥ ũδ(P )− (w(P )− φ̃(P )

α
).

Since infZ1 u ≥ 1, from (3.32) the inequality above yields

ũδ(t, x) ≥ ũδ(P ) + (w(t, x)− w(P )) +
φ̃(P )− φ̃(t, x)

α

≥ 1− 1

2
− 2(4Kε+ Cη) =

1

2
− C(K)(ε+ η),

where C(K) depends on K and the structure conditions. For ε and η suffi-

ciently small, we get ũ(t, x) ≥ (1
4)1/δ.

Second, assume P ∈ Z4 \ Z3. In this case, we know that

ũδ(t, x)− (w(t, x)− φ̃(t, x)

α
) ≥ −(w(P )− φ̃(P )

α
).

It follows from (3.32) that

ũδ(t, x) ≥ φ̃(P )− φ̃(t, x)

α
− C(K)(ε+ η). (3.33)

We restrict (t, x) ∈ Z2. Because C1 ≤ −φ̃t ≤ C2,

max
z∈Z2

φ̃ = φ̃(−4(K − σ), x̃) ≤ θ + 4C2(K − σ),

where x̃ ∈ ∂S∗(y0, θ|t0), and

min
z∈Z4\Z3

φ̃ = φ̃(0, x̂) = 2θ(1− β),

where x̂ ∈ S∗(y0, 2θ(1− β)|0). Therefore,

φ̃(P )−φ̃(t, x) ≥ 2θ(1−β)−(θ+4C2(K−σ)) = (1−2β)θ−4C2(K−σ). (3.34)

Then from (3.33) and (3.34), it yields that

uδ(t, x) ≥ (1− 2β)θ

α
− 4C2(K − σ)

α
− C(K)(ε+ η).

Since K − σ < K − β ≤ γ0, by taking γ0, ε and η sufficiently small and
β < 1

4 , we prove that u(t, x) ≥ 1/L for the second case, where L depends on
β,K, and the structure conditions.



16 H. ZHANG

Finally, let us consider the last case that P ∈ Z3 \ Z1. Notice that at P

D(ũδ)(P ) = Dw(P )− Dφ̃(P )

α
, D2(ũδ)(P ) ≥ D2w(P )− D2φ̃(P )

α
,

∂tũ
δ(P ) ≤ ∂tw(P )− ∂tφ̃(P )

α
.

Therefore,

Lφ̃ũ
δ(P ) ≤ ∂tw(P )− ∂tφ̃(P )/α

−∂tφ̃(P )
− tr((D2φ̃)−1D2(w − φ̃

α
))(P )

=
d+ 1

α
+ Lφ̃w(P ). (3.35)

Moreover, since −wt detD2w = fηg/(α)d+1, by the inequality of arithmetic
and geometric means

Lφ̃w ≤
−(d+ 1)f

1/(d+1)
η

α
. (3.36)

On the other hand, following the proof of [5, Lemma 2.1], we can show that

Lφ̃(ũδ) ≥ 1− δ
δũδ

|D(ũδ)|2

∆φ̃
,

in particular,

Lφ̃(ũδ)(P ) ≥ 1− δ
δũδ(P )

|D(ũδ)(P )|2

∆φ̃(P )
,

which, with (3.35) and (3.36), implies that

d+ 1

α
(1− f1/(d+1)

η (P )) ≥ 1− δ
δũ(P )δ

|Dw(P )−Dφ̃(P )/C3|2

∆φ̃(P )
. (3.37)

For the right-hand side of the inequality above, applying Lemma 2.1 to w,
we find that

|Dw(P )| ≤ −w(P )

dist(P, ∂Z4(tP ))
.

Because P ∈ Z3, dist(P, ∂Z4(tP )) ≥ C(β). Combining with the fact that
|w(P )| ≤ C(K)(ε+ η), we find

|∇w(P )| ≤ C(K,β)(ε+ η).

Next we show that |Dφ̃(P )| has a lower bound for P ∈ Z3 \Z1. Recall that

∇φ̃(0, y0) = 0 and

Qφ̃((0, y0), h) = {z : φ̃(z) ≤ φ̃(0, y0) + h, t ≤ 0}.

We choose γ0 so small depending on C2 that (−4(K − β), 0) × {y0} ⊂
Qφ̃((0, y0), 1/8) and certainly (−4(K−β), 0)×{y0} ⊂ Qφ̃((0, y0), 1/4). Then

for each s ∈ (−4(K − β), 0), let us consider

min
Qφ̃((0,y0),1/4)∩{t=s}

φ̃. (3.38)
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One can easily show that the point qs, where (3.38) is attainted, must be in

Qφ̃((0, y0), 1/8) ∩ {t = s}. Since ∇φ̃(s, qs) = 0, it follows immediately that

S∗(qs,
1

8
|s) ⊂ Qφ̃((0, y0),

1

4
) ∩ {t = s}.

Because

Qφ̃((0, y0),
1

4
) ∩ {t ∈ (−4(K − β), 0)} ⊂ (−4(K − β), 0)× S∗(y0,

1

2
|0),

for (t, x) ∈ Z3 \ Z1, it follows that x /∈ S∗(qt, 1/8|t). This indicates that

|Dφ̃(t, x)| ≥ C, where C is universal, i.e., |Dφ̃(P )| has a lower bound. From
(3.37), we get

d+ 1

α
(1− f1/(d+1)

η (P )) ≥ 1− δ
δũδ(P )

|C − C(β,K)(ε+ η)|2

∆φ̃(P )
.

Hence, for ε, η sufficiently small, the right-hand side of the inequality above
is strictly positive, which means that fη cannot be 1, i.e., P /∈ Hη. In other

words, ∆φ̃(P ) ≤ 1/η. We modify the inequality above to obtain

ũδ(P ) ≥ 1− δ
δ

C(K,β).

