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Abstract

It was established in [6, 7] that importance sampling algorithms
for estimating rare-event probabilities are intimately connected with
two-person zero-sum differential games and the associated Isaacs equa-
tion. This game interpretation shows that dynamic or state-dependent
schemes are needed in order to attain asymptotic optimality in a gen-
eral setting. The purpose of the present paper is to show that classical
subsolutions of the Isaacs equation can be used as a basic and flexible
tool for the construction and analysis of efficient dynamic importance
sampling schemes. There are two main contributions. The first is a
basic theoretical result characterizing the asymptotic performance of
importance sampling estimators based on subsolutions. The second is
an explicit method for constructing classical subsolutions as a mollifi-
cation of piecewise affine functions. Numerical examples are included
for illustration and to demonstrate that simple, nearly asymptotically
optimal importance sampling schemes can be obtained for a variety of
problems via the subsolution approach.
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1 Introduction

It was established in [6, 7] that importance sampling algorithms for estimat-
ing rare-event probabilities, or functionals that are largely determined by
rare events, are closely related to deterministic differential games. More pre-
cisely, the asymptotic optimal performance of importance sampling schemes
can be characterized by the value function of a two-person zero-sum differ-
ential game, which can in turn be characterized by the solution to the Isaacs
equation (a nonlinear PDE) associated with the game. It was also discussed
in [6, 7] that one can construct asymptotically optimal importance sampling
algorithms based on this solution.

The purpose of the present paper is to explore this connection in fur-
ther depth. A main new feature is that it is possible to construct efficient
importance sampling schemes based on classical subsolutions of the Isaacs
equation. This leads to a more general class of schemes and lends great
flexibility to the designer. We will see that one can often construct subsolu-
tions that are structurally much simpler than the actual solution, but which
correspond to asymptotically optimal, or at least nearly asymptotically op-
timal, importance sampling schemes that reflect this simpler structure. This
simplicity is important, since one is interested in properties other than just
asymptotic optimality, e.g., ease of construction and ease of implementation.

The main theoretical contribution of the paper is a basic result on the
asymptotic performance of subsolution-based importance sampling schemes.
It characterizes the performance in terms of the value of the subsolution at a
particular point. The proof is carried out in a general setting that contains
as special cases sums of independent identically distributed (iid) random
variables and the empirical measure of a finite-state Markov chain. Another
contribution of the current paper is a method for the systematic construc-
tion of classical subsolutions that lead to simple yet efficient importance
sampling schemes. More precisely, we show that in many cases one can
build such subsolutions as a mollification of the minimum of finitely many
affine functions.

We wish to point out that the potential application of the subsolution ap-
proach is much broader, and includes systems with state dependencies and
small noise effects, solutions to stochastic differential equations, systems
with constrained dynamics (e.g., queuing networks), and expected values
involving path dependent events. For the purpose of illustration, we include
a few numerical examples that do not fit directly into the theoretical frame-
work of the current paper, and yet for which efficient importance sampling
algorithms can still be built via subsolutions.
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The paper is organized as follows. Section 2 gives a brief account of im-
portance sampling and asymptotic optimality. Since the underlying game
and Isaacs equation are not yet widely exposed in the importance sampling
literature, we give some heuristics and a formal overview in Section 3 in the
setting of sums of iid random variables. Sections 4 through 8 are the theoret-
ical part of the paper. In Section 4 the general model and assumptions are
stated. Importance sampling for Markov chains uses a collection of eigen-
functions that are related to the transition kernel of the chain, and Section
5 reviews the properties of these eigenfunctions. Sections 6 and 7 introduce
the concept of generalized subsolution/control and describe the associated
importance sampling algorithms. The main theoretical result, which char-
acterizes the asymptotic performance of such schemes, is stated in Section
8. Section 9 discusses methods for the construction of subsolutions in great
detail, starting with the simplest possible examples and then extending to
more complicated situations. Section 10 is devoted to numerical examples.
To illustrate the broad application of the subsolution approach, the latter
part of Section 10 considers several classes of problems that are not covered
by the main theoretical result, including multi-dimensional level crossing
problems, probabilities and expected values that involve path-dependent
events, and buffer overflow in a mixed open/closed queueing network. In
each case the application of the Isaacs equation and subsolution approach
follows the pattern laid out for the simple case of sums of random variables.
To streamline the presentation, technical proofs are collected in appendices.

Notation. For a Polish space S, P(S) denotes the collection of all prob-
ability measures on (S,B(S)), where B(S) is the Borel σ-algebra. There
will be many instances in this paper where we decompose measures on a
product space as the product of a marginal distribution and a stochastic
kernel. The following notation will be used. Suppose that µ ∈ P(S1 × S2)
with each Si a Polish space. Then [µ]1 will denote the first marginal of µ,
and µ(dy2|y1) will denote the stochastic kernel on S2 given S1 such that
µ(dy1 × dy2) = [µ]1(dy1)µ(dy2|y1). Quantities such as [µ]2, µ(dy1|y2), and
the extension to products of more than two Polish spaces are all defined in
the analogous fashion. Given µ ∈ P(S1) and a stochastic kernel q on S2

given S1, we let µ ⊗ q denote µ(dy1)q(dy2|y1) ∈ P(S1 × S2).

Relative Entropy. Given a Polish space S and two probability measures
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γ, µ ∈ P(S), the relative entropy is defined by

R(γ‖µ) .=





∫

S
log

dγ

dµ
dγ ; if γ � µ

∞ ; otherwise
.

The relative entropy is always non-negative, and is a convex, lower semicon-
tinuous function of (γ, µ) ∈ P(S)× P(S) [4, Section 1.4].

2 An overview of importance sampling

2.1 Basics of importance sampling

Importance sampling a variance reduction technique widely used in Monte
Carlo simulation. The basic idea of importance sampling is “change of
measure.” In other words, the system is simulated under a different proba-
bility distribution and the outcomes are multiplied by appropriate Radon-
Nikodým derivatives to form unbiased estimators.

Suppose we wish to estimate the expected value of a random variable X
with distribution θ. Consider an alternative sampling distribution µ such
that θ � µ. Let f(x) .= (dθ/dµ)(x) denote the Radon-Nikodým deriva-
tive. Then importance sampling considers independent copies of a random
variable X̄ with distribution µ, and forms an estimator by averaging the
independent copies of

Z
.= X̄f(X̄).

This estimator is unbiased since

E[X̄f(X̄)] =
∫

xf(x)µ(dx) =
∫

xθ(dx) = EX,

and its rate of convergence is determined by the variance Z — the smaller
the variance, the faster the convergence. One typically seeks to minimize the
variance of Z, or equivalently the second moment of Z, within a parametric
family of alternative sampling distributions.

Remark 2.1 In the analysis it is often convenient to write the second mo-
ment of Z in terms of the original random variable X , that is,

EZ2 =
∫

x2f2(x)µ(dx) =
∫

x2f(x)θ(dx) = E[X2f(X)].
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2.2 Asymptotic optimality

The following asymptotic optimality criterion is often adopted when one is
interested in a family of random variables {Xn} that satisfy

lim
n

− 1
n

logEXn = γ

for some constant γ > 0. Let Zn be an unbiased importance sampling
estimator for E[Xn]. Recall that a major concern of importance sampling
is to minimize the second moment of Zn. However, by Jensen’s inequality,

EZ2
n ≥ (EZn)2 = (EXn)2 .

Therefore,

lim sup
n

− 1
n

log EZ2
n ≤ 2γ.

We say the importance sampling estimator is asymptotically optimal if the
upper bound is achieved, i.e., if

lim inf
n

− 1
n

logEZ2
n ≥ 2γ.

Sometimes 2γ is simply referred to as the “optimal decay rate.”

3 An introduction to the role of subsolutions

This section describes how an Isaacs equation arises in importance sampling,
and the implications for the performance of schemes based on subsolutions.
Since it is an overview, we do not give all details and will not be precise
regarding all necessary assumptions.

3.1 Problem formulation for sums of iid random variables

Consider a sequence of iid random variables {Yi, i ∈ N} with distribution
µ ∈ P(Rd), and define

Xn
.=

1
n

n∑

i=1

Yi.

Let H be the log-moment generating function, that is, for α ∈ Rd,

H(α) .= log
∫

Rd

e〈α,y〉µ(dy).
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Assume H is finite for each α. Denote by L the Legendre transform

L(β) .= sup
α∈Rd

[〈α, β〉 − H(α)] .

Note that both H and L are convex functions.
Suppose one is interested in the importance sampling estimation of

E exp {−nF (Xn)} .

In the context of sums of iid random variables, one typically uses the fol-
lowing parametric family of exponential changes of measure to generate the
replacements for the Yi:

µα(dy) .= e〈α,y〉−H(α)µ(dy).

In constructing the replacement for Xn we use a dynamic change of measure.
For a function ᾱ(x, t) : Rd × [0, 1] → Rd recursively define the following
quantities. Let X̄n

0 = 0, and assume that X̄n
j , Ȳ n

j , j = 1, . . . , i have been
defined. Let Ȳ n

i+1, conditioned on X̄n
j , Ȳ n

j , j = 1, . . . , i, have distribution
µᾱ(X̄n

i ,i/n), and then set X̄n
i+1

.= X̄n
i + Ȳ n

i+1/n. When X̄n
i , Ȳ n

i have been
defined for all i = 1, . . . , n, the importance sampling estimator is given by

Zn .= e−nF (X̄n
n )

n−1∏

i=0

eH(ᾱ(X̄n
i ,i/n))−〈ᾱ(X̄n

i ,i/n),Ȳ n
i+1〉.

The importance sampling algorithm then takes the sample average of inde-
pendent replications of Zn as the estimate. Using a conditioning argument,
it is not difficult to check that Zn is unbiased, and therefore to minimize
the variance, it suffices to minimize the second moment of Zn.

We consider the problem of minimizing the second moment as a control
problem, with ᾱ the control. It is here that the problem connects naturally
to a PDE. To make the connection we must extend the problem slightly. For
i ∈ N∪{0} and x ∈ Rd, define X̄n

j , j = i, . . . , n− 1 as above except X̄n
i = x,

and then define

V n(x, i) .= inf
ᾱ

E


e−nF (X̄n

n )
n−1∏

j=i

eH(ᾱ(X̄n
j ,j/n))−〈ᾱ(X̄n

j ,j/n),Ȳ n
j+1〉




2

.

