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Abstract. We obtain Dini type estimates for a class of concave fully nonlinear

nonlocal elliptic equations of order σ ∈ (0, 2) with rough and non-symmetric
kernels. The proof is based on a novel application of Campanato’s approach

and a refined Cσ+α estimate in [8].

1. Introduction and main results

The paper is a continuation of our previous work [8], where we studied Schauder
estimates for concave fully nonlinear nonlocal elliptic and parabolic equations. In
particular, when the kernels are translation invariant and the data are merely
bounded and measurable, we proved the Cσ estimate, which is very different from
the classical theory for second-order elliptic and parabolic equations. In this paper,
we consider concave fully nonlinear nonlocal elliptic equations with Dini continuous
coefficients and nonhomogeneous terms, and establish a Cσ estimate under these
assumptions.

The study of classical elliptic equations with Dini continuous coefficients and
data has a long history. Burch [3] first considered divergence type linear elliptic
equations with Dini continuous coefficients and data, and estimated the modulus
of continuity of the derivatives of solutions. The corresponding result for concave
fully nonlinear elliptic equations was obtained by Kovats [14], which generalized
a previous result by Safonov [23]. Wang [27] studied linear non-divergence type
elliptic and parabolic equations with Dini continuous coefficients and data, and
gave a simple proof to estimate the modulus of continuity of the second-order
derivatives of solutions. See, also [18, 26, 1, 11, 19, 17], and the references therein.

Recently, there is extensive work on the regularity theory for nonlocal elliptic
and parabolic equations. For example, Cα estimates, C1,α estimates, Evans-Krylov
type theorem, and Schauder estimates were established in the past decade. See,
for instance, [4, 5, 9, 10, 12, 6, 7, 16, 15, 25, 22], and the references therein. In
particular, Mou [22] investigated a class of concave fully nonlinear nonlocal elliptic
equations with smooth symmetric kernels, and obtained the Cσ estimate under a
slightly stronger assumption than the usual Dini continuity on the coefficients and
data. The author implemented a recursive Evans-Krylov theorem, which was first
studied by Jin and Xiong [16], as well as a perturbation type argument. In this
paper, by using a novel perturbation type argument, we relax the regularity as-
sumption to simply Dini continuity and also remove the symmetry and smoothness
assumptions on the kernels.
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To be more specific, we are interested in fully nonlinear nonlocal elliptic equations
in the form

inf
β∈A

(Lβu+ fβ) = 0, (1.1)

where A is an index set and for each β ∈ A,

Lβu =

∫
Rd

δu(x, y)Kβ(x, y) dy,

δu(x, y) =


u(x+ y)− u(x)− y ·Du(x) for σ ∈ (1, 2),

u(x+ y)− u(x)− y ·Du(x)χB1
for σ = 1,

u(x+ y)− u(x) for σ ∈ (0, 1),

and

Kβ(x, y) = aβ(x, y)|y|−d−σ.

This type of nonlocal operators was first investigated by Komatsu [13], Mikulevičius
and Pragarauskas [20, 21], and later by Dong and Kim [9, 10], and Schwab and
Silvestre [24], to name a few.

We assume that a(·, ·) ∈ [λ,Λ] for some ellipticity constants 0 < λ ≤ Λ, and is
merely measurable with respect to the y variable. When σ = 1, we additionally
assume that ∫

Sr

yKβ(x, y) ds = 0, (1.2)

for any r > 0, where Sr is the sphere of radius r centered at the origin. We say that
a function f is Dini continuous if its modulus of continuity ωf is a Dini function,
i.e., ∫ 1

0

ωf (r)/r dr < ∞.

The following theorem is our main result.

Theorem 1.1. Let σ ∈ (0, 2), 0 < λ ≤ Λ < ∞, and A be an index set. Assume
for each β ∈ A, Kβ satisfies (1.2) when σ = 1, and∣∣aβ(x, y)− aβ(x

′, y)
∣∣ ≤ Λωa(|x− x′|),

|fβ(x)− fβ(x
′)| ≤ ωf (|x− x′|), sup

β∈A
∥fβ∥L∞(B1) < ∞,

where ωa and ωf are Dini functions. Suppose u ∈ Cσ+

(B1) is a solution of (1.1)
in B1 and is Dini continuous in Rd. Then we have the a priori estimate

[u]σ;B1/2
≤ C∥u∥L∞ + C sup

β
∥fβ∥L∞(B1) + C

∞∑
j=1

(
ωu(2

−j) + ωf (2
−j)

)
(1.3)

where C > 0 is a constant depending only on d, σ, λ, Λ, and ωa Moreover, when
σ ̸= 1, we have

sup
x0∈B1/2

[u]σ;Br(x0) → 0 as r → 0

with a decay rate depending only on d, σ, λ, Λ, ωa, ωf , ωu, and supβ∈A ∥fβ∥L∞(B1).
When σ = 1, Du is uniformly continuous in B1/2 with a modulus of continuity
controlled by the quantities before.
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Here for simplicity we assume u ∈ Cσ+

(B1), which means that u ∈ Cσ+ε(B1)
for some arbitrary ε > 0. This condition is only needed for Lβu to be well defined,
and it may be replaced by other weaker conditions.

Remark 1.2. By a careful inspection of the proofs below, one can see that the
estimates above in fact only depend on d, σ, λ, Λ, supβ∈A ∥fβ∥L∞(B1), the modulus
continuity ωf of fβ in B1, ωa(r), ωu(r) for r ∈ (0, 1), and ∥u∥L1,w

, where the weight

w = w(x) is equal to (1 + |x|)−d−σ. In particular, u does not need to be globally
bounded in Rd.

Roughly speaking, the proof can be divided into two steps: We first show that
Theorem 1.1 holds when the equation is satisfied in the whole space; Then we
implement a localization argument to treat the general case. In Step one, our
proof is based on a refined Cσ+α estimate in our previous paper [8] and a new
perturbation type argument, as the standard perturbation techniques do not seem
to work here. The novelty of this method is that instead of estimating Cσ semi-
norm of the solution, we construct and bound certain semi-norms of the solution,
see Lemmas 2.1 and 2.2. When σ < 1, such semi-norm is defined as a series of lower-
order Hölder semi-norms of u. This is in the spirit of Campanato’s approach first
developed in [2]. Heuristically, in order for the nonlocal operator to be well defined,
the solution needs to be smoother than Cσ. To resolve this problem, we divide
the integral domain into annuli, which allows us to use a lower-order semi-norm to
estimate the integral in each annulus. The series of lower-order semi-norms, which
turns out to be slightly stronger than the Cσ semi-norm, further implies that

[u]σ;Br(x0) → 0 as r → 0

uniformly in x0. In particular, when σ = 1 we are able to estimate the modulus of
continuity of the gradient of solutions. The proof of the case when σ ≥ 1 is more
difficult than that of the case when σ < 1. This is mainly due to the fact that the
series of lower-order Hölder semi-norms of the solution itself is no longer sufficient
to estimate the Cσ norm. Therefore, we need to subtract a polynomial from the
solution in the construction of the semi-norm. In some sense, the polynomial should
be taken to minimize the series. It turns out that when σ > 1, up to a constant we
can choose the polynomial to be the first-order Taylor’s expansion of the solution.
The case σ = 1 is particularly challenging since the polynomial needs to be selected
carefully, for which an additional mollification argument is applied.