Since P is the minimum point of ũδ − (w − φ̃/α), we get

ũδ(t, x) ≥ ũδ(P ) + (w(t, x)− φ̃(t, x)

α
)− (w − φ̃

α
)(P )

≥ 1− δ
δ

C(K,β)− 2 sup
z∈Z3

(|w|+ |φ̃|
α

).

Note that we have the upper bounds for |w| and |φ̃|. By taking δ sufficiently
small, we obtain the lower bound for ũ in Z2. Hence, the last case is proved
and so is the lemma. �

Denote τ0 = min{τ, γ0/2}, where τ and γ0 are the constants in Corollary
3.5 and Lemma 3.6, respectively. Combining Lemma 3.4, Corollary 3.5, and
Lemma 3.6, we get the following theorem.

Theorem 3.7. Assume that u is a nonnegative solution of (1.1) and (1.2).
Let h > 0, z0 = (t0, x0), and z′ = (t0 + c0θh, x0). Suppose that

inf
Q̃c0 (z′,θh)

u ≤ 1,

then there exists a universal constant M0 such that

|{z ∈ Q̃c0(z0, h) : u(z) ≤M0}| ≥ ε|Q̃c0(z0, h)|, (3.39)

where ε is the constant in (3.28).
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Proof. By a scaling and translation of the coordinates, we assume h = 1 and
z0 = (0, 0). We prove the theorem by contradiction. If (3.39) does not hold,
then applying Lemma 3.4 to 8u/M0, we get

inf
Q̃( 1

2
)
u ≥ M0

8
. (3.40)

By Corollary 3.5 with h = 1/4, it follows that

inf{u(z) : z ∈ (0,
τ0

4
]× S(0,

1

8θ
|τ0

4
)} ≥ M0

82
. (3.41)

Since τ0 ≤ τ, where τ is the constant in Corollary 3.5, and notice that in
the proof of Corollary 3.5 we restrict τ < c0/θ, by Lemma 3.1 we have

S(0,
1

8θ
|τ0

4
) ⊂ S(0,

1

8
|0) ⊂ S(0,

1

4
|0). (3.42)

From (3.40), (3.41), and (3.42) we get

inf{u(z) : z ∈ (−1

2
c0,

τ0

4
]× S(0,

1

8θ
|τ0

4
)} ≥ M0

82
.

Then applying Lemma 3.6 with

Q1 = (−τ0

4
,
τ0

4
]× S(0,

1

8θ
|τ0

4
),

Q2 = (0,
τ0

4
]× S(0,

1

4
|τ0

4
),

and σ = 3β/4 = K/2 = τ0/16, we obtain

inf{u(z) : z ∈ (0,
τ0

4
]× S(0,

1

4
|τ0

4
)} ≥ M0

82L1
,

where L1 is universal. Next, we claim that there exists a universal constant
L ≥ L1 so that

inf
Q̃c0 ((

τ0
4
,0), 1

2
)
u ≥ M0

82L2
. (3.43)

It is sufficient to prove

inf{u(z) : z ∈ (
τ0

4
− 1

2
c0, 0]× S(0,

1

4
|τ0

4
)} ≥ M0

82L2
.

By Lemma 3.1, for any t ∈ ( τ04 −
1
2c0, 0]

S(0,
1

4
|τ0

4
) ⊂ S(0,

θ

4
|t). (3.44)

On the other hand, since {t} × S(0, 1
4θ |t) ⊂ Q̃(1

2) and from (3.40)

inf{u(z) : z ∈ {t} × S(0,
1

4θ
|t)} ≥ M0

8
.

Denote Q̂1 = (t− τ0
4 , t]×S(0, 1

4θ |t) and Q̂2 = (t− τ0
8 , t]×S(0, 1

2 |t). We apply

Lemma 3.6 to Q̂1 and Q̂2, and obtain

inf{u(z) : z ∈ (t− τ0

8
, t]× S(0,

1

2
|t)} ≥ M0

8L2
.
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Denote Q̂3 = (t − τ0
16 , t] × S(0, θ|t). Then we apply Lemma 3.6 again to Q̂2

and Q̂3

inf{u(z) : z ∈ (t− τ0

16
, t]× S(0, θ|t)} ≥ M0

8L2L3
.

It follows from the inequality above and (3.44) that

inf{u(z) : z ∈ {t} × S(0,
1

4
|τ0

4
)} ≥ M0

8L2L3
.

Therefore, we prove the claim by taking L = max{L1, L2, L3}.
For convenience, we denote M1 = 82L2 and tk = kτ0/4 for k ≥ 0. Then

it is easy to apply an induction argument to show that

inf{u(z) : z ∈ Q̃c0((tk, 0),
1

2
)} ≥ M0

Mk
1

. (3.45)

Let k0 be an integer such that tk0−1 ≤ c0θ < tk0 . Next we claim that there

exists a universal constant L̂ so that

inf
Q̃c0 ((c0θ,0),θ)

u ≥Mk0
2 L̂.

For any t ∈ (0, c0θ], by Lemma 3.1

S(0, θ|c0θ) ⊂ S(0, θ2|t).
There exists a j ≤ k0 such that tj−1 ≤ t < tj . We first consider tj−1 < t < tj .
From (3.45) and Lemma 3.1,

inf{u(z) : z ∈ (tj −
c0

2
, t]× S(0,

1

4θ
|t)} ≥ M0

M j
1

. (3.46)

By our choice of τ0 (τ0 < c0), we have t− (tj − c0/2) ≥ τ0/4. Similar to the
proof of (3.43), we apply Lemma 3.6 repeatedly. Denote Q1 = (t−τ0/4, t]×
S(0, 1/(4θ)|t) and Q2 = (t − τ0/8, t] × S(0, 1/2|t) and apply Lemma 3.6 to
Q1 and Q2 to get

inf{u(z) : z ∈ (t− τ0

8
, t]× S(0,

1

2
|t)} ≥ M0

M j
1 L̂1

.