It will be more convenient to express this in terms of the original random
variables as in Remark 2.1:

V n(x, i) .= inf
ᾱ

E


e−n2F (Xn

n )
n−1∏

j=i

eH(ᾱ(Xn
j ,j/n))−〈ᾱ(Xn

j ,j/n),Y n
j+1〉


 .
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Owing to the exponential scaling in n, one gets a simple asymptotic problem
by considering the logarithmic transform

Wn(x, i) = − 1
n

logV n(x, i).

The performance of the scheme corresponding to ᾱ can then be character-
ized in terms of lim infn→∞ Wn(0, 0), with larger values indicating better
performance.

3.2 The associated Isaacs equation

V n is the value function of a discrete time stochastic control problem, and
as such, satisfies the dynamic programming equation

V n(x, i) = inf
α

∫

Rd
eH(α)−〈α,y〉V n(x + y/n, i + 1)µ(dy).

A variational formula [4, Section 1.4] shows how to represent exponential
integrals in terms of relative entropy. For any bounded and continuous
function f : Rd → R,

− log
∫

Rd

e−f(y)µ(dy) = inf
γ∈P(Rd)

[
R(γ ‖µ) +

∫

Rd

f(y)γ(dy)
]
.

Applying this to the dynamic programming equation and using the definition
of Wn gives the following discrete time Isaacs equation:

Wn(x, i) = sup
α∈Rd

inf
γ∈P(Rd)

[∫

Rd

Wn
(
x +

y

n
, i + 1

)
γ(dy)

+
1
n

(
R(γ ‖µ) +

∫

Rd

〈α, y〉γ(dy)− H(α)
)]

.

To formally relate Wn(x, i) to the solution of a PDE, suppose that for
a smooth function W : Rd × [0, 1] → R, Wn(x, i) ≈ W (x, i/n). We also
use the following relationship [4, Section C.5] between relative entropy and
the function L defined previously as the Legendre transform of H . For any
β ∈ Rd

L(β) = inf
[
R(γ ‖µ ) :

∫

Rd
yγ(dy) = β

]
.

Let Wt denote the partial derivative with respect to t, DW the gradient in
x, and

H(s; α, β) .= 〈s, β〉+ L(β) + 〈α, β〉 − H(α)
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for s, α, β ∈ Rd. We bring Wn(x, i) ≈ W (x, i/n) to the right side of the
Isaacs equation, expand via Taylor series, insert the expression for L, mul-
tiply by n and send n → ∞ to get

Wt(x, t) + sup
α∈Rd

inf
β∈Rd

H(DW (x, t); α, β) = 0.

Note that one also expects the terminal condition W (x, 1) = 2F (x) to hold.
This PDE, which is also known as an Isaacs equation, was identified in

[6, 7] and its solution was used there to construct asymptotically optimal
importance sampling schemes.

3.3 Subsolutions and importance sampling

The purpose of the present paper is to show that it is only the subsolu-
tion property that is essential in the context of importance sampling. The
definition of a subsolution simply replaces the equalities that appear in the
Isaacs equation and terminal condition with inequalities. More precisely,
by a classical subsolution, we mean a continuously differentiable function
W̄ : Rd × [0, 1] → R such that

W̄t(x, t) + sup
α∈Rd

inf
β∈Rd

H(DW̄ (x, t); α, β) ≥ 0

for all (x, t) and W̄ (x, 1) ≤ 2F (x).
The sufficiency of the subsolution property can be understood intuitively

as follows. Recall that we are only interested in bounding the quantity
Wn(0, 0) from below, since an upper bound is automatic from Jensen’s in-
equality (see Section 2.2). The inequalities in the definition of a subsolution
are those which give lower bounds when the subsolution is combined with a
verification argument to estimate the performance.

In a more general context than the one used in this overview, we will show
how subsolutions naturally suggest importance sampling schemes. The main
theoretical result of this paper can then be roughly stated as follows: If Zn

is the importance sampling estimator constructed according to a subsolution
W̄ , then

lim inf
n→∞

− 1
n

logE(Zn)2 ≥ W̄ (0, 0). (3.1)

With result (3.1), the design problem becomes clear: Construct a subso-
lution whose associated importance sampling scheme can be implemented
with reasonable effort and for which W̄ (0, 0) is equal or close to the optimal
decay rate 2γ.
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Remark 3.1 Because subsolutions deal with inequalities (rather than equal-
ities), there is not a unique importance sampling scheme associated with each
subsolution. We will turn this flexibility to our advantage, but it requires
that the control for the importance sampling player be specified as part of the
definition. As a consequence, the notion of a generalized subsolution/control
will be introduced, which specifies a set of differential inequalities for the
given pair. The lower bound (3.1) still holds for importance sampling esti-
mators based on generalized subsolution/controls [see Section 7].

4 The general setup

The broader collection of importance sampling problems we wish to analyze
includes sums of iid random variables and sums of functionals of a finite state
Markov chain. The following general model includes both as special cases.
Let Y

.= {Yi, i ∈ N0} denote a Markov chain with state space S. Assume
that S is a Polish space, and let p(y, dz) denote the probability transition
kernel. Let {bi(·), i ∈ N0} be a sequence of iid random vector fields on S that
is independent of the Markov chain Y . For each y ∈ S, bi(y) is distributed
according to a probability measure, say m(·|y), on Rd. Our interest is in
sums of the form

Xn
.=

1
n

n∑

i=1

bi (Yi) . (4.1)

By choosing S to be a single point we recover the case of sums of iid random
variables, whereas taking bi(y) to be deterministic [i.e., m(·|y) is a single
atom for each y ∈ S] produces the case of functionals of a Markov chain.
The general case is also of interest, and occurs when the distribution of
the summand bi is modulated by the “exogenous” process Y . Note that
(Yn, nXn) forms a Markov additive process.

Remark 4.1 In the literature on importance sampling for Markov chains
it is standard to include the initial state Y0 = y in the sample mean. The
sole reason to consider the sum from i = 1 to n, as in the definition (4.1) of
Xn, is that it significantly simplifies our notation in later analysis. However,
there is no loss of generality in that all the results in this paper hold if we
replace definition (4.1) by the standard one where the summation is taken
from i = 0 to n − 1.

The following conditions are assumed throughout the paper.
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Condition 4.1 1. There is a reference probability measure λ on S, a
positive integer m0, and δ ∈ (0, 1), such that

δλ(dy2) ≤ p(m0) (y1, dy2) ≤
1
δ
λ(dy2)

for all y1 ∈ S. Here p(m0) is the m0-step transition kernel correspond-
ing to p.

2. The transition kernel p (y1, dy2) satisfies the Feller property, i.e., the
mapping y1 7→ p (y1, dy2) is continuous in the topology of weak conver-
gence of probability measures on S.

3. The mapping y 7→ m(dz|y) is continuous in the topology of weak con-
vergence of probability measures on Rd.

4. For each α ∈ Rd,

sup
y∈S

∫

Rd

e〈α,z〉m(dz|y) < ∞.

Note that parts 1, 2, and 3 of Condition 4.1 automatically hold when Y is
an irreducible, aperiodic, finite state Markov chain.

Under Condition 4.1, {Xn, n ∈ N} satisfies a large deviation principle
with the rate function

L(β) = inf
{

R (µ ‖θ ⊗ p) + R (θ ⊗ ν ‖θ ⊗ m) (4.2)

: [µ]1 = [µ]2 = θ,

∫

S

∫

Rd

zν (dz |y ) θ (dy) = β

}
.

Here µ is a probability measure on S × S and ν is a stochastic kernel on Rd

given S. The fact that a large deviation principle holds is proved in [13],
although they do not identify the rate function in this form but rather in
terms of a Legendre transform. One can give a direct proof of the large devi-
ation result as in [4] which automatically gives this more concrete form of the
rate function (4.2). See, in particular, the analogous prelimit representation
formula in [4, Section 4.4].

Remark 4.2 Condition 4.1, especially parts 1 and 4, are strong. How-
ever, while the results of the paper hold under weaker conditions, assuming
Condition 4.1 helps keep the technicalities to a minimum. The uniform re-
currency assumption (part 1 of Condition 4.1) is imposed in order to ensure
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that the eigenfunction r(·; ·) defined in the next section is uniformly pos-
itive and uniformly bounded. A technique developed in [2] that combines
the “split-chain” technique and modified likelihood-ratios can perhaps be
employed to relax this assumption.

5 Properties of the relevant eigenfunctions

It is well known that certain eigenfunctions are needed to construct good
importance sampling schemes for functionals of a Markov chain. These
eigenfunctions are used to essentially “cancel off” the effect of conditioning
on the transition kernel. The eigenvalue/eigenfunction problem is to find,
for each α ∈ Rd, a real number G(α) and a function r(·; α) : S → [0,∞)
such that ∫

S

∫

Rd

e〈α,z〉r(y; α)m (dz |y ) p(x, dy) = eG(α)r(x; α). (5.1)

A key fact is that the eigenvalues may be defined in terms of the Legendre
transform of L. This is defined for α ∈ Rd by

H(α) = sup
β∈Rd

[〈α, β〉 − L(β)] ,

and is again a convex function.
The needed properties of the solution to this problem are summarized

in the following lemma [13, Section 3].

Lemma 5.1 Assume Condition 4.1. The following conclusions hold.

1. For each α ∈ Rd, there exists a solution (G(α), r(·;α)) to the eigen-
value/eigenfunction problem, with G(α) = H(α).

2. Let a compact set K ⊂ Rd be given. Then there is δ ∈ (0, 1) such that
δ < r(y; α) < 1/δ for all y ∈ S and α ∈ K.

3. Let a compact set K ⊂ Rd be given. Then each y ∈ S there is M < ∞
such that |r(y; α1) − r(y; α2)| ≤ M |α1 − α2| for all α1, α2 ∈ K and
y ∈ S.

For each α ∈ Rd and each y1 ∈ S, it follows from equation (5.1), the strict
positiveness of r(·; α), and G(α) = H(α), that

P (y1, dy2, dz; α) .= e〈α,z〉−H(α) · r(y2; α)
r(y1; α)

· p(y1, dy2) ·m (dz |y2 ) (5.2)

defines a probability measure on S × Rd.
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Remark 5.1 When S is a single point, Xn reduces to the average of iid
random variables with distribution m(dz) ≡ m(dz|y). In this case r(·; α) ≡ 1
and the change of measure (5.2) reduces to the “exponential tilt”

P (dz; α) = e〈α,z〉−H(α)m (dz) ,

where H is the log-moment generating function for m(dz).