The organization of this paper is as follows. In the next section, we introduce
some notation and preliminary results that are necessary in the proof of our main
theorem. Some of these results might be of independent interest. In section 3, we
first prove a global version of Theorem 1.1 and then localize the result to obtain
Theorem 1.1.

2. Preliminaries

We will frequently use the following identity

2j
(
u(x+ 2−jℓ)− u(x)

)
−

(
u(x+ ℓ)− u(x)

)
=

j∑
k=1

2k−1
(
2u(x+ 2−kℓ)− u(x+ 2−k+1ℓ)− u(x)

)
, (2.1)

which holds for any ℓ ∈ Rd and nonnegative integer j.
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Denote P1 to be the set of first-order polynomials of x.

Lemma 2.1. Let α ∈ (0, σ) be a constant.
(i) When σ ∈ (0, 1), we have

[u]σ ≤ C sup
r>0

sup
x0∈Rd

rα−σ[u]Λα(Br(x0)) ≤ C sup
r>0

sup
x0∈Rd

rα−σ[u]α;Br(x0), (2.2)

where C > 0 is a constant depending only on d, α, and σ.
(ii) When σ ∈ (1, 2), we have

[u]σ ≤ C sup
r>0

sup
x0∈Rd

rα−σ[u]Λα(Br(x0)) ≤ C sup
r>0

sup
x0∈Rd

rα−σ inf
p∈P1

[u− p]α;Br(x0), (2.3)

where C > 0 is a constant depending only on d, α, and σ.
(iii) When σ = 1, we have

∥Du∥L∞ ≤ C

∞∑
k=0

sup
x0∈Rd

2−k(α−1)[u]Λα(B
2−k (x0)) + C sup

x,x′∈Rd

|x−x′|=1

|u(x)− u(x′)|

≤ C

∞∑
k=0

sup
x0∈Rd

2−k(α−1) inf
p∈P1

[u− p]α;B
2−k (x0) + C sup

x,x′∈Rd

|x−x′|=1

|u(x)− u(x′)|,

(2.4)

where C > 0 is a constant depending only on d and α. Moreover, we can estimate
the modulus of continuity of Du by the remainder of the summation on the right-
hand side of (2.4).

Proof. First we consider the case when σ ∈ (0, 1). Let x, x′ ∈ Rd be two different
points. Denote h = |x− x′|. Since

u(x′)− u(x) =
1

2

(
u(2x′ − x)− u(x)

)
− 1

2

(
u(2x′ − x)− 2u(x′) + u(x)

)
,

we get

h−σ|u(x′)− u(x)|
≤ 2σ−1(2h)−σ

(
u(2x′ − x)− u(x)

)
+ h−σ|u(2x′ − x)− 2u(x′) + u(x)|

≤ 2σ−1(2h)−σ
(
u(2x′ − x)− u(x)

)
+ sup

x∈Rd

hα−σ[u]Λα(Bh(x)).

Taking the supremum with respect to x and x′ on both sides, we get

[u]σ ≤ 2σ−1[u]σ + sup
x∈Rd

hα−σ[u]Λα(Bh(x)),

which together with the triangle inequality gives (2.2).
For σ ∈ (1, 2), let ℓ ∈ Rd be a unit vector and ε ∈ (0, 1/16) be a small constant

to be specified later. For any two distinct points x, x′ ∈ Rd, we denote h = |x−x′|.
By the triangle inequality,

h1−σ|Dℓu(x)−Dℓu(x
′)| ≤ I1 + I2 + I3, (2.5)

where

I1 = h1−σ|Dℓu(x)− (εh)−1(u(x+ εhℓ)− u(x))|,
I2 = h1−σ|Dℓu(x

′)− (εh)−1(u(x′ + εhℓ)− u(x′))|,
I3 = h1−σ(εh)−1|(u(x+ εhℓ)− u(x))− (u(x′ + εhℓ)− u(x′))|.
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By the mean value theorem,

I1 + I2 ≤ 2εσ−1[Du]σ. (2.6)

Now we choose and fix a ε sufficiently small depending only on σ such that 2εσ−1 ≤
1/2. Using the triangle inequality, we have

I3 ≤ Ch−σ
(
|u(x+ εhℓ) + u(x′)− 2u(x̄)|+ |u(x′ + εhℓ) + u(x)− 2u(x̄)|

)
,

where x̄ = (x+ εhℓ+ x′)/2. Thus,

I3 ≤ Chα−σ[u]Λα(Bh(x̄)). (2.7)

Combining (2.5), (2.6), and (2.7), we get (2.3) as before.
Finally, we treat the case when σ = 1. It follows from (2.1) that

2j
∣∣u(x+ 2−jℓ)− u(x)

∣∣ ≤ 2|u(x+ ℓ)− u(x)|+
j∑

k=1

2−k(α−1)[u]Λα(B
2−k (x+2−kℓ)).

Taking j → ∞, we obtain the desired inequality. For the continuity estimate, let
ℓ ∈ Rd be a unit vector. Assume that |x − x′| ∈ [2−i−1, 2−i) for some positive
integer i. From (2.1), for any j ≥ i+ 1,

2j
(
u(x+ 2−jℓ)− u(x)

)
− 2i

(
u(x+ 2−iℓ)− u(x)

)
=

j∑
k=i+1

2k−1
(
2u(x+ 2−kℓ)− u(x+ 2−k+1ℓ)− u(x)

)
and a similar identity holds with x′ in place of x. Then we have

|Dℓu(x)−Dℓu(y)| = lim
j→∞

∣∣∣2j(u(x+ 2−jℓ)− u(x)
)
− 2j

(
u(x′ + 2−jℓ)− u(x′)

)∣∣∣
≤

∣∣∣2i(u(x+ 2−iℓ)− u(x)
)
− 2i

(
u(x′ + 2−iℓ)− u(x′)

)∣∣∣
+

∞∑
k=i+1

sup
x0∈Rd

2−k(α−1)[u]Λα(B
2−k (x0)).

By the triangle inequality, the first term on the right-hand side is bounded by

2i|u(x+ 2−iℓ)− 2u(x̄) + u(x′)|+ 2i|u(x′ + 2−iℓ)− 2u(x̄) + u(x)|

with x̄ = (x+ 2−i + x′)/2, which is further bounded by

21+i(1−α)[u]Λα(B2−i (x̄)).

Therefore,

|Dℓu(x)−Dℓu(y)| ≤ C

∞∑
k=i

sup
x0∈Rd

2−k(α−1)[u]Λα(B
2−k (x0)),

which converges to 0 as i → ∞ uniformly with respect to ℓ. The lemma is proved.
□

The following lemma will be used to estimate the error term in the freezing
coefficient argument.
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Lemma 2.2. Let α ∈ (0, 1) and σ ∈ (1, 2) be constants. Then for any u ∈ C1, we
have

∞∑
k=0

2k(σ−α) sup
x0∈Rd

[u− Px0
u]α;B

2−k(x0)
≤ C

∞∑
k=0

2k(σ−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B
2−k(x0)

(2.8)
and

∞∑
k=0

2kσ sup
x0∈Rd

∥u− Px0
u∥L∞(B

2−k(x0)
) ≤ C

∞∑
k=0

2k(σ−α) sup
x0∈Rd

[u]Λα(B
2−k(x0)

), (2.9)

where Px0
u is the first-order Taylor expansion of u at x0, and C > 0 is a constant

depending only on d, α, and σ.