By induction, it is easy to see that

inf{u(z) : z ∈ (t− τ0

2i
, t]× S(0,

(2θ)i−1

2
|t)} ≥ M0

M j
1 L̂1 · · · L̂i

for any i ≥ 1, where each L̂j is universal. Then for i0 so that (2θ)i0−1/2 ≥ θ2,
we have

inf{u(z) : z ∈ {t} × S(0, c0θ
2|t)} ≥ M0

M j
1 L̂1 · · · L̂i0

.

Therefore, for any j ≤ k0 and t ∈ (tj−1, tj)

inf{u(z) : z ∈ {t} × S(0, c0θ
2|t)} ≥ M0

Mk0
1 L̂1 · · · L̂i0

. (3.47)
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For the case when t = tj−1, instead of (3.46), we have

inf{u(z) : z ∈ Q̃c0((tj−1, 0),
1

2
)} ≥ M0

M j−1
1

.

The rest of the proof is the same. We combine (3.47) and (3.46) to get that

inf
Q̃c0 ((c0θ,0),θ)

u ≥ M0

Mk0
1 L̂1 · · · L̂i0

,

which proves the claim. Moreover, this gives us an contradiction with

inf
Q̃c0 ((c0θ,0),θ)

u ≤ 1

if M0 > Mk0
1 L̂1 · · · L̂i0 . Therefore, we prove the lemma.

�

With the help of Theorem 3.7, we obtain the following lemma.

Lemma 3.8. Assume all the conditions in Lemma 3.2 with z0 = (0, 0) and

inf
Q̃c0 ((T0,0),r0)

u ≤ 1.

For any z ∈ Q̃(1), ρ > 0, and M > 0 such that

|Q̃c0(z, ρ) ∩ {u ≥M}| ≥ (1− ε)|Q̃c0(z, ρ)|,
where ε is defined in (3.28), then

ρ ≤ CM−σ,
where C and σ are universal constants.

Proof. Let tk = t +
∑k

j=1 c0ρθ
j and k∗ be the integer such that tk∗ ≥ T0 >

tk∗−1, which implies that Q̃c0((tk, x), θkρ) ∩ {t = T0} 6= ∅. This yields that

logθ(1 +
(T0 − t)(θ − 1)

c0θρ
) ≤ k∗ ≤ 1 + logθ(1 +

(T0 − t)(θ − 1)

c0θρ
). (3.48)

Applying Theorem 3.7 to uM0/M , we obtain u ≥M/M0 in Q̃c0((t1, x0), θρ).
Implementing Theorem 3.7 repeatedly, we get

u ≥ M

Mk∗
0

in ∪k∗j=1 Kj(z), (3.49)

where Kj(z) is defined in (3.8). From Lemma 3.2, we know that

Q̃c0((T0, 0), r0) ⊂ (∪∞j=0Kj(z)) ∩ {t ∈ (0, T0]}. (3.50)

Since

inf
Q̃c0 ((T0,0),r0)

u ≤ 1,

from (3.49) and (3.50),

M ≤Mk∗
0 .
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From the estimate of k∗ in (3.48), the fact that −c0 ≤ t ≤ 0, and the
inequality above, by a simple calculation, we get

ρ ≤ (c0 + ĉc0)(θ − 1)(eM0)log θ

c0M log θ
= CM−σ,

where C and σ are universal constants. �

4. Calderón-Zygmund Decomposition

In this section, we obtain a Calderón-Zygmund type decomposition with
respect to our parabolic sections, which is a necessary tool in establishing
a power decay of the distribution function. As noted in [7], based on the
strong geometrical properties provided in Section 2, for fixed t, s(x, h|t)
satisfies the list of axioms in [18, Section 1.1], so several theorems in real
analysis hold using S(x, h|t) in place of Euclidean balls. In this section, we
show our parabolic sections satisfy similar properties so that these theorems
hold for the parabolic sections as well. For the Besides our parabolic section
Q̃c0(z, r), we use the following domains in our proof. Let m ≥ 1 be an
integer. Set

Q̃(m)
c0 (z, h) = (t+ (m− 2)c0h, t+ (m− 1)c0h]× S(x0,

1

2
h|t),

Q̃mc0(z, h) = ∪m+1
i=1 Q̃

(i)
c0 (z, h) = (t− c0h, t+mc0h]× S(x0,

1

2
h|t),

Q̃mc0(z, h) = ∪m+1
i=2 Q̃

(i)
c0 (z, h) = (t, t+mc0h]× S(x0,

1

2
h|t).

We denote Q̃δc0(z, h) = (t− c0h, t+ δh)×S(x, h/2|t), where δ ≤ c0 is a small
parameter to be determined later. Then we prove the following lemma which
is an important ingredient in proving the Calderón-Zygmund decomposition.

Lemma 4.1. There exist positive universal constants K1,K2,K3, and ε2

with the following property: Given two sections Q̃c0(z0, r0), Q̃c0(z, r) with
r ≤ r0, T an affine transformation that normalizes S(x0, r0/2|t0), and Tp is
defined in (3.22), if

Q̃δc0(z0, r0) ∩ Q̃δc0(z, r) 6= ∅,

then

(t′ − c0
r

r0
, t′ + δ

r

r0
)×B(x′,K1(

r

r0
)) ⊂ Tp(Q̃δc0(z, r))

⊂ (t′ − c0
r

r0
, t′ + δ

r

r0
)×B(x′,K2(

r

r0
)ε2),

where

Tp(z) = (t′, x′),

and Tp(z) ∈ (−c0 − δ, c0 + δ)×B(0,K3).
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Proof. Upon taking a translation of the coordinates, without loss of general-
ity, we assume z0 = (0, 0) and hence Tp(s, y) = (s/r0, T y). First we consider
the case when t < 0. Since

Q̃δc0(0, r0) ∩ Q̃δc0(z, r) 6= ∅,
obviously t ∈ (−c0r0 − δr, 0) and

S(x,
1

2
r|t) ∩ S(0,

1

2
r0|0) 6= ∅.