6 The Isaacs equation and subsolutions

Suppose that one wishes to estimate the expected values of certain function-
als of Xn for large n, using importance sampling schemes based on changes
of measure of the form (5.2). Analogous to Section 2, the PDE associated
with this problem is the Isaacs equation

Wt + sup
α∈Rd

inf
β∈Rd

H(DW ; α, β) = 0 (6.1)

with suitable terminal conditions (which depend on the functionals of in-
terest). Here W : Rd × [0, 1] → R, Wt denotes the partial derivative with
respect to t, DW the gradient in x, and

H(s; α, β) .= 〈s, β〉+ L(β) + 〈α, β〉 − H(α) (6.2)

for s, α, β ∈ Rd.
In order to construct good importance sampling schemes, one does not

need the solution to the Isaacs equation. It turns out that finding a good
subsolution is often sufficient. Indeed, we will introduce a slightly more
complicated notion of generalized subsolution/control, which is very conve-
nient for the study of importance sampling algorithms. Its connection with
classical subsolution will be discussed once we give the definition.

Definition 6.1 Given K ∈ N, consider functions W̄ : Rd × [0, 1] → R,
ρk : Rd× [0, 1] → R, ᾱk : Rd× [0, 1] → Rd, 1 ≤ k ≤ K. We say the collection
(W̄ , ρk, ᾱk) is a generalized subsolution/control to the Isaacs equation (6.1)
if the following conditions hold. {ρk} is a partition of unity, i.e., ρk ≥ 0 and

K∑

k=1

ρk(x, t) = 1

for all (x, t) ∈ Rd × [0, 1]. W̄t and DW̄ have representations

W̄t(x, t) =
K∑

k=1

ρk(x, t)rk(x, t), DW̄ (x, t) =
K∑

k=1

ρk(x, t)sk(x, t),
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and for each k = 1, . . . , K

rk(x, t) + inf
β∈Rd

H(sk(x, t); ᾱk(x, t), β) ≥ 0.

The functions (rk, sk, ρk, ᾱk) are uniformly bounded and Lipschitz continu-
ous.

For any generalized subsolution/control (W̄ , ρk, ᾱk), it is not difficult to
show that

W̄t + sup
α∈Rd

inf
β∈Rd

H(DW̄ ; α, β) ≥ 0. (6.3)

In other words, W̄ is a classical subsolution to the Isaacs equation (6.1).
It will turn out that only the (ρk, ᾱk)-component will be used to define
the change of measure used in importance sampling (see the next section),
and so we use terminology “subsolution/control.” We will also use the term
subsolution to refer to the W̄ component alone.

Remark 6.1 For the special case where K = 1, and with notation ᾱ = ᾱ1,
we simply write (W̄ , ᾱ) and call it a subsolution/control pair.

Remark 6.2 Suppose that W̄ is a classical subsolution to the Isaacs equa-
tion, that is, W̄ satisfies inequality (6.3). Let α∗(x, t) be the supremizer
[indeed, one can easily identify α∗(x, t) = −DW̄ (x, t)/2]. Then (W̄ , α∗)
is a subsolution/control pair, provided that α∗ is uniformly bounded and
Lipschitz continuous.

7 Importance sampling based on subsolutions

In this section, we describe the importance sampling algorithms associ-
ated with a given generalized subsolution/control (W̄ , ρk, ᾱk). We recall
P (y1, dy2, dz; α) as in (5.2) defines a probability measure on S ×Rd for each
α ∈ Rd and y1 ∈ S. These probability measures, the weights ρk, and the
functions ᾱk will be used to construct the importance sampling scheme.

For fixed n, define for j = 0, 1, . . . , n

ᾱn
k,j(x) .= ᾱk(x, j/n), ρn

k,j(x) .= ρk(x, j/n).

Processes X̄n
j , Ȳ n

j , and b̄n
j , analogous to Xj , Yj , and bj(Yj), are constructed

recursively as follows. Let X̄n
0 = 0 and Ȳ0 = Y0 = y. Suppose that X̄n

j = x
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and Ȳ n
j = y1 are given. We then simulate (Ȳ n

j+1, b̄
n
j+1) under the distribution

K∑

k=1

ρn
k,j(x)P

(
y1, dy2, dz; ᾱn

k,j(x)
)
. (7.1)

In other words, one first simulates a multinomial random variable I taking
values in {1, 2, . . . , K} such that P{I = k} = ρn

k,j(x), and then simulates
(Ȳ n

j+1, b̄
n
j+1) from the distribution P (y1, dy2, dz; ᾱn

I,j(x)). Finally, update the
state dynamics by letting

X̄n
j+1

.= X̄n
j + b̄n

j+1/n.

An unbiased importance sampling estimator can then be obtained by
multiplying the functional of interest with the Radon-Nikodým derivative
(i.e., likelihood ratio). For example, suppose that we are interested in esti-
mating Ey exp{−nF (Xn)} for some function F . Then the unbiased impor-
tance sampling estimator is

Zn .= e−nF (X̄n
n )

n−1∏

j=0

[
K∑

k=1

ρn
k,j(X̄

n
j ) · e〈ᾱ

n
k,j(X̄n

j ),b̄n
j+1〉−H(ᾱn

k,j(X̄
n
j ))

·
r(Ȳ n

j+1; ᾱ
n
k,j(X̄

n
j ))

r(Ȳ n
j ; ᾱn

k,j(X̄
n
j ))

]−1

. (7.2)

Remark 7.1 In most of the applications considered in this paper, one can
construct a generalized subsolution/control (W̄ , ρk, ᾱk) where the ᾱk are all
constants and with K of moderate size. This has a distinct advantage in nu-
merical implementation. For example, to compute a change of measure one
often needs to numerically solve the eigenvalue/eigenvector problem (5.1).
If ᾱk is not a constant, one needs to solve eigenvalue/eigenvector problems
over and over again, depending on the current state of the simulation. This
could become computationally demanding.

8 Statement of the main result

In this section we present the main theoretical result, which is an asymp-
totic bound on the second moment for the importance sampling estimator
associated with a given subsolution. Although both the quantity being ap-
proximated and the importance sampling scheme depend on the initial state
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Y0 = y, to simplify the exposition, the dependence of expected values on y

is not explicitly denoted.
Suppose that we wish to numerically approximate the quantity

E exp {−nF (Xn)} (8.1)

for a Borel measurable function F : Rd → R ∪ {∞}. Given a generalized
subsolution/control (W̄ , ρk, ᾱk), the corresponding importance sampling es-
timator Zn is given by (7.2).

Theorem 8.1 Assume that Condition 4.1 holds and that

W̄ (x, 1) ≤ 2F (x) (8.2)

for every x ∈ Rd. Then

lim inf
n→∞

− 1
n

logE
[
(Zn)2

]
≥ W̄ (0, 0).

The proof of this theorem is a combination of weak convergence and a veri-
fication argument, and is deferred to Appendix A.

Under various sets of regularity conditions on F , one has the large devi-
ation asymptotic approximation [16, 4]

γ
.= lim

n
− 1

n
logE exp {−nF (Xn)} = inf

β∈Rd
[F (β) + L(β)] . (8.3)

Thanks to the discussion in Section 2.2, for a generalized subsolution/control
that satisfies the terminal condition (8.2), the corresponding importance
sampling scheme is asymptotically optimal or nearly asymptotically optimal
if W̄ (0, 0) is equal or close to the optimal decay rate 2γ.

Remark 8.1 As noted in the Introduction, the use of subsolutions is ap-
plicable in much broader settings including, for example, path-dependent
events and systems with constrained dynamics (e.g., queuing networks [5]).
In these cases, depending on the class of changes of measure used and the
dynamics of the system, the Isaacs equation may take different forms. More-
over, it may be required that the subsolution satisfy certain boundary con-
ditions besides terminal conditions such as (8.2). However, it is always the
case that the use of subsolutions is critical to the construction of importance
sampling schemes and asymptotic results analogous to Theorem 8.1.
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9 Construction of generalized subsolution/controls

To illustrate how one constructs generalized subsolution/controls, we assume
that the quantity of interest is (8.1) and the large deviation limit (8.3) holds.

There are several concerns in the construction. To begin, the terminal
condition (8.2), or W̄ (x, 1) ≤ 2F (x), must be satisfied in order for Theorem
8.1 to be valid. Secondly, for optimality or near optimality, one wishes
W̄ (0, 0) to be equal or close to the optimal decay rate 2γ. Finally, one
would like the controls (ρk, ᾱk) to take simple forms, since this leads to
importance sampling algorithms that are simpler and easier to implement.
Our construction can be roughly divided into the following steps.

1. Identification of affine subsolution/control pairs as the building block.
We identify a family of particularly simple subsolution/control pairs
to the Isaacs equation (6.1). For each of these pairs, say (W̄ , ᾱ), W̄
is affine in (x, t) and ᾱ takes a constant value. This family, denoted
from now on by A, contains the building blocks for our construction.
It is appropriate for the class of problems under consideration, where
the Hamiltonian H does not depend on state x.

2. Construction of piecewise affine subsolutions. It is often possible to
take a finite collection of pairs in A, say {(W̄k, ᾱk), k = 1, 2, . . . , K}, so
that ∧K

k=1W̄k, the pointwise minimum of {W̄k}, satisfies the terminal
condition (8.2) and ∧K

k=1W̄k(0, 0) is equal or close to 2γ. Since each
W̄k is a classical subsolution, ∧K

k=1W̄k is a weak sense subsolution, but
not a classical subsolution (except when K = 1).

3. Obtaining generalized subsolution/controls through mollification. A
generalized subsolution/control can be obtained as a simple and easily
implemented mollification of ∧K

k=1W̄k when K ≥ 2.

9.1 Affine solutions to the Isaacs equation

In this section we identify A, the collection of affine subsolution/control
pairs to the Isaacs equation (6.1).

For any given ᾱ ∈ Rd and c̄ ∈ R, consider the affine function

W̄ (x, t) = −2〈ᾱ, x〉+ c̄ − 2(1 − t)H(ᾱ).

We claim that (W̄ , ᾱ) is a subsolution/control pair. Indeed, thanks to the
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convex conjugacy between H and L,

W̄t + inf
β∈Rd

H(DW̄ ; ᾱ, β)

= W̄t + inf
β∈Rd

[〈
DW̄ , β

〉
+ L(β) + 〈ᾱ, β〉 − H(ᾱ)

]

= H(ᾱ) + inf
β∈Rd

[L(β) − 〈ᾱ, β〉]

= 0.

Let A be the collection of all such pairs, that is

A .=
{

(W̄ , ᾱ) : W̄ = −2〈ᾱ, x〉+ c̄ − 2(1− t)H(ᾱ), ᾱ ∈ Rd, c̄ ∈ R
}

.