Proof. Denote

bk := 2k(σ−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B
2−k (x0).

Then for any x0 ∈ Rd and each k = 0, 1, . . ., there exists pk ∈ P1 such that

[u− pk]α;B
2−k (x0) ≤ 2bk2

−k(σ−α).

By the triangle inequality, for k ≥ 1 we have

[pk−1 − pk]α;B
2−k (x0) ≤ 2bk2

−k(σ−α) + 2bk−12
−(k−1)(σ−α). (2.10)

It is easily seen that

[pk−1 − pk]α;B
2−k (x0) = |∇pk−1 −∇pk|2−(k−1)(1−α),

which together with (2.10) implies that

|∇pk−1 −∇pk| ≤ C(bk + bk−1)2
−k(σ−1). (2.11)

Since
∑k

0 bk < ∞, from (2.11) we see that {∇pk} is a Cauchy sequence in Rd. Let
q = q(x0) ∈ Rd be its limit, which clearly satisfies for each k ≥ 0,

|q −∇pk| ≤ C

∞∑
j=k

2−j(σ−1)bj .

By the triangle inequality, we get

[u− q · x]α;B
2−k (x0) ≤ [u− pk]α;B

2−k (x0) + [pk − q · x]α;B
2−k (x0)

≤ C2−k(1−α)
∞∑
j=k

2−j(σ−1)bj ≤ C2−k(σ−α), (2.12)

which implies that

∥u− u(x0)− q · (x− x0)∥L∞(B
2−k (x0)) ≤ C2−kσ,

and thus q = ∇u(x0). It then follows (2.12) that
∞∑
k=0

2k(σ−α) sup
x0∈Rd

[u− Px0
u]α;B

2−k (x0) ≤ C

∞∑
k=0

2k(σ−1)
∞∑
j=k

2−j(σ−1)bj

= C

∞∑
j=0

2−j(σ−1)bj

j∑
k=0

2k(σ−1) ≤ C

∞∑
j=0

bj .

This completes the proof of (2.8).
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Next we show (2.9). For any x ∈ B2−k , it follows from (2.1) that for j ≥ 1,

u(x)− u(0)− 2j
(
u(2−jx)− u(0)

)
=

j−1∑
i=0

2i
(
u(2−ix) + u(0)− 2u(2−i−1x)

)
.

Sending j → ∞, we obtain∣∣u(x)− u(0)− x · ∇u(0)
∣∣ ≤ ∞∑

i=0

2i
∣∣u(2−ix) + u(0)− 2u(2−i−1x)

∣∣
≤ 2−α

∞∑
i=0

2i−(i+k)α[u]Λα(B
2−(k+i) ) = 2−α

∞∑
i=k

2i−k−iα[u]Λα(B2−i ),

where we shifted the index in the last equality. Therefore, by shifting the coordi-
nates and sum in k, we have

∞∑
k=0

2kσ sup
x0∈Rd

∥u− Px0u∥L∞(B
2−k )(x0)

≤ C

∞∑
k=0

2k(σ−1)
∞∑
i=k

2i(1−α) sup
x0∈Rd

[u]Λα(B2−i (x0))

= C

∞∑
i=0

2i(1−α) sup
x0∈Rd

[u]Λα(B2−i (x0))

i∑
k=0

2k(σ−1)

≤ C

∞∑
i=0

2i(σ−α) sup
x0∈Rd

[u]Λα(B2−i (x0)),

where we switched the order of the summations in the second equality and in the
last inequality we used the condition that σ > 1. The lemma is proved. □

Let ζ ∈ C∞
0 (B1) be a nonnegative radial function with unit integral. For R > 0,

we define the mollification of a function u by

u(R)(x) =

∫
Rd

u(x−Ry)ζ(y) dy.

The next lemmas will be used in the estimate of Mj in Proposition 3.1 when σ = 1.

Lemma 2.3. Let β ∈ (0, 1], α ∈ (0, 1 + β), and 0 < R ≤ R1 < ∞. Then for any
u ∈ Λα(B2R1), we have

[Du(R)]β;BR1
≤ C(d, β, α)Rα−1−β [u]Λα(B2R1

). (2.13)

Proof. We begin by estimating ∥D2
ℓu∥0;BR1

for a fixed unit vector ℓ ∈ Rd. Because

D2
ℓ ζ is even with respect to x and has zero integral, using integration by parts we

have for any x ∈ BR1
,

|D2
ℓu

(R)(x)| = R−2
∣∣∣ ∫

Rd

u(x−Ry)D2
ℓ ζ(y) dy

∣∣∣
=

R−2

2

∣∣∣ ∫
Rd

(
u(x−Ry) + u(x+Ry)− 2u(x)

)
D2

ℓ ζ(y) dy
∣∣∣

≤ CRα−2[u]Λα(B2R1
)

∫
Rd

|y|αD2
ℓ ζ(y) dy ≤ CRα−2[u]Λα(B2R1

).
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Using the identity, 2Diju = 2D2
ℓu−D2

i u−D2
ju, where ℓ = (ei+ ej)/

√
2, we obtain

the desired inequality (2.13) when β = 1.
Next we consider the case when β ∈ (0, 1). We follow the proof of Lemma 2.1.

Let ℓ ∈ Rd be a unit vector, and ε ∈ (0, 1/16) be a small constant to be specified
later. For any two distinct points x, x′ ∈ BR1

, let h = |x− x′|(< 2R1). It is easily
seen that there exist two points y ∈ Bεh(x)∩BR1 and y′ ∈ Bεh(x

′)∩BR1 such that

y + εhℓ ∈ Bεh(x) ∩BR1 , y′ + εhℓ ∈ Bεh(x
′) ∩BR1 .

By the triangle inequality,

h−β |Dℓu
(R)(x)−Dℓu

(R)(x′)| ≤ I1 + I2 + I3,

where

I1 = h−β |Dℓu
(R)(x)− (εh)−1(u(R)(y + εhℓ)− u(R)(y))|,

I2 = h−β |Dℓu
(R)(x′)− (εh)−1(u(R)(y′ + εhℓ)− u(R)(y′))|,

I3 = h−β(εh)−1|(u(R)(y + εhℓ)− u(R)(y))− (u(R)(y′ + εhℓ)− u(R)(y′))|.

By the mean value theorem,

I1 + I2 ≤ 2εβ [Du(R)]β;BR1
. (2.14)

Now we choose ε depending only on d and β such that 2εβ ≤ 1/2. To estimate I3,
we consider two cases. If h > R, by the triangle inequality, we have

I3 ≤ Ch−1−β
(
|u(R)(y + εhℓ) + u(R)(y′)− 2u(R)(ȳ)|

+ |u(R)(y′ + εhℓ) + u(R)(y)− 2u(R)(ȳ)|
)
,

where ȳ = (y + εhℓ+ y′)/2. Then by the Minkowski inequality,

I3 ≤ Chα−1−β [u(R)]Λα(BR1
) ≤ CRα−1−β [u]Λα(B2R1

). (2.15)

On the other hand, if h ∈ (0, R), by the mean value theorem and (2.13) with β = 1,

I3 ≤ Ch1−β [Du(R)]1;BR1
≤ Ch1−βRα−2[u]Λα(B2R1

) ≤ CRα−1−β [u]Λα(B2R1
).