By Lemma 3.1, δ ≤ c0, and as we hinted in the beginning of Section 3
c0 ≤ ĉ0/2 so that c0 + δ ≤ ĉ we have

S(0,
r0

2
|0) ⊂ S(0,

θr0

2
|t), (4.51)

which implies

S(x,
1

2
r|t) ∩ S(0,

θ

2
r0|t) 6= ∅. (4.52)

Because T (S(0, 1
2r0|0)) is normalized, i.e., ∃ ad > 0 such that

B(0, ad) ⊂ T (S(0,
1

2
r0|0)) ⊂ B(0, 1).

Then there exist 0 < bd < cd such that

B(0, bd) ⊂ T (S(0,
θ

2
r0|t)) ⊂ B(0, cd). (4.53)

In fact, by Lemma 3.1

S(0,
θ

2
r0|t) ⊂ S(0,

θ2

2
r0|0),

and from property (v) there exists a constant λ0 large such that

T (S(0,
θ2

2
r0|0)) ⊂ T (λ0S(0,

1

2
r0|0)) ⊂ B(0, λ0).

Hence,

T (S(0,
θ

2
r0|t)) ⊂ T (S(0,

θ2

2
r0|0)) ⊂ B(0, λ0).

In this way, we find cd = λ0. On the other hand, since S(0, r0/2|0) ⊂
S(0, θr0/2|t), we take bd = ad. From (4.52), (4.53), and [9, Theorem 3.3.8],
we know that

B(Tx,K1
r

θr0
) ⊂ T (S(x,

1

2
r|t)) ⊂ B(Tx,K2(

r

θr0
)ε2),

and Tx ∈ B(0,K3). Therefore,

(
t− c0r

r0
,
t+ δr

r0
)×B(Tx,K1

r

θr0
) ⊂ Tp(Q̃δ(z, r))

⊂ (
t− c0r

r0
,
t+ δr

r0
)×B(Tx,K2(

r

θr0
)ε2).

Since t ∈ (−c0r0− δr, 0), let x′ = Tx, t′ = t/r0 ∈ (−c0− δ, 0). We prove this
case.
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Next, we consider the case when t ≥ 0. Obviously, t ∈ [0, δr0 + c0r].
Combining the fact that r ≤ r0 and δ ≤ c0, we find that (4.51) still holds in
this case. The rest of the proof follows exactly the previous case. Therefore,
we prove the lemma. �

Denote Kδ(z, r) = (t− c0r, t+ δr)×B(x, r/2) and we have the following
Lemma.

Lemma 4.2. There exists a small constant c > 0 depending on δ and the
structure conditions such that the following holds: let z /∈ Q̃δc0(z0, r) and Tp
is an affine transformation that normalizes Q̃c0(z0, r), then

Kδ(Tp(z), cε
d) ∩ Tp(Q̃δc0(z0, (1− ε)r)) = ∅, for 0 < ε < 1.

Proof. First if t /∈ (t0 − c0r, t0 + δr), we only need to consider that the
intersection is empty in the t variable. Indeed,

Tp(Q̃
δ
c0(z0, (1− ε)r)) = (−c0(1− ε), δ(1− ε))× T (S(x0,

1− ε
2

r|t0)).

It is easy to find c < δ/c0 such that

Kδ(Tp(z), cε
d) ∩ Tp(Q̃δc0(z0, (1− ε)r)) = ∅.

If t ∈ (t0− c0r, t0 + δr), then x /∈ S(x0, r/2|t0). By [9, Corollary 3.3.6], there
exists c > 0 such that

B(T (x), cεd) ∩ T (S(x0,
1− ε

2
r|t0)) = ∅.

Hence, we prove the lemma. �

Now we are ready to prove a Besicovitch’s type covering lemma with
respect to Q̃δc0(z, h). For the covering lemma in a metric setting, please see
[8].

Lemma 4.3. Let O be a bounded set. Suppose that for each z ∈ O a section
Q̃δc0(z, h) is given such that h ≤ M , where M is fixed. Denote by F this
family of parabolic sections. Then there exists a countable subfamily of F ,
{Q̃δc0(zk, hk)}∞k=1, with the following properties:

(i) O ⊂ ∪∞k=1Q̃
δ
c0(zk, hk).

(ii) zk /∈ ∪k<jQ̃δc0(zj , hj), ∀k ≥ 2.

(iii) For ε > 0 small and universal, we have that the family Fε = {Q̃δc0(zk, (1−
ε)hk)}∞k=1 has bounded overlap. More precisely

∞∑
k=1

χQ̃δc0 (zk,(1−ε)hk)(z) ≤ C0 log(1/ε),

where C0 depends on δ, and the structure conditions; χE denotes the char-
acteristic function of E.
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Proof. We follow the lines of the proof of [11, Lemma 2.1] and [4, Lemma 1],
though some details are different. Following the same process as in [11] and
[4], we construct a sequence of the families of the parabolic sections {F ′i}
for i ≥ 0. Precisely, assume N = sup{r : Q̃δc0(z, r) ∈ F}. Let

F0 = {Q̃δc0(z, r) :
N

2
< r ≤ N, Q̃δc0(z, r) ∈ F},

and

O0 = {z : Q̃δc0(z, r) ∈ F0}.

Pick Q̃δc0(z1, r1) ∈ F0. If O0 ⊂ Q̃δc0(z1, r1), then we stop. Otherwise, we pick

Q̃δc0(z2, r2) ∈ F0 with z2 ∈ O0 \ Q̃δc0(z1, r1). If O0 ⊂ Q̃δc0(z1, r1)∪ Q̃δc0(z2, r2),
we stop. Otherwise we continue the process. In this way, we construct a
subfamily F ′0 = {Q̃δc0(z0

i , r
0
i )}∞i=1. Next we consider

F1 = {Q̃δc0(z, r) ∈ F :
N

4
< r ≤ N

2
},

and

O1 = {z : Q̃δc0(z, r) ∈ F1 and z /∈ ∪∞i=1Q̃
δ
c0(z0

i , r
0
i )}.