Remark 9.1 It is not difficult to show that for every (W̄, ᾱ) ∈ A, the affine
function W̄ is indeed a solution to the Isaacs equation (6.1).

9.2 Piecewise affine viscosity subsolutions

As mentioned above, the technique used to construct a generalized subsolu-
tion/control requires finding a finite collection of affine subsolution/control
pairs in A such that their minimum satisfies the appropriate terminal condi-
tion and takes a large value at (0, 0) [preferably 2γ, the optimal decay rate].
We begin in this section with the simplest examples.

9.2.1 Example: Estimating P{Xn ∈ A}

Consider the special case where one wishes to estimate P{Xn ∈ A} for some
Borel set A ⊂ Rd. This is obtained by letting F (x) = 0 if x ∈ A and
F (x) = ∞ if x 6∈ A. Therefore the terminal condition (8.2) amounts to

W̄ (x, 1) ≤ 0 for x ∈ A. (9.1)

Throughout this section we assume

inf
β∈A◦

L(β) = inf
β∈Ā

L(β) ∈ (0,∞),

where A◦, Ā denote the interior and the closure of A, respectively. It follows
that

γ = inf
β∈A

L(β) = inf
β∈A◦

L(β) = inf
β∈Ā

L(β).
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Let β∗ ∈ Ā be a minimizer of L over Ā. Denote by α∗ the convex conjugate
of β∗, that is,

L(β∗) = sup
α∈Rd

[〈α, β∗〉 − H(α)] = 〈α∗, β∗〉 − H(α∗).

Case 1. Consider the simplest case where A is convex. Thanks to the
convexity of Ā, the vector −α∗ defines an outward normal of Ā, whence

A ⊂ {x ∈ Rd : 〈x, α∗〉 ≥ 〈β∗, α∗〉}. (9.2)

Consider the element of A with ᾱ = α∗ and c̄ = 2〈β∗, α∗〉, i.e.,

W̄ (x, t) = −2〈α∗, x〉+ 2〈β∗, α∗〉 − 2(1− t)H(α∗).

It is easy to check W̄ (x, 1) ≤ 0 for each x ∈ A, thanks to (9.2). Therefore,
when A is convex, (W̄ , α∗) provides a simple subsolution/control pair that
satisfies the terminal condition (9.1). The value at (0, 0) is

W̄ (0, 0) = 2〈β∗, α∗〉 − 2H(α∗) = 2L(β∗) = 2γ,

the optimal decay rate. Note that the analysis holds if we replace the con-
vexity assumption on A by the assumption that (9.2) holds.

Case 2. More generally, suppose that for some K ∈ N,

A ⊂ ∪K
k=1 {x : 〈x, αk〉 ≥ 〈βk, αk〉} (9.3)

where βk and αk are convex conjugates, and that L(βk) ≥ γ for each k. A
necessary and sufficient condition for these two assumptions to hold is that
A should be contained in the union of a finite number of half-spaces, and
that the infimum of L on each of these half spaces is at least γ. In this case
βk can be taken as the point on the kth half space that minimizes L, and we
have γ = L(βk) for some k. Several of the numerical examples in the paper
will fall into this category.
Define an affine subsolution/control pair (W̄k, αk) by

W̄k(x, t) .= −2〈αk, x〉+ 2〈αk, βk〉 − 2(1− t)H(αk)

for each k = 1, . . . , K. Consider the pointwise minimum

W̄ (x, t) .= ∧K
k=1W̄k(x, t).
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α1

α2

β2

Figure 1: Example of a non-convex A with a two-piece subsolution.

As we have pointed out, W̄ defines a weak sense subsolution to the Isaacs
equation. The terminal condition (9.1) is satisfied, since for each x ∈ A

W̄ (x, 1) = ∧K
k=1W̄k(x, 1) = ∧K

k=1 [−2 〈x, αk〉+ 2 〈βk, αk〉] ≤ 0

by (9.3). Finally, we observe that

W̄ (0, 0) = ∧K
k=1 [2 〈βk, αk〉 − 2H(αk)] = 2 ∧K

k=1 L(βk) = 2γ.

The last equality holds since L(βk) ≥ γ for each k and with equality for
some k.

9.2.2 Example: Estimating E exp{−nF (Xn)}

The development here parallels the probability case as described in the pre-
vious section. For simplicity, we assume that there exists β∗ that minimizes
L(β)+F (β) over β ∈ Rd, and let α∗ be its convex conjugate. To avoid tech-
nicalities, we assume that L is differentiable at β∗, and thus α∗ = DL(β∗).

Case 1. We first consider the simplest case where F is convex. Consider
an affine subsolution/control pair (W̄ , α∗) where

W̄ (x, t) .= −2 〈α∗, x〉+ 2[F (β∗) + 〈α∗, β∗〉]− 2(1− t)H(α∗).
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Since β∗ is a minimizer of L(β) + F (β), we have 0 ∈ ∂(L + F )(β∗), where ∂

denotes the set of subdifferentials. Therefore

−α∗ = −DL(β∗) ∈ ∂F (β∗).

It follows that the affine function W̄ (x, 1) is a supporting hyperplane to 2F

at β∗, and hence
W̄ (x, 1) ≤ 2F (x)

for every x, i.e., the terminal condition (8.2) holds. Also observe that

W̄ (0, 0) = 2F (β∗) + 2 〈α∗, β∗〉 − 2H(α∗) = 2F (β∗) + 2L(β∗) = 2γ.

Case 2. Next suppose that F is no longer convex. If there exists a convex
function G such that G ≤ F , G(β∗) = F (β∗), and

inf
β∈Rd

[L(β) + G(β)] = inf
β∈Rd

[L(β) + F (β)] = γ,

then we reduce to the previous case. More generally, suppose there exist
convex functions Gk, k = 1, . . . , K, such that

∧K
k=1Gk ≤ F, (9.4)

and for each k,

inf
β∈Rd

[L(β) + Gk(β)] ≥ inf
β∈Rd

[L(β) + F (β)] . (9.5)

If each Gk is bounded from below and lower semicontinuous then a minimizer
βk of L(β) + Gk(β) will exist, and we can define the weak sense subsolution

W̄ (x, t) .= ∧K
k=1W̄k(x, t),

where (W̄k, αk) is the affine subsolution/control pair with

W̄k(x, t) .= −2 〈αk , x〉+ 2[Gk(βk) + 〈αk, βk〉]− 2(1− t)H(αk).

The same argument as in Case 1 shows that the terminal condition W̄ (x, 1) ≤
2F (x) is satisfied, and we have

W̄ (0, 0) = ∧K
k=1[L(βk) + G(βk)] ≥ 2γ.

Actually, the equality holds, since (9.4) implies (9.5) must hold as an equality
for some k.

20



9.3 Mollification

As discussed previously, once a weak sense subsolution is identified as the
pointwise minimum of a collection of affine subsolution/control pairs, mol-
lification is used to produce generalized subsolution/controls.

Let (W̄k, αk) ∈ A, k = 1, 2 . . . , K, be affine subsolution/control pairs. We
use a standard numerical approximation which we call exponential weighting
for W̄ (x, t) = ∧K

k=1W̄k(x, t). Let δ be a small positive number, and define

W̄ δ(x, t) .= −δ log

(
K∑

k=1

e−
1
δ
W̄k(x,t)

)
.

For 1 ≤ i ≤ K, let

ρδ
i (x, t) .=

e−
1
δ
W̄i(x,t)

∑K
k=1 e−

1
δ
W̄k(x,t)

.

Then one can easily verify

DW̄ δ(x, t) =
K∑

k=1

ρδ
k(x, t)DW̄k(x, t)

and

W̄ δ
t (x, t) =

K∑

k=1

ρδ
k(x, t)

(
W̄k

)
t
(x, t),

and so W̄ δ takes the form prescribed for a generalized subsolution/control
with ᾱk(x, t) ≡ αk . It is obvious that sk(x, t) .= DW̄k(x, t) = −2αk ,
rk(x, t) .=

(
W̄k

)
t
(x, t) = 2H(αk), and ᾱk(x, t) are all uniformly bounded

and Lipschitz continuous, and it is easy to check that the same is true with
regard to ρδ

k(x, t) for each fixed δ > 0. Therefore, (W̄ δ, ρδ
k, ᾱk) is a general-

ized subsolution/control.
For a fixed (x, t), since W̄ (x, t) = ∧K

k=1W̄k(x, t), it follows easily that

e−
1
δ
W̄ (x,t) ≤

K∑

k=1

e−
1
δ
W̄k(x,t) ≤ Ke−

1
δ
W̄ (x,t),

which implies

W̄ (x, t) ≥ W̄ δ(x, t) ≥ W̄ (x, t)− δ logK.

Thus if W̄ satisfies a given terminal condition then so will W̄ δ , though there
may be a small reduction of the value at (0, 0).
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It is important to observe is that the subsolution W̄ δ itself does not
play any explicit role in the computation of the change of measure and the
algorithm is completely determined by (ρδ

k, ᾱk). However, the function W̄ δ

characterizes the performance of the corresponding importance sampling
algorithm through results such as Theorem 8.1.

Remark 9.2 Recall that mollification will possibly result in a small reduc-
tion in the value at (0, 0), which will lead to the strict inequality W̄ δ(0, 0) <

2γ. It is worth noting that one can construct a sequence of schemes indexed
by n which achieves the theoretical bound 2γ on performance if one lets
δ → 0 as n → ∞ in an appropriate way. We will not pursue this issue here,
since our computational experience suggests it is not needed to obtain good
performance. However, the interested reader can consult [5] for the precise
statement and further details in the context of stochastic networks.

Remark 9.3 Exponential weighting is not the only way to achieve mollifi-
cation. For example, one can mollify W̄ (x, t) = ∧K

k=1W̄k(x, t) by integration
against a smooth convolution kernel, for which a standard choice is

η(x) .=
{

C exp{1/(‖x‖2 − 1)}, if ‖x‖ < 1,

0 , if ‖x‖ ≥ 1,

where C is the normalizing constant so that the integral of η over Rd is one
[9, Section 7.2]. However, we do not recommend this method since in this
case the weights {ρδ

k(x, t)} involve integrations that can be computation-
ally demanding. In contrast, the weights are very easy to compute when
using the exponential weighting mollification. Furthermore, the resulting
importance sampling schemes based on these two mollifications will yield
very similar estimates and standard errors (for the same sample size) even
though the scheme based on exponential weighting is much faster.