(2.16)
Combining (2.14), (2.15), and (2.16), we obtain

h−β |Dℓu
(R)(x)−Dℓu

(R)(x′)| ≤ 1

2
[Du(R)]β;BR1

+ CRα−1−β [u]Λα(B2R1
).

Taking the supremum of the left-hand side above with respect to unit vector ℓ ∈ Rd

and x, x′ ∈ BR1
, we immediately get (2.13). The lemma is proved. □

Lemma 2.4. Let α ∈ (0, 1), β ∈ (0, 1), and R > 0 be constants. Let p = p(x) be
the first-order Taylor expansion of u(R) at the origin and ũ = u− p. Then for any
integer j ≥ 0, we have

∥ũ∥L∞(B2j+1R) ≤ C2j(1+β)Rα[u]Λα(B2j+2R), (2.17)

sup
x,x′∈B2jR

0<|x−x′|<2R

|ũ(x)− ũ(x′)|
|x− x′|α

≤ C2jβ [u]Λα(B2j+2R), (2.18)

where C > 0 is a constant depending only on d, β, and α.
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Proof. Since ζ ∈ C∞
0 (B1) is radial and has unit integral, we have for any x ∈

B2j+1R,∣∣u(R)(x)− u(x)
∣∣

=
∣∣1
2

∫
Rd

(
u(x+Ry)− u(x−Ry)− 2u(x)

)
ζ(y) dy

∣∣∣ ≤ CRα[u]Λα(B2j+2R). (2.19)

By the mean value theorem and Lemma 2.3, for any x ∈ B2j+1R,∣∣u(R)(x)− p(x)
∣∣ ≤ C(2j+1R)1+β [u(R)]1+β;B2j+1R

≤ C2j(1+β)Rα[u]Λα(B2j+2R),

which together with (2.19) implies (2.17). Next we show (2.18). For any two distinct
points x, x′ ∈ B2jR satisfying 0 < |x− x′| < 2R, denote h = |x− x′|(< 2R). Let k
be the largest nonnegative integer such that 2k(x′ − x) + x ∈ B2j+1R. Clearly,

2kh ∈ (2j−1R, 2j+2R). (2.20)

It follows from (2.1) that

ũ(x′)− ũ(x) = 2−k
(
ũ(2k(x′ − x) + x)− ũ(x)

)
+

k−1∑
i=0

2−i−1
(
2ũ(2i(x′ − x) + x)− ũ(x)− ũ(2i+1(x′ − x) + x)

)
. (2.21)

By (2.20), (2.21), and (2.17), we obtain

h−α|ũ(x′)− ũ(x)| ≤ 2−k+1h−α∥ũ∥L∞(B2j+1R) + C[u]Λα(B2j+1R)

≤ C2−jR−1h1−α · 2j(1+β)Rα[u]Λα(B2j+2R) + C[u]Λα(B2j+1R)

≤ C2jβ [u]Λα(B2j+2R),

where we used h < 2R in the last inequality. The lemma is proved. □

3. Proofs

The following proposition is a further refinement of [8, Corollary 4.6].

Proposition 3.1. Let σ ∈ (0, 2) and 0 < λ ≤ Λ. Assume that for any β ∈ A,
Kβ only depends on y. There is a constant α̂ ∈ (0, 1) depending on d, σ, λ, and Λ
so that the following holds. Let α ∈ (0, α̂). Suppose u ∈ Cσ+α(B1) ∩ Cα(Rd) is a
solution of

inf
β∈A

(Lβu+ fβ) = 0 in B1.

Then,

[u]α+σ;B1/2
≤ C

∞∑
j=1

2−jσMj + C sup
β
[fβ ]α;B1

,

where

Mj = sup
x,x′∈B2j ,0<|x−x′|<2

|u(x)− u(x′)|
|x− x′|α

.

Proof. This follows from the proof of [8, Corollary 4.6] by observing that in the es-
timate of [hβ ]α;B1 , the term [u]α;B2j

can be replaced by Mj . Moreover, by replacing
u by u− u(0), we see that

∥u∥α;B2
≤ C[u]α;B2

.

The lemma is proved. □
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Proposition 3.2. Suppose that (1.1) is satisfied in Rd. Then under the conditions
of Theorem 1.1, we have

[u]σ ≤ C∥u∥L∞ + C

∞∑
k=1

ωf (2
−k), (3.1)

where C > 0 is a constant depending only on d, λ, Λ, ωa, and σ.

Proof. Case 1: σ ∈ (0, 1). For k ∈ N, let v be the solution of{
infβ∈A

(
Lβ(0)v + fβ(0)

)
= 0 in B2−k

v = u in Bc
2−k

, (3.2)

where Lβ(0) is the operator with kernel Kβ(0, y). Then by Proposition 3.1 with
scaling, we have

[v]α+σ;B
2−k−1

≤ C

∞∑
j=1

2(k−j)σMj + C2kσ[v]α;B
2−k

≤ C

k∑
j=1

2(k−j)σMj + C[u]α + C2kσ[v]α;B
2−k

, (3.3)

where α ∈ (0, α̂) satisfying σ + α < 1 and

Mj = sup
x,x′∈B

2j−k ,0<|x−x′|<2−k+1

|u(x)− u(x′)|
|x− x′|α

.

Let k0, k1 ≥ 1 be integers to be specified. From (3.3), we get

[v]α;B
2−k−k0

≤ C2−(k+k0)σ
k∑

j=1

2(k−j)σMj + C2−(k+k0)σ[u]α + C2−k0σ[v]α;B
2−k

.

(3.4)

Next, w := u− v satisfies
M+w ≥ −Ck in B2−k ,

M−w ≤ Ck in B2−k ,

w = 0 in Bc
2−k ,

(3.5)

where

Ck = sup
β∈A

∥fβ − fβ(0) + (Lβ − Lβ(0))u∥L∞(B
2−k ).

It is easily seen that

Ck ≤ ωf (2
−k) + Cωa(2

−k)

∫
Rd

|u(x+ y)− u(x)||y|−d−σ dy

≤ ωf (2
−k) + Cωa(2

−k)
(

sup
x0∈B

2−k

∞∑
j=0

2j(σ−α)[u]α;B2−j (x0) + ∥u∥L∞

)
.
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Then by the Hölder estimate [8, Lemma 2.5], we have

[w]α;B
2−k

≤ C2−k(σ−α)Ck

≤ C2−k(σ−α)
(
ωf (2

−k) + ωa(2
−k)

(
sup

x0∈B
2−k

∞∑
j=0

2j(σ−α)[u]α;B2−j (x0) + ∥u∥L∞

))
.

(3.6)

Combining (3.4) and (3.6) yields

2(k+k0)(σ−α)[u]α;B
2−k−k0

≤ C2−(k+k0)α
k∑

j=1

2(k−j)σ[u]α;B
2j−k

+ C2−(k+k0)α[u]α + C2−k0α2k(σ−α)[u]α;B
2−k

+ C2k0(σ−α)
(
ωf (2

−k) + ωa(2
−k)

(
sup

x0∈B
2−k

∞∑
j=0

2j(σ−α)[u]α;B2−j (x0) + ∥u∥L∞

))
.