We repeat the construction above for the set O1 and obtain a family of
sections denoted by F ′1 = {Q̃δc0(z1

i , r
1
i )}∞i=1. In the same way, at kth step, we

obtain F ′k = {Q̃δc0(zki , r
k
i )}∞i=1.

With the help of Lemma 4.1, we are able to show that each F ′i has bounded

overlapping. Indeed let us assume that Q̃δc0(zj , rj) ∈ F ′i for 1 ≤ j ≤ K and

z ∈ Q̃δc0(z1, r1) ∩ · · · ∩ Q̃δc0(zK , rK).

For simplicity, we suppose that Q̃δc0(z0, r0) is a section in {Q̃δc0(zj , rj)}Kj=1

with r0 = max{rj : 1 ≤ j ≤ K} and from the construction of F ′i we know

zl /∈ Q̃δc0(zk, rk) for l > k. Let Tp be an affine transformation that normalizes

Q̃c0(z0, r0). By Lemma 4.1, it is obvious that for l > k

Tp(zl) /∈ (t′k − c0
rk
r0
, t′k + δ

rk
r0

)×B(x′k,K1(
rk
r0

)),

where Tp(zk) = (t′k, x
′
k). This, together with the fact that 1

2 ≤ rj/r0 ≤ 2,
which is guaranteed by the construction, implies that

|Tp(zl)− Tp(zk)| > C for l > k,

where C depends on K1, c0, and δ. Therefore, an argument similar to that
of Lemma 1 in [4] shows that overlapping in each F ′i is at most α depending
on C and the structure conditions but not on i.

Next since O is bounded, combining the fact that each F ′i has finite over-
lapping with Lemma 4.1, we show that F ′i is finite for each i. Consider

F ′i = {Q̃δc0(zj , rj)}∞j=1. Since O is bounded and by construction N2−(i+1) ≤
rj ≤ N2−i, there is a constant C ≥ 2 depending on diam(O), N, c0, and δ,
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such that O ⊂ Q̃δc0(z1, Cr1) and Cr1 ≥ N2−i. Let Tp be an affine transfor-

mation that normalizes Q̃c0(z1, Cr1). From Lemma 4.1, it follows that

(t′j − c0
rj
Cr1

, t′ + δ
rj
Cr1

)×B(x′j ,K1
rj
Cr1

) ⊂ Tp(Q̃δc0(zj , rj))

⊂ (t′j − c0
rj
Cr1

, t′j + δ
rj
Cr1

)×B(x′j ,K2(
rj
Cr1

)ε2),

where z′j := (t′j , x
′
j) ∈ Kδ(0,K3) and K3 is a large constant. Hence

(t′j −
c0

2C
, t′j +

δ

2C
)×B(x′j ,

K1

2C
) ⊂ Tp(Q̃δc0(zj , rj))

⊂ Kδ(0,K4), (4.54)

where K4 is a large constant depending on K1,K2,K3, ε2, and d. Since F ′i
has overlapping bounded by α, then∑

j

χTp(Q̃δc0 (zj ,rj))
≤ α.

By (4.54) ∑
j

χKδ(z′j ,d1) ≤ αχKδ(0,K4),

where d1 depends on K1,K2,K3, C, and d. Then it follows immediately that
there are only finitely many sections in F ′i .

Finally, after shrinking the sections to Q̃δc0(z, (1 − ε)r), we are able to
prove that the overlappings between different F ′is are bounded. In fact, let
ε ∈ (0, 1) and

z0 ∈ ∩iQ̃δc0(zeiji , (1− ε)r
ei
ji

), (4.55)

where e1 < e2 < · · · < ei < · · · , N2−(ei+1) < reiji ≤ N2−ei . We denote

zi = zeiji and ri = reiji . Fixing i and l > i, we estimate the gap between ei

and el. Let Tp be an affine transformation that normalizes Q̃c0(zi, ri). By
our construction, ri > rl. From Lemma 4.1,

(t′ − c0(1− ε)rl
ri

, t′ +
δ(1− ε)rl

ri
)×B(x′,K1

(1− ε)rl
ri

) ⊂ Tp(Q̃δc0(zl, (1− ε)rl))

⊂ (t′ − c0(1− ε)rl
ri

, t′ +
δ(1− ε)rl

ri
)×B(x′,K2(

(1− ε)rl
ri

)ε2),

where Tp(zl) = (t′, x′). Since zl /∈ Q̃δc0(zi, ri), by Lemma 4.2

Kδ(Tp(zl), cε
d) ∩ Tp(Q̃δc0(zi, (1− ε)ri)) = ∅,

which implies that

1

2
cεd < |Tp(zl)− Tp(z0)| ≤ K2((

(1− ε)rl
ri

)ε2) +
δ(1− ε)rl

ri

≤ K2(
rl
ri

)ε2 + δ
rl
ri
≤ K22(ei−el+1)ε2 + δ2ei−el ≤ K2(δ) max{2(ei−el+1)ε2 , 2ei−el},
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which implies that el−ei ≤ C log(1/ε), where C depends on δ, c, ε2, and K2.
Hence, the sections in (4.55) are at most C log(1/ε).

Denote F ′ = ∪iF ′i and we claim F ′ satisfies properties (i)–(iii). Since
each F ′i has finitely many sections, F ′ has countably many sections. More-
over, from our construction, F ′i covers each Oi, hence F ′ covers O. The
second property holds automatically by our construction and relabeling the
sections. Combining the fact that each F ′i has finitely many sections and
the overlapping between different families of sections are bounded, we prove
the third property. Therefore, the proof is completed. �

With Lemma 4.3, the following version of Calderón-Zygmund decompo-
sition theorem follows Theorem 2.1 and Lemma 2.3 in [11] with measureM
replaced by the Lebesgue measure exactly.