9.4 Discussion

The construction of generalized subsolution/controls can be extended in
many ways and to many other situations. For example, when computing
escape probabilities of a stochastic network one is particularly interested
in combining subsolutions so as to satisfy appropriate boundary conditions
[5]. In other problems, one may wish to expand A so that it also includes
(W̄ , ᾱ) where W̄ is a strict subsolution to the Isaacs equation, or even a
non-affine subsolution of some specific form. However, the basic structure
of construction remains the same: We identify a class of subsolution/control
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pairs which correspond to changes of measures of simple form, and use these
pairs as the building blocks for generalized subsolution/controls.

10 Examples of importance sampling algorithms

In this section we give examples of importance sampling algorithms based
on subsolutions. Some of these examples are not covered by the theoreti-
cal framework for Theorem 8.1 and are included to demonstrate the broad
applicability of the subsolution approach. Unless specified otherwise, the
importance sampling algorithm based on a generalized subsolution/control
will follow the description in Section 7 with the sampling distribution de-
termined by (7.1) and (5.2) [see also Remark 5.1]. To ease exposition, when
applying (7.1) we drop the superscript n.

Two points on the performance should be made. The first is that when
mollification was used, no special tuning of the mollification parameter δ
was needed. The second is that very good performance across a range of
problems formulations and functionals was obtained with 20, 000 samples.

10.1 Example: Estimating P{Xn ∈ A} for convex A

Assume that {Y1, Y2, . . .} is a sequence of iid 2-dimensional N(0, I2) random
variables, where I2 is the 2× 2 identity matrix. Let

Xn =
1
n

n∑

i=1

Yi,

and consider the estimation of P{Xn ∈ A} for a convex set A of the form

A =
{
x ∈ R2 : (x− a)2 + y2 ≤ r2

}
,

with 0 < r < a. For this model, H(α) = ‖α‖2/2, L(β) = ‖β‖2/2, and

γ = lim
n→∞

− 1
n

log P{Xn ∈ A} = inf
β∈A

L(β) =
1
2
(a − r)2,

with the minimizing β∗ = (a − r, 0). The convex conjugate of β∗ is just
α∗ = (a − r, 0).

As discussed in Section 9.2.1, the affine subsolution/control pair (W̄ , α∗)

W̄ (x, t) = −2〈α∗, x〉+ 2〈β∗, α∗〉 − 2(1 − t)H(α∗)

satisfies the terminal condition (9.1) and W̄ (0, 0) = 2L(β∗) = 2γ. It is not
difficult to check that (W̄ , α∗) induces a very simple importance sampling
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scheme under which {Ȳi} are iid with distribution N(α∗, I2). By Theorem
8.1 this scheme is asymptotically optimal.

The table below gives numerical results. We take a = 2, r = 1, and run
simulations for the cases n = 25, 50, 100. Each estimate consists of 20,000
replications. The theoretical value (which is available from the standard
statistics software S-plus) is presented for comparison. The standard error is
also a numerical estimate, and C.I. stands for “confidence interval,” though
this is only formal since we make no assertion regarding normality of errors.

n = 25 n = 50 n = 100

Theoretical value 1.99× 10−7 5.39× 10−13 5.36× 10−24

Estimate 2.00× 10−7 5.48× 10−13 5.44× 10−24

Standard Error 0.04× 10−7 0.12× 10−13 0.14× 10−24

95% C.I. [1.92,2.08]× 10−7 [5.24,5.72]× 10−13 [5.16,5.72]× 10−24

Table 1. Estimating P{Xn ∈ A} for convex A.

Remark 10.1 This algorithm based on (W̄ , α∗) coincides with the impor-
tance sampling based on what one might call the “standard heuristic,” which
states that the change of measure used in the analysis of the large deviation
lower bound is a good choice for importance sampling. As demonstrated in
[11, 12, 6, 7], the standard heuristic importance sampling is efficient only in
very special situations.

10.2 Example: Estimating P{Xn ∈ A} for non-convex A

In this section, we give numerical estimates of P{Xn ∈ A} when A ⊂ Rd

takes the form

A ⊂ {x : 〈x, α1〉 ≥ 〈β1, α1〉} ∪ {x : 〈x, α2〉 ≥ 〈β2, α2〉} , (10.1)

with αk ∈ Rd and βk ∈ Rd convex conjugates for k = 1, 2.
As discussed in Section 9.2.1, construct affine subsolution/control pairs

(W̄k, αk) with

W̄k(x, t) .= −2〈αk, x〉+ 2〈αk, βk〉 − 2(1− t)H(αk)

and let W̄ (x, t) .= W̄1(x, t) ∧ W̄2(x, t). Then W̄ is a weak sense subsolution
which satisfies the terminal condition (9.1). Furthermore, W̄ (0, 0) = 2γ if
L(βk) ≥ γ for each k (which indeed is the case for both numerical examples
in this section). A generalized subsolution/control can then be obtained via
exponential weighting mollification.
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We will present two numerical examples: one for one-dimensional iid
normal random variables, the other for a two-dimensional finite state Markov
chain. Both examples have already appeared [6, 7]. The difference is that in
these papers the importance sampling algorithm was based on the solution
of the Isaacs equation, and whence the state dependence of the change of
measure was much more involved.

10.2.1 IID normal random variables

Assume that {Y1, Y2, . . .} is a sequence of iid N(0, 1) random variables, and

Xn
.=

1
n

n∑

i=1

Yi.

Suppose we are interested in estimating P{Xn ∈ A} for the non-convex set

A = (−∞, a]∪ [b,∞)

with a < 0 < b. One can write A in the form of (10.1) by taking α1 = β1 = a

and α2 = β2 = b.
The importance sampling algorithm based on a generalized subsolu-

tion/control (W̄ δ, ρδ
k, αk) is as follows. Let X̄0 = 0 and

X̄j =
1
n

j∑

i=1

Ȳj .

The sequence {Ȳ1, Ȳ2, . . .} is simulated recursively so that the conditional
distribution of Ȳj+1 given X̄j = x is

2∑

k=1

ρδ
k(x, j/n)

1√
2π

e(y−αk)2/2dy.

For numerical experimentation, we take a = −0.25, b = 0.2, and run
simulations for n = 100, 200, 500. The mollification parameter δ is set as
0.02. Each estimate consists of 20,000 simulations.

n = 100 n = 200 n = 500
Theoretical value 2.90× 10−2 2.54× 10−3 3.88× 10−6

Estimate 2.87× 10−2 2.50× 10−3 3.92× 10−6

Standard Error 0.03× 10−2 0.04× 10−3 0.08× 10−6

95% C.I. [2.81,2.93]× 10−2 [2.42,2.58]× 10−3 [3.76,4.08]× 10−6

Table 2. P{Xn ∈ A} with one-dimensional, non-convex A.
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10.2.2 A finite state Markov chain

Consider a two-node tandem Jackson network with arrival rate λ and con-
secutive service rates µ1, µ2. The system has finite buffers of size B1 and
B2, respectively. The embedded time-homogeneous discrete-time Markov
chain is Y = {Yi = (Y 1

i , Y 2
i ), i ∈ N0}, representing the queue lengths of the

nodes at the epochs of transitions in the network. This process has a finite
state space S

.= {(y1, y2) : yi = 0, 1, . . . , Bi, i = 1, 2}. It is assumed that the
system is initially empty, i.e., Y0 = (0, 0). The transition probability matrix
of Y is denoted by P .

We are interested in estimating a class of probabilities associated with
buffer overflow. More precisely, define g : S → {0, 1}2 by

g(y) .=
(
1{y1=B1}, 1{y2=B2}

)

for every y = (y1, y2) ∈ S. Let

Xn
.=

1
n

n−1∑

i=0

g(Yi).

We wish to estimate P{Xn ∈ A}, where A takes the form

A = {(x1, x2) : x1 ≥ ε1 or x2 ≥ ε2}

for some 0 ≤ ε1, ε2 ≤ 1. We assume λ < µ1 ∧ µ2 so that {Xn ∈ A} is a rare
event for large n.

For each k = 1, 2, let βk ∈ R2 be the minimizer of L(β) over the half
space

Hk
.= {(x1, x2) : xk ≥ εk},

and αk the convex conjugate of βk. We can rewrite A in the form of (10.1),
that is,

A = ∪2
k=1Hk = ∪2

k=1 {x : 〈x, αk〉 ≥ 〈βk, αk〉} .

The importance sampling algorithm based on a generalized subsolu-
tion/control (W̄ δ, ρδ

k, αk) is as follows. We simulate {Ȳ0, Ȳ1, . . .} recursively,
with initial state Ȳ0 = (0, 0). Let

X̄j =
1
n

j∑

i=0

g(Ȳi).
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Thanks to (7.1) and (5.2) with m(dz|y) = δg(y), the conditional distribution
of Ȳj+1, given X̄j = x and Ȳj = y, is the mixture

2∑

k=1

ρδ
k(x, j/n)Pk(y, ·),

where Pk is a transition probability matrix defined by

Pk(y, ȳ) = e〈αk ,g(ȳ)〉−H(αk) r(ȳ; αk)
r(y; αk)

P (y, ȳ), y, ȳ ∈ S.

In the numerical simulation we take B1 = B2 = 6, and λ = 0.2, µ1 =
µ2 = 0.4, and set ε1 = 0.3, ε2 = 0.4. The mollification parameter is chosen
as δ = 0.1. We run simulations for n = 50, 80, 110, and each estimate
consists of 20,000 replications. The theoretical values are obtained using a
recursive algorithm and presented for comparison.

n = 50 n = 80 n = 110
Theoretical pn 5.15× 10−9 3.47× 10−12 1.83× 10−15

Estimate 5.05× 10−9 3.39× 10−12 1.87× 10−15

Standard Error 0.21× 10−9 0.13× 10−12 0.08× 10−15

95% C.I. [4.63,5.47]× 10−9 [3.13,3.65]× 10−12 [1.71,2.03]× 10−15

Table 3. P{Xn ∈ A} with two-dimensional, non-convex A.

10.3 Example: Estimating an expectation E exp{−nF (Xn)}

Consider a sequence of iid N(0, 1) random variables {Y1, Y2, . . .} and let

Xn =
1
n

n∑

i=1

Yi.

We wish to estimate E exp{−nF (Xn)} where F
.= G1 ∧ G2 ∧ G3, with

G1(x) = (ax + a + 1)+, G2(x) = 1, G3(x) = (bx− b − 1)−.