(3.7)

Shifting the coordinates, from (3.7) we get

2(k+k0)(σ−α) sup
x0∈Rd

[u]α;B
2−k−k0

(x0)

≤ C2−(k+k0)α sup
x0∈Rd

k∑
j=1

2(k−j)σ[u]α;B
2j−k (x0) + C2−(k+k0)α[u]α

+ C2−k0α2k(σ−α) sup
x0∈Rd

[u]α;B
2−k(x0)

+ C2k0(σ−α)
(
ωf (2

−k)

+ ωa(2
−k)( sup

x0∈Rd

∞∑
j=0

2j(σ−α)[u]α;B2−j (x0) + ∥u∥L∞)
)
. (3.8)

We take the summation of (3.8) in k = k1, k1 + 1, . . . to obtain

∞∑
k=k1

2(k+k0)(σ−α) sup
x0∈Rd

[u]α;B
2−k−k0

(x0)

≤ C

∞∑
k=k1

2−(k+k0)α
(

sup
x0∈Rd

k∑
j=1

2(k−j)σ[u]α;B
2j−k (x0)

)
+ C2−(k1+k0)α[u]α

+ C2−k0α
∞∑

k=k1

2k(σ−α) sup
x0∈Rd

[u]α;B
2−k(x0)

+ C2k0(σ−α)
∞∑

k=k1

(
ωf (2

−k)

+ ωa(2
−k)

( ∞∑
j=0

2j(σ−α) sup
x0∈Rd

[u]α;B2−j (x0) + ∥u∥L∞

))
,
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which by switching the order of summations is further bounded by

C2−k0α
∞∑
j=0

2j(σ−α) sup
x0∈Rd

[u]α;B2−j (x0)

+ C2−(k1+k0)α[u]α + C2k0(σ−α)
∞∑

k=k1

ωf (2
−k)

+ C2k0(σ−α)
∞∑

k=k1

ωa(2
−k) ·

( ∞∑
j=0

2j(σ−α) sup
x0∈Rd

[u]α;B2−j (x0) + ∥u∥L∞

)
.

The bound above together with the obvious inequality

k1+k0−1∑
j=0

2j(σ−α) sup
x0∈Rd

[u]α;B2−j (x0) ≤ C2(k1+k0)(σ−α)[u]α,

implies that
∞∑
j=0

2j(σ−α) sup
x0∈Rd

[u]α;B2−j (x0) ≤ C2−k0α
∞∑
j=0

2j(σ−α) sup
x0∈Rd

[u]α;B2−j (x0)

+ C2(k1+k0)(σ−α)[u]α + C2k0(σ−α)
∞∑

k=k1

ωf (2
−k)

+ C2k0(σ−α)
∞∑

k=k1

ωa(2
−k) ·

( ∞∑
j=0

2j(σ−α) sup
x0∈Rd

[u]α;B2−j (x0) + C∥u∥L∞

)
.

By first choosing k0 sufficiently large and then k1 sufficiently large, we get
∞∑
j=0

2j(σ−α) sup
x0∈Rd

[u]α;B2−j (x0) ≤ C∥u∥α + C

∞∑
k=1

ωf (2
−k),

which together with Lemma 2.1 (i) and the interpolation inequality gives (3.1).
Case 2: σ ∈ (1, 2). For k ∈ N, let vM be the solution of{

infβ∈A
(
Lβ(0)vM + fβ(0)

)
= 0 in B2−k

vM = gM in Bc
2−k

,

where M ≥ 2∥u− p0∥L∞(B
2−k ) is a constant to be specified later,

gM = max
(
min(u− p0,M),−M

)
,

and p0 is the first-order Taylor’s expansion of u at the origin.
By Proposition 3.1, instead of (3.3), we have

[vM ]α+σ;B
2−k−1

≤ C

∞∑
j=0

2(k−j)σMj + C2kσ[vM ]α;B
2−k

≤ C

k∑
j=0

2(k−j)σMj + C∥Du∥L∞ + C2kσ[vM ]α;B
2−k

, (3.9)

where α ∈ (0, α̂) and

Mj = sup
x,x′∈B

2j−k ,0<|x−x′|<2−k+1

|u(x)− p0(x)− u(x′) + p0(x
′)|

|x− x′|α
.
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From (3.9) and the mean value formula,

∥vM − p1∥L∞(B
2−k−k0

) ≤ C2−(k+k0)(σ+α)
k∑

j=0

2(k−j)σMj

+ C2−(k+k0)(σ+α)∥Du∥L∞ + C2−kα−k0(σ+α)[vM ]α;B
2−k

,

where p1 is the first-order Taylor’s expansion of vM at the origin. The above
inequality, (3.9), and the interpolation inequality imply

[vM − p1]α;B
2−k−k0

≤ C2−(k+k0)σ
k∑

j=0

2(k−j)σMj

+ C2−(k+k0)σ∥Du∥L∞ + C2−k0σ[vM ]α;B
2−k

, (3.10)

Next wM := gM − vM satisfies
M+wM ≥ hM − Ck in B2−k ,

M−wM ≤ ĥM + Ck in B2−k ,

wM = 0 in Bc
2−k ,

where

hM := M−(gM − (u− p0)), ĥM := M+(gM − (u− p0)).

By the dominated convergence theorem, it is easy to see that

∥hM∥L∞(B
2−k ), ∥ĥM∥L∞(B

2−k ) → 0 as M → ∞.

By the same argument as in the previous case,

Ck ≤ ωf (2
−k) + Cωa(2

−k)
(

sup
x0∈Rd

∞∑
j=0

2j(σ−α)[u− Px0u]α;B2−j (x0) + ∥Du∥L∞

)
.

Thus similar to (3.6), choosing M sufficiently large so that

∥hM∥L∞(B
2−k ), ∥ĥM∥L∞(B

2−k ) ≤ Ck/2,

we have

[wM ]α;B
2−k

≤ C2−k(σ−α)
(
ωf (2

−k) + ωa(2
−k)∥Du∥L∞

+ ωa(2
−k) sup

x0∈Rd

∞∑
j=0

2j(σ−α)[u− Px0
u]α;B2−j (x0)

)
. (3.11)

Combining (3.10) and (3.11), similar to (3.8), we obtain

2(k+k0)(σ−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B
2−k−k0

(x0)

≤ C2−(k+k0)α sup
x0∈Rd

k∑
j=0

2(k−j)σ[u− Px0
u]α;B

2j−k (x0) + C2−(k+k0)α∥Du∥L∞

+ C2−k0α2k(σ−α) sup
x0∈Rd

[u− Px0
]α;B

2−k(x0)
+ C2k0(σ−α)

(
ωf (2

−k)

+ ωa(2
−k)( sup

x0∈Rd

∞∑
j=0

2j(σ−α)[u− Px0
u]α;B2−j (x0) + ∥Du∥L∞)

)
. (3.12)
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Using (3.12), as before we get

∞∑
k=k1

2(k+k0)(σ−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B
2−k−k0

(x0)

≤ C2−k0α
∞∑
j=0

2j(σ−α) sup
x0∈Rd

[u− Px0
u]α;B2−j (x0)

+ C2−(k1+k0)α∥u∥1 + C2k0(σ−α)
∞∑

k=k1

ωf (2
−k)

+ C2k0(σ−α)
∞∑

k=k1

ωa(2
−k) · sup

x0∈Rd

∞∑
j=0

2j(σ−α)[u− Px0
u]α;B2−j (x0), (3.13)

and

∞∑
j=0

2j(σ−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B2−j (x0)

≤ C2−k0α
∞∑
j=0

2j(σ−α) sup
x0∈Rd

[u− Px0u]α;B2−j (x0)

+ C2(k1+k0)(σ−α)∥u∥1 + C2k0(σ−α)
∞∑

k=k1

ωf (2
−k)

+ C2k0(σ−α)
∞∑

k=k1

ωa(2
−k) · sup

x0∈Rd

∞∑
j=0

2j(σ−α)[u− Px0
u]α;B2−j (x0).