Theorem 4.4. Assume that λ ∈ (0, 1), z0 ∈ Rd+1, h0 > 0, and φ satisfies

(1.1) and (1.2). Given a bounded open set O ⊂ Q̃c0(z0, h0), there exists a

family of parabolic sections F = {Q̃c0(zk, hk)} with the following properties:

(1) zk ∈ O,∀k.

(2) O ⊂ ∪∞k=1Q̃
δ
c0(zk, hk).

(3)
|O∩Q̃δc0 (zk,hk)|
|Q̃δc0 (zk,hk)| = λ.

(4) |O| ≤ c(λ)m+1
m |∪

∞
k=1Q̃

m∗
c0 (zk, hk)|, for any m ≥ 1, where c(λ) ∈ (0, 1)

depends on λ but not on O and F ,

where δ > 0, and m∗ is the smallest integer such that m∗ ≥ m+ δm.

5. Harnack Inequality

Before proving our main result, we have the following lemma about the
shrinking property at different time.

Lemma 5.1. There exist universal constants C0 > 0 and p1 ≥ 1 such that
for 0 < r < s ≤ 1, h ≥ 0 and z = (t, x) ∈ (t0−rc0h, t0+rc0h)×S(x0, rh/2|t0)
we have

S(x,
C0(s− r)p1h

2
|t) ⊂ S(x0,

sh

2
|t0).

Proof. By a translation of the coordinates, we may assume that z0 = (0, 0).
Upon applying the transformation Tp, let us assume that h = 1 and S(0, 1/2|0)
is normalized. First we consider t ∈ (−c0r, 0). By Lemma 3.1, we have

x ∈ S(0,
r

2
|0) ⊂ S(0,

θr

2
|t) ⊂ S(0,

θ

2
|t).

Following the same argument as in Lemma 4.1, there exist 0 < bd < cd such
that

B(0, bd) ⊂ S(0,
θ

2
|t) ⊂ B(0, cd).
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This implies that S(0, θ/2|t) is almost normalized and so is S(0, 1/2|t). Since
x ∈ S(0, θ/2|t), by property (ii) with T = id, there exist two universal
constants K1, ε such that

S(x, ρ|t) ⊂ B(x,Kρε) (5.56)

for ρ < 1. Because x ∈ S(0, r/2|0), by property (iii) we have

S(x,C(
s− r

2
)p|0) ⊂ S(0,

s

2
|0),

where C, p are universal. Since S(0, 1/2|0) is normalized, by property (ii)
with T = id, we obtain

B(x,K2C(
s− r

2
)p|0) ⊂ S(x,C(

s− r
2

)p|0) (5.57)

Combining (5.56) with (5.57), we choose

ρ ≤ 2(
CK2

K12p
)1/ε(s− r)p/ε,

which indicates that

C0 = 2(
CK2

K12p
)1/ε, p1 = p/ε.

Therefore, the proof of the case when t ∈ (−c0r, 0) is completed.
For t ∈ (0, c0r), one can check easily that the whole argument above holds

as well. Therefore we prove the lemma. �

We then show a weak Harnack inequality by proving a power decay of the
distribution function of u.

Lemma 5.2. Let z0 = (0, 0), T0 = ĉ0θ, and r0 is the constant in Lemma
3.2. Assume that

inf
Q̃c0 ((T0,0),r0)

u ≤ 1.

Then there exists a cylindrical domain

Q := (−5c0

8
,−3c0

8
)× S(0,

1

8
| − c0

2
) ⊂ Q̃c0(z0, 1)

and universal constants M large, 0 < γ < 1, C > 0 and integer m such that

|{u ≥Mkm} ∩Q| ≤ Cγk|Q| ∀k ∈ N. (5.58)

Proof. We are going to construct a sequence of decreasing domains Qk con-
verging to Q and satisfying

|{u ≥Mkm} ∩Qk| ≤ Cγk|Q| ∀k ∈ N, (5.59)

from which (5.58) follows immediately. First we choose

Qk = (−c0

2
− tk,−

c0

2
+ tk)× S(0, αk|

c0

2
),
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where tk ≤ c0/4 and αk ≤ 1/4 to be determined later. For k = k0, where k0

large to be determined later, we pick C depending on d, λ,Λ, C1, C2, and k0

to be sufficiently large so that

|(−3c0

4
,−c0

4
)× S(0,

1

4
| − c0

2
)| ≤ Cγk0 |Q|.

Now assume that (5.59) is valid for k and let us consider k+ 1. By applying

Theorem 4.4 to O = {u ≥ M (k+1)m} ∩Qk+1 with λ > 1− ε, where ε is the

constant in Theorem 3.7, we can find zj ∈ {u ≥ M (k+1)m} ∩ Qk+1 and ρj
such that

|Q̃δc0(zj , ρj) ∩ {u ≥M (k+1)m} ∩Qk+1| = λ|Q̃δc0(zj , ρj)|

for j ≥ 1, which implies that

|Q̃δc0(zj , ρj) ∩ {u ≥M (k+1)m}| ≥ λ|Q̃δc0(zj , ρj)|.

Furthermore, for δ small, we have

|Q̃c0(zj , ρj) ∩ {u ≥M (k+1)m}| ≥ (λ− δ

c0
)|Q̃c0(zj , ρj)|.

Let us choose δ sufficiently small such that λ− δ/c0 ≥ 1− ε and fix this δ.
By Theorem 4.4,

|{u ≥M (k+1)m} ∩Qk+1| ≤ c(λ)
m+ 1

m
| ∪∞j=1 Q̃

m∗
c0 (zj , ρj)|.

We take γ ∈ (c(λ), 1) and choosem sufficiently large so that c(λ)(m+ 1)/m <
γ. Then it follows that

|{u ≥M (k+1)m} ∩Qk+1| ≤ γ| ∪∞j=1 Q̃
m∗
c0 (zj , ρj)|.