Under these assumptions, we have H(α) = α2/2, L(β) = β2/2, and

γ = lim
n→∞

− 1
n

logE exp{−nF (Xn)} = inf
β∈R

[F (β) + L(β)].

For each k, let βk be the minimizer of L(β) + Gk(β) over β ∈ Rd, and αk

its convex conjugate, whence αk = βk. Then equations (9.4) and (9.5) hold,
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and one can follow the general construction detailed in Section 9.2.2. Let
(W̄k, αk) be the subsolution/control pair

W̄k(x, t) .= −2 〈αk , x〉+ 2[Gk(βk) + 〈αk, βk〉]− 2(1− t)H(αk).

Then W̄ = W̄1∧W̄2∧W̄3 is a weak sense subsolution satisfying the terminal
condition W̄ (x, 1) ≤ 2F (x), and W̄ (0, 0) equals the optimal decay rate 2γ.

A generalized subsolution/control (W̄ δ, ρδ
k, αk) obtained as in Section 9.3

induces the following importance sampling scheme. Let X̄0 = 0, and

X̄j =
1
n

j∑

i=1

Ȳi.

The sequence {Ȳ1, Ȳ2, . . .} is simulated recursively so that the conditional
distribution of Ȳj+1, given X̄j = x, is the mixture of normal distributions

3∑

k=1

ρδ
k(x, j/n)

1√
2π

e(y−αk)2/2.

In the numerical simulation, we take a = 3/2, b = 4, and it is easy
to check that α1 = β1 = −3/2, α2 = β2 = 0, and α3 = β3 = 5/4. The
mollification parameter δ is set to 0.1. We run simulations for n = 10, 20, 30,
with 20,000 simulations for each estimate. The theoretical value is obtained
by direct computation, which expresses E exp{−nF (Xn)} in terms of the
cumulative distribution function of N(0, 1).

n = 10 n = 20 n = 30
Theoretical value 1.03× 10−4 1.87× 10−8 5.63× 10−12

Estimate 1.02× 10−4 1.86× 10−8 5.73× 10−12

Standard Error 0.01× 10−4 0.03× 10−8 0.09× 10−12

95% C.I. [1.00,1.04]× 10−4 [1.80,1.92]× 10−8 [5.58,5.91]× 10−12

Table 4. E exp{−nF (Xn)} for one-dimensional, non-convex F .

10.4 Example: Level crossing

In this section we consider importance sampling estimates for level crossing
probabilities. To illustrate the main idea, we specialize to the following
setup. Let {Y1, Y2, . . .} be a sequence of iid random vectors taking values in
Rd with common distribution µ, and A ⊂ Rd a Borel set. Define the partial
sum Sn = Y1 + · · ·+ Yn with S0 = 0, and for every real number z > 0 let

Tz = inf {n ≥ 0 : Sn ∈ zA} .
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Under certain conditions, {Tz < ∞} is a rare event for large z and its
probability will decay exponentially in the sense that

lim
z→∞

−1
z

logP{Tz < ∞} = γ

for some γ > 0. The simplest example is when {Yi} are iid, one dimensional
random variables with a negative expectation and A = (1,∞). Naturally,
the question is how to estimate P{Tz < ∞} for large z.

The theoretical result Theorem 8.1 does not cover this case – for example
the time horizon is now infinite (see Remark 10.2 for more information).
However, the use of subsolutions still carries over and leads to simple and
efficient importance sampling algorithms, and we will outline their use in
the next few paragraphs.

Let H be the log-moment generating function for Y1, and let L be the
Legendre transform of H . It is not hard to argue that the Isaacs equation
associated with level crossing problems is of the same form as (6.1), except
that there is no time dependence. In other words, the Isaacs equation is

sup
α∈Rd

inf
β∈Rd

H(DW ; α, β) = 0 (10.2)

and with boundary condition W (x) = 0 for x ∈ A. Here W : Rd → R and
DW is its gradient, and as before

H(s; α, β) = 〈s, β〉+ L(β) + 〈α, β〉 − H(α)

for s, α, β ∈ Rd. A generalized subsolution/control (W̄ , ρk, ᾱk) is defined in
a completely analogous fashion to Definition 6.1.

For a given generalized subsolution/control (W̄ , ρk, ᾱk), the correspond-
ing importance sampling algorithm is as follows. Fix the parameter z. Let
X̄0 = 0. Given X̄j = x, we simulate Ȳj+1 under the distribution

K∑

k=1

ρk(x)P (dy; ᾱk(x)),

where P (dy; α) is the exponential twist

P (dy; α) = e〈α,z〉−H(α)µ(dz).

Finally, we update the dynamics and let

X̄j+1 = X̄j +
1
z
Ȳj+1.
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The simulation will be stopped at time

T̄z
.= inf

{
n ≥ 0 : X̄n ∈ A

}
= inf

{
n ≥ 0 : S̄n ∈ zA

}
,

and one forms the importance sampling estimator

Zz .= 1{T̄z<∞} ·
T̄z−1∏

j=0

[
K∑

k=1

ρk(X̄j) · e〈ᾱk(X̄j),Ȳj+1〉−H(ᾱk(X̄j))
]−1

.

The performance of this importance sampling algorithm can be char-
acterized by a result analogous to Theorem 8.1, except that the terminal
condition (8.2) should be replaced by the boundary condition

W̄ (x) ≤ 0, for all x ∈ A. (10.3)

Therefore, the goal is to construct a generalized subsolution/control of a
simple form that satisfies the boundary condition (10.3) and such that its
value at 0 is equal or close to the optimal decay rate 2γ.

The construction follows the same path, that is, one first identifies a
class of affine subsolution/control pairs and then builds a generalized subso-
lution/control by mollifying the minimum of such affine subsolution/control
pairs. The class of affine subsolution/control pairs that serve as building
block, again denoted by A, takes a different form in this setting:

A .=
{
(W̄ , ᾱ) : W̄ (x) = −2〈ᾱ, x〉+ c̄, ᾱ ∈ Rd, H(ᾱ) ≤ 0, c̄ ∈ R

}
.

As in Section 9.1, it is not difficult to check that every (W̄ , ᾱ) ∈ A is indeed
is a subsolution/control pair.

Analogous to the discussion in Section 9.2, suppose, for example, that
there exists K ∈ N so that

A ⊂ ∪K
k=1 {x : 〈x, ᾱk〉 ≥ c̄k}

for some c̄k ∈ R and ᾱk ∈ Rd such that H(ᾱk) ≤ 0. Then for each k, one
can define an affine subsolution/control pair (W̄k, ᾱk) ∈ A with

W̄k(x) .= −2〈ᾱk , x〉+ 2c̄k.

The minimum of {W̄k} is a weak sense subsolution to the Isaacs equation
(10.2) and it satisfies the boundary condition (10.3). One then mollifies it
in order to obtain a generalized subsolution/control (W̄ δ, ρδ

k, ᾱk).
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We next present two examples. The first example is a one dimensional
level crossing problem, which has been studied extensively [15, 14, 1], and we
will see how the subsolution approach leads to the commonly used change
of measure. The second example was studied in [12], where it was used
as a counterexample to illustrate the danger of blindly following the stan-
dard heuristic approach to importance sampling. Level crossing for general
Markov additive process and non-convex target sets is also studied in [3].

For each example the numerical experiment considers exponential ran-
dom variables. There are two reasons for choosing the exponential distribu-
tion. One is that an assumption we used very often to facilitate the analysis
(e.g., in [6, 7, 8]) is that the log moment generating function H is finite
everywhere. This is not true for exponential distributions, and as we will
see in fact it is not necessary. The second reason is that for exponential dis-
tributions the level crossing probabilities can be explicitly computed, and
these theoretical values can be used for comparison.

Remark 10.2 In the theoretical analysis one needs to “bound” the infinite
time horizon in a certain way – essentially to justify an approximation by a
finite time problem – and then apply a verification argument similar to the
proof of Theorem 8.1. More details can be found in [5], where analysis of this
type is carried out for the problem of estimating buffer overflow probabilities
in queueing networks.

10.4.1 One dimensional level crossing

Assume that {Y1, Y2, . . .} are iid random variables with common distribution
µ and that EYi < 0. Let Sn = Y1 + · · · + Yn be the partial sum. Let
A = (1,∞) and

Tz
.= inf {n ≥ 0 : Sn ∈ zA} = inf {n ≥ 0 : Sn > z} .

Denote by H the log-moment generating function and ᾱ the unique positive
solution to H(α) = 0. It is well known that, under mild conditions,

γ
.= lim

z→∞
−1

z
logP{Tz < ∞} = ᾱ.

It is obvious that A ⊂ {x : x · ᾱ ≥ ᾱ}. Therefore

W̄ (x) = −2ᾱx + 2ᾱ,

and ᾱ are a subsolution/control pair which also satisfies the boundary con-
dition W̄ (x) ≤ 0 for x ∈ A. Note that W̄ (0) = 2ᾱ = 2γ, whence the cor-
responding importance sampling algorithm is asymptotically optimal. This
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subsolution/control pair induces a change of measure that coincides with
the classical choice, that is, the algorithm simulates iid {Ȳi} with common
distribution

P (dy; ᾱ) = eᾱy−H(ᾱ)µ(dy).

For numerical experimentation, we consider the special case where for
some constant θ > 0, Yi + θ is exponentially distributed with parameter λ.
The assumption of EYi < 0 is equivalent to θλ > 1. A bit of algebra yields
that ᾱ is the unique positive root to the equation

0 = H(α) = −αθ + logλ− log(λ− α), (10.4)

and that {Ȳi + θ} are iid exponentially distributed with parameter λ− ᾱ. It
is not difficult to show that EȲi > 0, and thus T̄z is finite with probability
one.

We take λ = 1, θ = 2, and run simulations for m = 10, 20, 30. Each
estimate uses 20,000 simulations. The theoretical values are obtained by
explicitly solving an integral equation (we omit the details), and

P{Tz < ∞} =
λ− ᾱ

λ
e−ᾱz . (10.5)

The value of ᾱ is obtained by numerically solving equation (10.4) using the
bisection method, and ᾱ ≈ 0.80.

m = 10 m = 20 m = 30
Theoretical value 7.04× 10−5 2.44× 10−8 8.44× 10−12

Estimate 7.11× 10−5 2.44× 10−8 8.30× 10−12

Standard Error 0.07× 10−5 0.02× 10−8 0.08× 10−12

95% C.I. [6.97,7.28]× 10−5 [2.40,2.48]× 10−8 [8.14,8.46]× 10−12

Table 5. Estimating probability of level crossing for 1-dim random walk.