By choosing k0 and k1 sufficiently large and applying Lemma 2.2, we obtain

∞∑
j=0

2j(σ−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B2−j (x0) ≤ C∥u∥1 + C

∞∑
k=1

ωf (2
−k). (3.14)

Finally, by Lemma 2.1 (ii) and the interpolation inequality, we get (3.1).
Case 3: σ = 1. We proceed as in the previous case, but instead take p0

to be the first-order Taylor’s expansion of the mollification u(2−k) at the origin.
We also assume that the solution v to (3.2) exists without carrying out another
approximation argument. By Proposition 3.1 and Lemma 2.4 with β = α/2,

[v]α+1;B
2−k−1

≤ C

∞∑
j=0

2k−jMj + C2k[v]α;B
2−k

≤ C

∞∑
j=0

2k−j+jα/2[u]Λα(B
2j−k ) + C2k[v]α;B

2−k

≤ C

k∑
j=0

2k−j+jα/2[u]Λα(B
2j−k ) + C2kα/2[u]α + C2k[v]α;B

2−k
. (3.15)
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From (3.15) and the interpolation inequality, we obtain

[v − p1]α;B
2−k−k0

≤ C2−(k+k0)
k∑

j=0

2k−j+jα/2[u]Λα(B
2j−k ) + C2−(k+k0)+kα/2[u]α + C2−k0 [v]α;B

2−k

≤ C2−(k+k0)
k∑

j=0

2k−j+jα/2 inf
p∈P1

[u− p]α;B
2j−k

+ C2−(k+k0)+kα/2[u]α + C2−k0 [v]α;B
2−k

, (3.16)

where p1 is the first-order Taylor’s expansion of v at the origin. Next w := u−p0−v
satisfies (3.5), where by the cancellation property (1.2),

Ck ≤ ωf (2
−k) + Cωa(2

−k)
(

sup
x0∈Rd

∞∑
j=0

2j(1−α) inf
p∈P1

[u− p]α;B2−j (x0) + ∥u∥L∞

)
.

Therefore, similar to (3.6), we have

[w]α;B
2−k

≤ C2−k(1−α)
(
ωf (2

−k)

+ ωa(2
−k)

(
sup

x0∈Rd

∞∑
j=0

2j(1−α) inf
p∈P1

[u− p]α;B2−j (x0) + ∥u∥L∞

))
. (3.17)

Notice that from (2.18) and the triangle inequality

[v]α;B
2−k

≤ [w]α;B
2−k

+ [u− p0]α;B
2−k

≤ [w]α;B
2−k

+ C[u]Λα(B
2−k+2 ) ≤ [w]α;B

2−k
+ C inf

p∈P1

[u− p]α;B
2−k+2

.

Similar to (3.8), combining (3.16), (3.17), and the inequality above, we obtain

2(k+k0)(1−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B
2−k−k0

(x0)

≤ C2−(k+k0)α sup
x0∈Rd

k∑
j=0

2k−j+jα/2 inf
p∈P1

[u− p]α;B
2j−k (x0) + C2−(k/2+k0)α[u]α

+ C2−k0α+(k−2)(1−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B
2−k+2(x0)

+ C2k0(1−α)
(
ωf (2

−k)

+ ωa(2
−k)

(
sup

x0∈Rd

∞∑
j=0

2j(1−α) inf
p∈P1

[u− p]α;B2−j (x0) + ∥u∥L∞

))
,
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which by summing in k = k1, k1 + 1, . . . implies that

∞∑
k=k1

2(k+k0)(1−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B
2−k−k0

(x0)

≤ C2−k0α
∞∑
j=0

2j(1−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B2−j (x0)

+ C2−(k/2+k0)α[u]α + C2k0(1−α)
∞∑

k=k1

ωf (2
−k) + C2k0(1−α)

∞∑
k=k1

ωa(2
−k)

· ( sup
x0∈Rd

∞∑
j=0

2j(1−α) inf
p∈P1

[u− p]α;B2−j (x0) + ∥u∥L∞),

where for the first term on the right-hand side, we switched the order of summations
to get

∞∑
k=k1

2−(k+k0)α sup
x0∈Rd

k∑
j=0

2k−j+jα/2 inf
p∈P1

[u− p]α;B
2j−k (x0)

≤
∞∑
k=0

2−(k+k0)α
k∑

j=0

2j+(k−j)α/2 sup
x0∈Rd

inf
p∈P1

[u− p]α;B2−j (x0)

= 2−k0α
∞∑
j=0

2j(1−α/2) sup
x0∈Rd

inf
p∈P1

[u− p]α;B2−j (x0)

∞∑
k=j

2−kα/2

≤ C2−k0α
∞∑
j=0

2j(1−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B2−j (x0).

Therefore,

∞∑
j=0

2j(1−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B2−j (x0)

≤ C2−k0α
∞∑
j=0

2j(1−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B2−j (x0)

+ C2(k1+k0)(1−α)[u]α + C2k0(1−α)
∞∑

k=k1

ωf (2
−k) + C2k0(1−α)

∞∑
k=k1

ωa(2
−k)

· (
∞∑
j=0

2j(1−α) sup
x0∈Rd

inf
p∈P1

[u− p]α;B2−j (x0) + ∥u∥L∞),

Finally, to get (3.1) it suffices to choose k0 and k1 sufficiently large and apply
Lemma 2.1 (iii). □

Next we employ a localization argument as in [8].

Proof of Theorem 1.1. Since the proof of the case when σ ∈ (0, 1) is almost the
same as σ ∈ (1, 2) and actually simpler, we only present the latter and sketch the
proof of the case when σ = 1 in the end.

The case when σ ∈ (1, 2). We divide the proof into three steps.
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Step 1. For k = 1, 2, . . ., denote Bk := B1−2−k . Let ηk ∈ C∞
0 (Bk+1) be a

sequence of nonnegative smooth cutoff functions satisfying η ≡ 1 in Bk, |η| ≤ 1
in Bk+1, and ∥Diηk∥L∞ ≤ C2ki for each i ≥ 0. Set vk := uηk ∈ Cσ+. A simple
calculation reveals that

inf
β∈A

(Lβvk − hkβ + ηkfβ) = 0 in Rd,

where

hkβ = hkβ(x) =

∫
Rd

ξk(x, y)aβ(x, y)

|y|d+σ
dy

and

ξk(x, y) = u(x+ y)(ηk(x+ y)− ηk(x))− y ·Dηk(x)u(x).

Obviously, ηkfβ is a Dini continuous function in Rd and

|ηk(x)fβ(x)− ηk(x
′)fβ(x

′)|
≤ ∥ηk∥L∞ωf (|x− x′|) + ∥fβ∥L∞(B1)∥Dηk∥L∞ |x− x′|

≤ ωf (|x− x′|) + C2k∥fβ∥L∞(B1)|x− x′|,

where C only depends on d.
Step 2. We first estimate the L∞ norm of hkβ . By the fundamental theorem of

calculus,

ξk(x, y) = y ·
∫ 1

0

u(x+ y)Dηk(x+ ty)− u(x)Dηk(x) dt.