Next after selecting proper Qk, i.e., αk and tk, we want to show that for any
j

Q̃m
∗

c0 (zj , ρj) ⊂ {u ≥Mkm} ∩Qk. (5.60)

By Lemma 3.1 and (3.7), one can easily check that

Q̃m
∗

c0 (z, ρ) ⊂ ∪m∗i=1Ki(z),

where Ki(z) is defined in (3.8). Upon applying Theorem 3.7 m∗ times, we
find that

u ≥ M (k+1)m

Mm∗
0

in Q̃m
∗

c0 (zj , ρj). (5.61)

If M > M1+δ
0 , then

M (k+1)m

Mm∗
0

≥Mkm,

which by (5.61) yields

Q̃m
∗

c0 (zj , ρj) ⊂ {u ≥Mkm}.
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It only remains to prove Q̃m
∗

c0 (zj , ρj) ⊂ Qk. We treat the x variable and the
t variable separately. From Lemma 3.8, we know that

ρj ≤ CM−δ(k+1)m. (5.62)

For the x variable by Lemma 5.1,

S(xj , C0(αk − αk+1)p1 |tj) ⊂ S(0, αk| −
c0

2
). (5.63)

Let us take α0 = 1/4 and

αk =
1

4
−
k−1∑
j=0

(
C

C0
)1/p1M−δ(j+1)m/p1 ,

where C is the constant in (5.62). Then {αk} satisfies

αk − αk+1 = (
C

C0
)1/p1M−δ(k+1)m/p1 .

Therefore, by (5.62)

ρj ≤ CM−δ(k+1)m = C0(αk − αk+1)p1 ,

which from (5.63) implies

S(xj , ρj |tj) ⊂ S(0, αk| −
c0

2
).

On the other hand, for the t variable we need

tk+1 +m∗c0ρj ≤ tk. (5.64)

So we choose t0 = c0/4 and

tk =
c0

4
−m∗c0C

k−1∑
j=1

M−δ(j+1)m.

In this way

tk − tk+1 = m∗c0CM
−δ(k+1)m,

which combining with (5.62) shows (5.64).
Finally, we need that the summations in the formulas of αk and tk to

converge, which are guaranteed by taking M sufficiently large, for instance,

m∗C
∞∑
j=1

M−δ(j+1)m <
1

8
,

and

(
C

C0
)1/p1

∞∑
j=1

M−δ(j+1)m/p1 <
1

8
.

Now we finish the proof of (5.60). Therefore

|{u ≥M (k+1)m} ∩Qk+1| ≤ γ|{u ≥Mkm} ∩Qk| ≤ Cγk+1|Q|.
It remains to pick k0 large such that Qk0 ⊂ Q̃(1). Hence, the proof is com-
pleted. �
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For the domainQ in Lemma 5.2, following a standard argument we deduce
that there exists a constant p > 0 such that for any h > 0

|{u ≥ h} ∩Q| ≤ Ch−p,

which implies ∫
Q
up̃ dx dt ≤ C, (5.65)

where p̃ < p. For simplicity of the notation, we still use p to denote the
constant in (5.65). In the rest of the paper, we denote z = (−c0/2, 0)

and r1 = 1/8. Let Q− denote Q̃c0(z, r1) so that Q− ⊂ Q, and Q+ =

Q̃c0((T0, 0), r0), where T0 and r0 are as in Lemma 5.2. Therefore, we prove
the following weak Harnack inequality

Theorem 5.3. Assume that u ≥ 0 satisfies (1.1) and (1.2). Then there
exist universal constants C, p such that∫

Q−

up dx dt ≤ C inf
Q+

u.

Next we follow the idea in [11] to estimate supQ− u. For convenience, we

denote ν = 16/15.

Lemma 5.4. Let u ≥ 0 satisfy (1.1) and (1.2). Suppose that Q− =

Q̃c0(z, r1), and ∫
Q−

updx dt ≤ C|Q−| (5.66)

for some C > 0. Then there exist constants C3, δ1, and j0 depending on C,
p, and the structure conditions such that for z′ = (t′, x′) ∈ Q̃c0(z, 3r1/4),
and j ≥ j0, if u(z′) ≥ 8νj−1, then

sup
Q̃(z′,ρ)

u ≥ 8νj ,

where ρ = C3ν
−δ1jr1 and Q̃c0(z′, ρ) ⊂ Q−.

Proof. We prove the lemma by contradiction. Suppose that supQ̃c0 (z′,ρ) u <

8νj and consider

w(z) =
8νj − u(z)

8νj−1(ν − 1)
.

It follows that w > 0 and w satisfies (1.1). One can easily check that
w(z′) ≤ 1. Applying Lemma 3.4 to w, we obtain

|{w ≤ 8} ∩ Q̃c0(z′, ρ)| ≥ ε0|Q̃c0(z′, ρ)|,

which is

|{u ≥ 4νj} ∩ Q̃c0(z′, ρ)| ≥ ε0|Q̃c0(z′, ρ)|.
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Since z′ ∈ Q̃c0(z, 3r1
4 ) and by Lemma 5.1, it is easily seen that there exists a

large constant j0 depending on C3 and δ1 so that for any j ≥ j0, Q̃c0(z′, ρ) ⊂
Q−. By the Chebyshev inequality and (5.66)

|{u ≥ 4νj} ∩ Q̃c0(z′, ρ)| ≤ (4νj)−p
∫
Q−

up dx dt ≤ C(4νj)−p|Q−|.

Combining the two inequalities above, we obtain

C(4νj)−p|Q−| ≥ ε0|Q̃c0(z′, ρ)|,
i.e.,

C(4νj)−pc0r1|S(x, r1|t)| ≥ ε0c0ρ|S(x′, ρ|t′)|. (5.67)

Since z′ ∈ Q̃(z, 3
4r1), by Lemma 3.1 we know that

|S(x, r1|t)| ≤ |S(x, θr1|t′)|.
Then by property (iv) of sections, it follows that

|S(x, θr1|t′)| ≤ Ĉ(
r1

ρ
)d|S(x′, ρ|t′)|,

where Ĉ is universal. Combining the two inequalities above with (5.67), we
get

CĈν−pjrd+1
1 ≥ ρ1+d.