10.4.2 Two dimensional level crossing

Let {Yn = (Y 1
n , Y 2

n ), n ∈ N} be a sequence of iid random vectors with EY 1
i <

0, EY 2
i < 0, and common distribution µ. As before, denote the partial sum

by Sn = (S1
n, S2

n) = Y1 + · · ·+ Yn with S0 = (0, 0). Let

A
.= {x = (x1, x2) : x1 > 1 or x2 > 1} .

It follows that

Tz = inf {n ≥ 0 : Sn ∈ zA} = inf
{
n ≥ 0 : S1

n > z or S2
n > z

}
.
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Denote by H the log-moment generating function. Let ᾱ1
.= (γ1, 0) and

ᾱ2
.= (0, γ2), where γk is the unique positive number such that H(ᾱk) = 0,

k = 1, 2. Under mild conditions, we have

γ
.= lim

z→∞
−1

z
logP{Tz < ∞} = γ1 ∧ γ2.

It is not difficult to check

A ⊂ {x : 〈x, ᾱ1〉 ≥ γ1} ∪ {x : 〈x, ᾱ2〉 ≥ γ2} .

For each k = 1, 2, an affine subsolution/control pair is (W̄k, ᾱk) with

W̄k(x) .= −2〈ᾱk, x〉+ 2γk.

The minimum W̄
.= W̄1 ∧ W̄2 is a weak sense subsolution that satisfies the

boundary condition (10.3), and W̄ (0) = 2(γ1 ∧ γ2) = 2γ, the optimal decay
rate. A generalized subsolution/control (W̄ δ, ρδ

k, ᾱk) can then be obtained
by mollification, and the corresponding importance sampling algorithm is as
follows. Let S̄n = Ȳ1 + · · ·+ Ȳn. We recursively simulate {Ȳ1, Ȳ2, . . .} such
that given S̄n/z = x, the conditional distribution of Ȳn+1 is

2∑

k=1

ρδ
k(x)P (dy; ᾱk),

where
P (dy; ᾱk) = e〈ᾱk ,y〉−H(ᾱk)µ(dy).

We stop the simulation once the process {S̄n/z} reaches the set A.
For the purpose of numerical experimentation, we consider the special

case where for some constants θk > 0, the distribution of Y k
1 + θk is ex-

ponential with parameter λk, k = 1, 2. Assume θkλk > 1, or equivalently
E[Y k

1 ] < 0, for every k = 1, 2. We also assume that {Y 1
i } and {Y 2

i } are
independent sequences. It is not difficult to check that, for each k, γk > 0
is uniquely determined and satisfies the equation

0 = −γkθk + logλk − log(λk − γk). (10.6)

Furthermore, P (dy; ᾱk) is the joint distribution of two independent random
variables, say (Ȳ 1, Ȳ 2), such that Ȳ i + θi is exponentially distributed with
parameter λi − (ᾱk)i.

Below is a numerical result. We take λ1 = λ2 = 1, and θ1 = 2, θ2 = 3.
We run simulations for m = 10, 20, 30, and each estimate consists of 20,000
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simulations. The theoretical values can be easily obtained from the one-
dimensional formula (10.5). Again, the value of γk is obtained by numeri-
cally solving equation (10.6) using the bisection method, with γ1 ≈ 0.80 and
γ2 ≈ 0.86. It is worth pointing out that the importance sampling estimate
suggested by the standard heuristic, which is to simulate iid {Ȳi} with dis-
tribution P (dy; ᾱ1), will have unbounded variance as z tends to infinity [12,
Theorem 2(i)]. The mollification parameter δ is taken as 0.1.

m = 10 m = 20 m = 30
Theoretical value 9.51× 10−5 2.88× 10−8 9.24× 10−12

Estimate 9.56× 10−5 2.87× 10−8 9.31× 10−12

Standard Error 0.10× 10−5 0.03× 10−8 0.09× 10−12

95% C.I. [9.36,9.76]× 10−5 [2.81,2.93]× 10−8 [9.13,9.49]× 10−12

Table 6. Probability of level crossing for 2-dim random walk.

10.5 Example: A path-dependent event

Let {Y1, Y2, . . .} be a sequence of iid random variables with common distri-
bution µ and E[Yi] = 0. As before, let H be the log-moment generating
function and L its convex conjugate. Fix n ∈ N, and for 1 ≤ i ≤ n define

Xi
.=

1
n

i∑

j=1

Yj ,

with X0
.= 0. We are interested in estimating

En
.= E

[
e−nF (Xn)1{max0≤i≤n Xi≥h}

]

where h > 0 is a given constant. Let AC[0, 1] denote the collection of all
absolutely continuous functions on [0, 1]. Assume that the large deviation
limit

lim
n→∞

− 1
n

log En = γ

holds, with γ the solution of the following variational problem:

γ = inf
{∫ 1

0

L(φ̇(t)) dt + F (φ(1)) : φ ∈ AC[0, 1], max
0≤t≤1

φ(t) ≥ h, φ(0) = 0
}

.

To write down the Isaacs equation associated with this estimation prob-
lem, we need to expand the state space to accommodate the path-dependence
of the event. More precisely, the state process will be (Xi, Bi), where

Bi
.= 1{max0≤j≤i Xj≥h}
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is the indicator of whether or not the “barrier” h has been breached by step
i. This problem can then be thought of as a combination of the level crossing
problem of Section 10.4 and the finite time problem of Section 9.2. First
consider the problem conditioned on Bi = 1. In this case the large deviation
problem takes exactly the same form as in Section 9.2, and the subsolutions
of interest are characterized by

W̄t(1, x, t) + sup
α∈R

inf
β∈R

H(DxW̄ (1, x, t); α,β) ≥ 0

with H be as defined in (6.2), together with the terminal condition

W̄ (1, x, t) ≤ 2F (x). (10.7)

An appropriate subsolution will give us a good importance sampling scheme
for use at all times after the threshold is crossed. The question then is
to identify the importance sampling scheme to use before the threshold is
crossed. Let us suppose that as soon as the threshold is crossed we switch
to the scheme associated with W̄ (1, x, t), so that W̄ (1, x, t) identifies an
upper bound on the performance after this time. We are therefore back in
the setting of the level crossing problem, though there is now an exit cost
W̄ (1, x, t) depending on the (scaled) time that the barrier is crossed. Hence
the subsolution for times prior to crossing the barrier is also

W̄t(0, x, t) + sup
α∈R

inf
β∈R

H(DxW̄ (0, x, t); α,β) ≥ 0

(where the time derivative is needed because the exit cost depends on time),
together with the boundary condition

W̄ (0, x, t) ≤ W̄ (1, x, t) (10.8)

for x ≥ h, t ∈ [0, 1].
Generalized subsolution/controls to these equations are defined as in

Sections 10.4 and 9.2, and the corresponding importance sampling algorithm
is as follows. Let X̄0 = 0 and B̄0 = 0. Given X̄j = x and B̄j = b, we simulate
Ȳj+1 under the distribution

K∑

k=1

ρk(b, x, j/n)P (dy; ᾱk(b, x, j/n))

where P (dy; α) is the exponential twist

P (dy; α) .= e〈α,y〉−H(α)µ(dy).
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Then we update the dynamics by

X̄j+1 = X̄j +
1
n

Ȳj+1, B̄j+1 = 1{max0≤i≤j+1 X̄i≥h}.

The performance of this importance sampling algorithm can be characterized
by a result analogous to Theorem 8.1: If V n is the second moment of the
importance sampling estimator corresponding to W̄ , then

lim inf
n→∞

− 1
n

logV n ≥ W̄ (0, 0, 0).

Therefore, the goal is to find a structurally simple generalized subsolu-
tion/control (W̄ , ρk, ᾱk) satisfying (10.8) and (10.7) with W̄ (0, 0, 0) as large
as possible, preferably equal to the optimal decay rate 2γ.

For illustration, we will consider the simple setting where

En = P

{
max
0≤i≤n

Xi ≥ h, Xn ≤ l

}
,

for some constant 0 < l < h. In other words, F (x) = ∞ for x > l and 0
otherwise. As in the cases studied previously, a subsolution can be identified
in terms of the solution to the large deviation variational problem. Using
convexity and Jensen’s inequality, this problem can be written in the form

inf
{

ρ0L

(
h

ρ0

)
+ ρ1L

(
l − h

ρ1

)
: ρi ≥ 0, i = 0, 1, ρ0 + ρ1 = 1

}
.

Since the mean of µ is zero, L(β) = 0 if and only if β = 0, and thus the
infimum is achieved at ρ∗i with ρ∗i > 0 for i = 1, 2. Let β∗

0 = h/ρ∗0 and
β∗

1 = (l − h)/ρ∗1, and let α∗
0 and α∗

1 be the convex conjugates, respectively.
It is not difficult to see that α∗

1 < 0 < α∗
0. We claim that H(α∗

0) = H(α∗
1).

Indeed, the necessary condition for a minimizer gives

L (β∗
0) − L′ (β∗

0)β∗
0 − L (β∗

1) + L′ (β∗
1) β∗

1 = 0

Using the characterization α∗
i = L′ (β∗

i ), we have

H(α∗
0) = L′ (β∗

0) β∗
0 − L (β∗

0) = L′ (β∗
1)β∗

1 − L (β∗
1) = H(α∗

1).

Using the interpretation of W̄ (1, x, t) as the solution to the finite time
problem with the given terminal condition, we know from Section 9.2 that
a subsolution is given by

W̄ (1, x, t) = −2α∗
1x + 2lα∗

1 − 2(1− t)H(α∗
1).
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As subsolution for the times prior to exceeding h we use the form

W̄ (0, x, t) = −2α∗
0x + c0 − 2(1− t)H(α∗

0).

Since H(α∗
0) = H(α∗

1) and α∗
1 < 0 < α∗

0, to satisfy the boundary condition
(10.8) for x ≥ h we need −2α∗

0h + c0 ≤ −2α∗
1h + 2lα∗

1, and to obtain the
largest value for W̄ (0, 0, 0) we take c0 = 2α∗

0h + 2(l − h)α∗
1, so that the two

functions agree on x = h. It follows that

W̄ (0, 0, 0) = 2α∗
0h + 2(l − h)α∗

1 − 2H(α∗
0)

= 2ρ∗0 [α∗
0β

∗
0 − 2H(α∗

0)] + 2ρ∗1 [α∗
1β

∗
1 − 2H(α∗

1)]
= 2γ.