For |y| ≥ 2−k−3, |ξk(x, y)| ≤ C2k|y|∥u∥L∞ . For |y| < 2−k−3, we can further write

ξk(x, y) = y ·
∫ 1

0

(u(x+ y)− u(x))Dηk(x+ ty) + u(x)(Dηk(x+ ty)−Dηk(x)) dt,

where the second term on the right-hand side is bounded by C22k|y|2|u(x)|. To
estimate the first term, we consider two cases: when |x| ≥ 1 − 2−k−2, because
|y| < 2−k−3, ξk(x, y) ≡ 0; when |x| < 1− 2−k−2, we have∣∣∣y · ∫ 1

0

(u(x+ y)− u(x))Dηk(x+ ty) dt
∣∣∣ ≤ C2k|y|2∥Du∥L∞(Bk+3).

Hence for |y| < 2−k−3,

|ξk(x, y)| ≤ C|y|2
(
22k|u(x)|+ 2k∥Du∥L∞(Bk+3)

)
.

Combining with the case when |y| > 2−k−3, we see that

∥hkβ∥L∞ ≤ C2σk
(
∥u∥L∞ + ∥Du∥L∞(Bk+3)

)
. (3.18)

Next we estimate the modulus of continuity of hkβ . By the triangle inequality,

|hkβ(x)− hkβ(x
′)|

≤
∫
Rd

|(ξk(x, y)− ξk(x
′, y))aβ(x, y)|

|y|d+σ
+

|ξk(x′, y)(aβ(x, y)− aβ(x
′, y))|

|y|d+σ
dy

:= I + II. (3.19)

Similar to (3.18), by the estimates of |ξk(x, y)| above, we have

II ≤ C2σk
(
∥u∥L∞ + ∥Du∥L∞(Bk+3)

)
ωa(|x− x′|), (3.20)
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where C depends on d, σ, and Λ. For I, by the fundamental theorem of calculus,

ξk(x, y)− ξk(x
′, y) = y ·

∫ 1

0

(
u(x+ y)Dηk(x+ ty)− u(x)Dηk(x)

− u(x′ + y)Dηk(x
′, x+ ty) + u(x′)Dηk(x

′)
)
dt.

When |y| ≥ 2−k−3, similar to the estimate of ξk(x, y), it follows that

|ξk(x, y)− ξk(x
′, y)| ≤ C|y|

(
2kωu(|x− x′|) + 22k∥u∥L∞ |x− x′|

)
. (3.21)

The case when |y| < 2−k−3 is a bit more delicate. First, by the fundamental
theorem of calculus,

|ξk(x, y)− ξk(x
′, y)|

≤ |y|
∫ 1

0

|(u(x+ y)− u(x))Dkη(x+ ty)− (u(x′ + y)− u(x′))Dηk(x
′ + ty)| dt

+ |y|2
∫ 1

0

∫ 1

0

|u(x)D2ηk(x+ tsy)− u(x′)D2ηk(x
′ + tsy)| dt ds := III + IV.

It is easily seen that

IV ≤ C|y|2(22kωu(|x− x′|) + 23k∥u∥L∞ |x− x′|).

Next we bound III by considering four cases. When x, x′ ∈ (Bk+2)c, we have
III ≡ 0. When x, x′ ∈ Bk+2,

III ≤ |y|2
∫ 1

0

∫ 1

0

|Du(x+ sy)Dηk(x+ ty)−Du(x′ + sy)Dηk(x
′ + ty)| ds dt

≤ C|y|2
(
2k[u]1+α;Bk+3 |x− x′|α + 22k∥Du∥L∞(Bk+3)|x− x′|

)
,

where we choose α = σ−1
2 . When x ∈ Bk+2 and x′ ∈ (Bk+2)c,

III = |y|
∫ 1

0

|(u(x+ y)− u(x))Dηk(x+ ty)| dt

≤ |y|2
∫ 1

0

∫ 1

0

|Du(x+ sy)(Dηk(x+ ty)−Dηk(x
′ + ty))| ds dt

≤ C|y|222k∥Du∥L∞(Bk+3)|x− x′|.
The last case is similar. In conclusion, we obtain

III ≤ C|y|2
(
2k[u]1+α;Bk+3 |x− x′|α + 22k∥Du∥L∞(Bk+3)|x− x′|

)
.

Combining the estimates of III, IV, and (3.21), we obtain

I ≤ C2k(σ+1)
(
ωu(|x− x′|) + [u]1+α;Bk+3 |x− x′|α

+ (∥Du∥L∞(Bk+3) + ∥u∥L∞)|x− x′|
)
. (3.22)

By combining (3.19), (3.20), and (3.22), we obtain

|hkβ(x)− hkβ(x
′)| ≤ ωh(|x− x′|),

where

ωh(r) := C2σk
(
∥u∥L∞ + ∥Du∥L∞(Bk+3)

)
ωa(r)

+ C2k(σ+1)
(
ωu(r) + [u]1+α;Bk+3rα + (∥Du∥L∞(Bk+3) + ∥u∥L∞)r

)
(3.23)

is a Dini function.
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Step 3. We apply Proposition 3.2 to vk to obtain

[vk]σ ≤ C∥vk∥L∞ + C

∞∑
j=1

(
ωh(2

−j) + ωf (2
−j)

)
+ C2k sup

β
∥fβ∥L∞(B1)

≤ C∥vk∥L∞ + C2k(σ+1)
(
[u]1+α;Bk+3 + ∥Du∥L∞(Bk+3) + ∥u∥L∞

)
+ C

∞∑
j=1

(
2k(σ+1)ωu(2

−j) + ωf (2
−j)

)
+ C2k sup

β
∥fβ∥L∞(B1),

where C depends on d, λ, Λ, σ, and ωa, but independent of k. Since ηk ≡ 1 in Bk,
it follows that

[u]σ;Bk ≤ C2k(σ+1)∥u∥L∞ + C2k(σ+1)
(
[u]1+α;Bk+3 + ∥Du∥L∞(Bk+3)

)
+ C0

∞∑
j=1

(
2k(σ+1)ωu(2

−j) + ωf (2
−j)

)
+ C2k sup

β
∥fβ∥L∞(B1). (3.24)

By the interpolation inequality, for any ε ∈ (0, 1)

[u]1+α;Bk+3 + ∥Du∥L∞(Bk+3) ≤ ε[u]σ;Bk+3 + Cε−
1+α

σ−(1+α) ∥u∥L∞ . (3.25)

Recall that α = σ−1
2 and denote

N :=
1 + α

σ − (1 + α)
=

σ + 1

σ − 1
(> 3).

Combining (3.24) and (3.25) with ε = C−1
0 2−3k−12N−1, we obtain

[u]σ;Bk ≤ C23k+(3k+12N)N∥u∥L∞ + 2−12N−1[u]σ;Bk+3

+ C2k sup
β

∥fβ∥L∞(B1) + C

∞∑
j=1

(
23kωu(2

−j) + ωf (2
−j)

)
.

Then we multiply 2−4kN to both sides of the inequality above and get

2−4kN [u]σ;Bk ≤ C23k−kN∥u∥L∞ + 2−4N(k+3)−1[u]σ;Bk+3

+ C2−4kN+k sup
β

∥fβ∥L∞(B1) + C2−kN
∞∑
j=1

(
ωu(2

−j) + ωf (2
−j)

)
.