This implies that if we set C3 = (ĈC)1/(d+1) + 1 and δ1 = p/(d + 1), the
inequality above contradicts with ρ = C3ν

−δ1jr1. Hence we prove the lemma.
�

The following theorem is about the estimate of supQ− u.

Theorem 5.5. Let u ≥ 0 satisfy (1.1) and (1.2). Suppose that u satisfies
(5.66). Then there exists j1 such that supQ̃c0 (z,r1/2) u ≤ 8νj1−1, where j1
only depends on C, p, and the structure conditions.

Proof. Choose j1 ≥ j0 such that∑
j≥j1

(
C3θν

−δ1(j1+k)

C0
)1/p1 <

1

4
, (5.68)

where j0, C3, and δ1 are the constants in Lemma 5.4, p1 and C0 are the
constants in Lemma 5.1. We claim that supQ̃(z,r1/2) u ≤ 8νj1−1. Otherwise,

suppose that there exists z′ ∈ Q̃c0(z, r1/2) such that u(z′) ≥ 8νj1−1. By ap-
plying Lemma 5.4 we are going to find a sequence of points {zk} and para-

bolic sections Q̃c0(z, hk) such that zk ∈ Q̃c0(z, hk), Q̃c0(z, hk) ⊂ Q̃c0(z, 3
4r1),

and u(zk) ≥ 8νk−1+j1 . Denote z0 = z′ and Q̃c0(z, h0) = Q̃c0(z, r12 ). Suppose

that we find {zj}kj=1 and {hj}kj=1 satisfy our conditions. Then for k + 1,

since u(zk) ≥ 8νj1+k−1, by Lemma 5.4, we have zk+1 ∈ Q̃c0(zk, ρk) such

that u(zk+1) ≥ 8νj1+k, where ρk = C3ν
−δ1(j1+k)r1. It suffices to choose hk+1

such that
Q̃c0(zk, ρk) ⊂ Q̃c0(z, hk+1).
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We consider the spatial variables x and time variable t separately. Since
zk ∈ Q̃c0(z, hk), for the t variable we only need

hk+1 − hk ≥ ρk = C3ν
−δ1(j1+k). (5.69)

For the spatial variables x, by Lemma 3.1, it is sufficient to consider

S(xk,
θρk
2
|t) ⊂ S(x,

hk+1

2
|t).

Because xk ∈ S(x, hk2 |t), by Lemma 5.1, we need

θρk ≤ C0(hk+1 − hk)p1 ,

which can be rewritten as

hk+1 − hk ≥ (
θρk
C0

)1/p1 = (
C3θν

−δ1(j1+k)

C0
)1/p1 . (5.70)

Since p1, ν ≥ 1, we have ν−δ1 ≤ ν−δ1/p1 . Then for j1 sufficiently large de-
pending on C0, C3, θ, and δ1, (5.70) implies (5.69), which indicates that we
can pick

hk+1 =
1

2
r1 +

k∑
j=1

(
C3θν

−δ1(j1+k)

C0
)1/p1r1.

By (5.68), we know that Q̃c0(z, hk) ⊂ Q̃c0(z, 3
4r1) for any k ∈ N. On the

other hand, since for each k, u(zk+1) ≥ νj1+k, this contradicts with the

assumption that u is continuous in Q̃c0(z, 3
4r1). Therefore, we prove the

lemma.
�

Proof of Theorem 1.1. First we prove

sup
Q̃c0 (z,

r1
2

)

u ≤ C inf
Q̃c0 ((T0,0),r0)

u, (5.71)

where z = (−c0/2, 0), r1 = 1/8 and Q̃c0((T0, 0), r0) = Q+ as in Theorem
5.3. Without loss of generality, we assume that infQ̃c0 ((T0,0),r0) u ≤ 1. Hence,

we only need to prove supQ̃c0 (z,
r1
2

) u ≤ C, which can be easily shown by

combining Theorem 5.5 and Theorem 5.3. Therefore we prove (5.71). Then
Theorem 1.1 follows easily by scaling and translation of the coordinates. �

Proof of Corollary 1.3. By scaling and translation of the coordinates, we
may assume that z0 = (0, 0) and R = 1. Let M = supQ̃(1) u and m =

infQ̃(1) u. We consider M−u and u−m which are both nonnegative solution

of (1.1). By Theorem 1.1, Remark 1.2, and the arguments of scaling and
translation of the coordinates, we can find parabolic sections Q1 and Q2

such that for any nonnegative solution v of (1.1) and (1.2),

sup
Q1

v ≤ C inf
Q2

v,
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where
Q1 = Q̃c0((t1, x1), r1), Q2 = Q̃(r0),

and t1 < −c0r0. Then it is sufficient to prove the corollary for ρ ≤ r0. We
apply Theorem 1.1 to u−m and M − u in Q1 and Q2 to get,

sup
Q1

(u−m) ≤ C inf
Q2

(u−m),

sup
Q1

(M − u) ≤ C inf
Q2

(M − u).

We add the two inequalities above to obtain

M −m+ sup
Q1

u− inf
Q1

u ≤ C(M −m− (sup
Q2

u− inf
Q2

u)).

This implies that

oscQ2u ≤
C − 1

C
oscQ̃(1)u,

which is

oscQ̃(r0)u ≤
C − 1

C
oscQ̃(1)u.

Then an elementary iteration proves the corollary, for instance see [15]. �

Remark 5.6. We can obtain the Hölder continuity of u from Corollary 1.3,
but the Hölder constant depends on the norm of the affine transformation
which normalizes the section under consideration. The detail can be found
in [11] and [5].
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