We sum up the both sides of the inequality above and obtain
∞∑
k=1

2−4kN [u]σ;Bk ≤ C

∞∑
k=1

23k−kN∥u∥L∞ +
1

2

∞∑
k=4

2−4kN [u]σ;Bk

+ C

∞∑
k=1

2−4kN+k sup
β

∥fβ∥L∞(B1) + C

∞∑
j=1

(
ωu(2

−j) + ωf (2
−j)

)
,

which further implies that
∞∑
k=1

2−4kN [u]σ;Bk ≤ C∥u∥L∞ + C sup
β

∥fβ∥L∞(B1) + C

∞∑
j=1

(
ωu(2

−j) + ωf (2
−j)

)
,

where C depends on d, λ, Λ, σ, and ωa. In particular, when k = 4, we deduce

[u]σ;B4 ≤ C∥u∥L∞ + C sup
β

∥fβ∥L∞(B1) + C

∞∑
j=1

(
ωu(2

−j) + ωf (2
−j)

)
, (3.26)
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which apparently implies (1.3).
Finally, since ∥v1∥1 is bounded by the right-hand side (3.26), from (3.14), we see

that
∞∑
j=0

2j(σ−α) sup
x0∈Rd

inf
p∈P1

[v1 − p]α;B2−j (x0) ≤ C.

This and (3.13) with u replaced by v1 and fβ replaced by η1fβ − h1β give
∞∑

j=k1

2(j+k0)(σ−α) sup
x0∈Rd

inf
p∈P1

[v1 − p]α;B
2−j−k0

(x0)

≤ C2−k0α + C2k0(σ−α)
∞∑

j=k1

(
ωf (2

−j) + ωa(2
−j) + ωu(2

−j) + 2−jα
)
,

Here we also used Lemma 2.2 and (3.23) with k = 1. Therefore, for any small
ε > 0, we can find k0 sufficiently large then k1 sufficiently large, depending only on
C, σ, α, ωf , ωa, ωf , and ωu, such that

∞∑
j=k1

2(j+k0)(σ−α) sup
x0∈Rd

inf
p∈P1

[v1 − p]α;B
2−j−k0

(x0) < ε,

which, together with the fact that v1 = u in B1/2 and the proof of Lemma 2.1 (ii),
indicates that

sup
x0∈B1/2

[u]σ;Br(x0) → 0 as r → 0

with a decay rate depending only on d, λ, Λ, ωa, ωf , ωu, supβ∈A ∥fβ∥L∞(B1), and
σ. Hence, the proof of the case when σ ∈ (1, 2) is completed.

The case when σ = 1. The proof is very similar to the case when σ ∈ (1, 2)
and we only provide a sketch here. We use the same notation as in the previous
case

hkβ(x) =

∫
Rd

ξk(x, y)aβ(x, y)

|y|d+1
dy,

where
ξk(x, y) := u(x+ y)(ηk(x+ y)− ηk(x))− u(x)y ·Dηk(x)χB1 .

It is easy to see that when |y| ≥ 2−k−3,

|ξk(x, y)| ≤ C2k|y|∥u∥L∞ .

On the other hand, when |y| < 2−k−3,

|ξk(x, y)| ≤ |y|
∫ 1

0

|u(x+ y)Dηk(x+ ty)− u(x)Dηk(x)| dt

≤ C2k|y|wu(|y|) + C22k|y|2|u(x)|.
Therefore,

∥hkβ∥L∞ ≤ C2k
(
∥u∥L∞ +

∫ 1

0

wu(r)

r
dr
)
.

Next we estimate the modulus of continuity of hkβ and proceed as in the case when
σ ∈ (1, 2). Indeed, it is easily seen that

II ≤ C2k
(
∥u∥L∞ +

∫ 1

0

ωu(r)

r
dr
)
ωa(|x− x′|).
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To estimate I, we write

ξk(x, y)− ξk(x
′, y) = u(x+ y)(ηk(x+ y)− ηk(x))− u(x)y ·Dηk(x)χB1

−u(x′ + y)(ηk(x
′ + y)− ηk(x

′)) + u(x′)y ·Dηk(x
′)χB1

.

Obviously, when |y| ≥ 2−k−3

|ξk(x, y)− ξk(x
′, y)| ≤ C22k|y|

(
∥u∥L∞ |x− x′|+ ωu(|x− x′|)

)
. (3.27)

When |y| < 2−k−3, we have χB1
(y) = 1. Thus similar to the first case,

|ξk(x, y)− ξk(x
′, y)|

≤ |y|
∫ 1

0

|(u(x+ y)− u(x))Dηk(x+ ty)− (u(x′ + y)− u(x′))Dηk(x
′ + ty)| dt

+ |y|2
∫ 1

0

∫ 1

0

|u(x)D2ηk(x+ tsy)− u(x′)D2ηk(x
′ + tsy)| dt ds := III + IV.

Clearly,

IV ≤ C23k|y|2(ωu(|x− x′|) + ∥u∥L∞ |x− x′|).

When x, x′ ∈ (Bk+2)c, we have III ≡ 0. When x, x′ ∈ Bk+2, by the triangle
inequality,

III ≤ |y|
∫ 1

0

|u(x+ y)− u(x)− (u(x′ + y)− u(x′))||Dηk(x+ ty)| dt

+ |y|
∫ 1

0

|u(x′ + y)− u(x′)||Dηk(x+ ty)−Dηk(x
′ + ty)| dt

≤ C2k|y|1+γ |x− x′|ζ [u]ζ+γ;Bk+3 + C22k|y|ωu(|y|)|x− x′|,

where C depends on d, and ζ + γ < 1. Here we used the inequality

|u(x+ y)− u(x)− (u(x′ + y)− u(x′))| ≤ 2[u]γ+ζ |x− x′|ζ |y|γ .

Set γ = ζ = 1/4. When x ∈ Bk+2 and x′ ∈ (Bk+2)c,

III = |y|
∫ 1

0

|(u(x+ y)− u(x))Dηk(x+ ty)| dt

= |y|
∫ 1

0

|(u(x+ y)− u(x))(Dηk(x+ ty)−Dηk(x
′ + ty))| dt

≤ C22k|y|ωu(|y|)|x− x′|.

The case when x′ ∈ Bk+2 and x ∈ (Bk+2)c is similar. Then with the estimates of
III and IV above, we obtain that when |y| < 2−k−3,

|ξk(x, y)− ξk(x
′, y)| ≤ C23k|y|2

(
ωu(|x− x′|) + ∥u∥L∞ |x− x′|

)
+C2k|y|5/4|x− x′|1/4[u]1/2;Bk+3 + C22k|y|ωu(|y|)|x− x′|,

which, combining with (3.27) for the case when |y| ≥ 2−k−3, further implies that

I ≤C22k
(
ωu(|x− x′|) + ∥u∥L∞ |x− x′|

+ [u]1/2;Bk+3 |x− x′|1/4 + |x− x′|
∫ 1

0

wu(r)

r
dr
)
,
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where C depends on d and Λ. Hence, we obtain the estimate of the modulus of
continuity of hkβ(x):

ωh(r) = C22k
(
ωu(r) + [u]1/2;Bk+3r1/4 +

(
∥u∥L∞ +

∫ 1

0

ωu(r)

r
dr
)(
r + ωa(r)

))
.

The rest of the proof is the same as the previous case. □
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