In other words, the corresponding scheme is asymptotically optimal.
For a numerical example we take Yi ∼ N(0, 1). The corresponding im-

portance sampling algorithm takes a very simple form. Let X̄0 = 0 and
B̄0 = 0. If B̄j = 0, that is, the sample path maximum has not yet surpassed
barrier h, we simulate Ȳj+1 under the distribution N(2h − l, 1). If B̄j = 1,
that is, the barrier h has already been reached, we simulate Ȳj+1 under the
distribution N(l − 2h, 1). Then we update the dynamics by

X̄j+1 = X̄j +
1
n

Ȳj+1, B̄j+1 = 1{max0≤i≤j+1 X̄i≥h}.

In the numerical experiment below, h = 1 and l = 0.8. Simulations were
run for n = 10, 20, 30, and each estimate consists of 20,000 samples. What
we call the “theoretical value” is an estimate based on 1 billion samples of
the importance sampling scheme.

n = 10 n = 20 n = 30
Theoretical value 1.68× 10−5 9.66× 10−9 6.09× 10−12

Estimate 1.74× 10−5 9.58× 10−9 6.26× 10−12

Standard Error 0.04× 10−5 0.27× 10−9 0.19× 10−12

95% C.I. [1.66,1.82]× 10−5 [9.04,10.12]× 10−9 [5.88,6.64]× 10−12

Table 7. Estimating a path-dependent probability.

10.6 Example: A mixed open/closed queueing network

Consider the mixed open/closed queueing network as shown in Figure 2.
The open jobs arrive at server 1 according to a Poisson process with rate
λ. There is one closed job that circulates between server 1 and server 2,
and it has pre-emptive priority over open jobs at server 1. All services rates
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µ11

µ12

µ2

λ

2

Figure 2: An open/closed queueing network.

are exponentially distributed. The service rates at server 1 are µ11 for open
jobs and µ12 for the closed job, and the service rate at server 2 is µ2. Note
that this system is equivalent to an M/M/1 queue with server breakdowns
or vacations.

The state of the system is described by process {(Yt, Zt) : t ≥ 0}, where
Yt and Zt are the numbers of open jobs and closed jobs at server 1 at time
t. We wish to estimate pn, the probability that the number of open jobs
reaches n before the system returns to state (0, 0), given that the system
starts in (0, 0). Assuming that the system is stable, that is,

λ

µ11
+

µ2

µ2 + µ12
< 1, (10.9)

pn is a rare-event probability when n gets large.
The associated large deviation asymptotics can be characterized by an

ordinary differential equation (ODE). More precisely, let y ∈ {0, 1, . . . , n},
z ∈ {0, 1}, and Vn(y, z) the probability that the number of open jobs reaches
n before the system returns to state (0, 0), given that the system starts
in (y, z) [whence pn = Vn(0, 0) by definition]. Given any x ∈ [0, 1] and
z ∈ {0, 1}, we have

lim
n→∞

− 1
n

logVn(bnxc, z) = v(x)

where v is a viscosity solution to an ODE. To describe this ODE, we define
the convex function

`(s) .=
{

s log s − s + 1; s ≥ 0
+∞ ; s < 0

.

Using notation ρ = (ρ0, ρ1), Θ̂ = (λ̂0, λ̂1, µ̂11, µ̂12, µ̂2), we define for β ∈ R

L(β) .= inf
ρ,Θ̂

G(ρ, Θ̂), (10.10)
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where

G(ρ, Θ̂) .= ρ0

[
λ`

(
λ̂0

λ

)
+ µ12`

(
µ̂12

µ12

)]

+ ρ1

[
λ`

(
λ̂1

λ

)
+ µ11`

(
µ̂11

µ11

)
+ µ2`

(
µ̂2

µ2

)]

and with the infimum in (10.10) taken over all (ρ, Θ̂) such that

ρ0 ≥ 0, ρ1 ≥ 0, ρ0+ρ1 = 1, ρ0µ̂12 = ρ1µ̂2, β = ρ0λ̂0+ρ1λ̂1−ρ1µ̂11. (10.11)

One can show that function L is indeed convex and explicitly calculate the
Legendre transform H of L. Indeed, we have (see Appendix C)

H(α) = inf
q

[H0(α, q)∨ H1(α, q)] (10.12)

where

H0(α, q) = λ(eα − 1) + µ12(eq − 1),
H1(α, q) = λ(eα − 1) + µ11(e−α − 1) + µ2(e−q − 1).

Then v satisfies the ODE

0 = inf
β∈R

[
v′(x) · β + L(β)

]
= −H(−v′(x)),

with the boundary condition v(1) = 0. Solving this ODE (see Appendix C),
we obtain

v(x) = γ(1− x), (10.13)

where

γ = − log
(λ + µ11 + µ12 + µ2) +

√
(λ + µ11 + µ12 + µ2)2 − 4µ11(λ + µ12)

2µ11(1 + λ−1µ12)

is a positive number. In particular,

lim
n→∞

− 1
n

log pn = v(0) = γ.

Moreover, the minimizing Θ̂ for (10.10) is

Θ∗ = (λ∗
0, λ

∗
1, µ

∗
11, µ

∗
12, µ

∗
2) = (eγλ, eγλ, e−γµ11, e

q∗µ12, e
−q∗µ2), (10.14)
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where q∗ is the minimizer in equation (10.12) with α = γ, or

q∗ = log
λ + µ12 − λeγ

µ12
. (10.15)

Now let us consider the construction of importance sampling algorithms.
We first describe the associated Isaacs equation. Let Θ̄ .= (λ̄0, λ̄1, µ̄11, µ̄12, µ̄2).
Define

L̄(β, Θ̄) .= inf
ρ,Θ̂

[
2G(ρ, Θ̂) − Ḡ(ρ, Θ̂, Θ̄)

]
(10.16)

where

Ḡ(ρ, Θ̂, Θ̄) .= ρ0

[
λ̄0`

(
λ̂0

λ̄0

)
+ µ̄12`

(
µ̂12

µ̄12

)]

+ ρ1

[
λ̄1`

(
λ̂1

λ̄1

)
+ µ̄11`

(
µ̂11

µ̄11

)
+ µ̄2`

(
µ̂2

µ̄2

)]

and the infimum in (10.16) is taken over all (ρ, Θ̂) satisfying the constraints
(10.11). The Isaacs equation associated with importance sampling can then
be written as

sup
Θ̄

inf
β

[
W ′(x) · β + L̄(β, Θ̄)

]
= 0,

with boundary condition W (1) = 0. Let W̄ = 2v. It is not difficult to show
[see Appendix C] that (W̄ , Θ∗) defines an affine subsolution/control pair to
the Isaacs equation, and it satisfies the terminal condition W̄ (1) = 2v(1) =
0. Furthermore, W̄ (0) = 2v(0) = 2γ, the optimal decay rate.

The importance sampling algorithm corresponding to this affine subso-
lution/control pair (W̄ , Θ∗) is very simple. When z = 1, we simulate the
system under the alternative probability measure such that the open job
arrival rate is λ∗

1 and the service rate for the closed job at server 1 is µ∗
12.

When z = 0, the simulation distribution is such that the open job arrival
rate is λ∗

0 and the service rate for the open job is µ∗
11 and the service rate

for the closed job at server 2 is µ∗
2. Note that, for this special network, since

λ∗
0 = λ∗

1
.= λ∗, the above change of measure is equivalent to simulation under

the alternative rates (λ∗, µ∗
11, µ

∗
12, µ

∗
2).

In the numerical example below we take λ = 1, µ11 = 4, µ12 = 2, µ2 =
0.5. It is easy to check that the stability condition (10.9) holds. We run sim-
ulations for n = 20, 40, 80, and each estimate consists of 20,000 simulations.
The theoretical value can be found in [10].

40



n = 20 n = 40 n = 80
Theoretical value 3.91× 10−8 2.02× 10−15 5.40× 10−30

Estimate 3.93× 10−8 2.01× 10−15 5.45× 10−30

Standard Error 0.03× 10−8 0.02× 10−15 0.04× 10−30

95% C.I. [3.87,3.99]× 10−8 [1.97,2.05]× 10−15 [5.37,5.53]× 10−30

Table 8. Overflow probabilities of a mixed open-closed queueing network.

Remark 10.3 It is worth mentioning that our approach can easily extend
to the general case where the system has multiple closed jobs, with the sole
difference being that the computation of γ becomes more involved.

10.7 Example: A “general purpose” importance sampling
scheme

For all the examples we have discussed, finitely many affine subsolution/control
pairs are used to construct a generalized subsolution/control. In this sec-
tion, we present an example where infinitely many subsolution/control pairs
are used for this purpose. The corresponding importance sampling scheme
has some interesting features, which are further discussed in Remark 10.4.

For illustration, we consider again the simple setting where {Y1, Y2, . . .}
is a sequence of iid random variables taking values in Rd and let

Xn
.=

1
n

n∑

i=1

Yi

with X0
.= 0. We wish to estimate P{Xn ∈ A} where A ⊂ Rd is a Borel set,

and assume a large deviation limit holds, that is,

lim
n→∞

− 1
n

logP{Xn ∈ A} = inf
β∈A

L(β) = γ.

A new way to construct a subsolution is as follows. Consider the level
set of the rate function L

Θγ
.=
{

β ∈ Rd : L(β) ≥ γ
}

.

It follows easily that Θγ is the complement of a convex set and that A ⊂ Θγ .
For each β ∈ ∂Θγ , let α(β) be its convex conjugate (assuming its existence).
Define (W̄β, α(β)) ∈ A by

W̄β(x, t) .= −2〈α(β), x〉+ 2〈α(β), β〉 − 2(1− t)H [α(β)].
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Let
W̄ (x, t) .= inf

{
W̄β(x, t) : β ∈ ∂Θγ

}
.

Then W̄ defines a (weak sense) subsolution to the Isaacs equation (6.1).
Furthermore, thanks to the convexity of Θc

γ , we have

W̄ (x, 1) = inf {−2〈α(β), x− β〉 : β ∈ ∂Θγ} ≤ 0

for x ∈ Θγ . In particular, W̄ satisfies the terminal condition (9.1) since
A ⊂ Θγ . In many cases (e.g., when L is finite), we have

W̄ (0, 0) = inf {2〈α(β), β〉 − 2H [α(β)] : β ∈ ∂Θγ}
= inf {2L(β) : β ∈ ∂Θγ}
= 2γ.

Using Remark 6.2 and Theorem 8.1, if W̄ were continuously differ-
entiable then (W̄ , ᾱ) with α(x, t) = −DW̄ (x, t)/2 would form a subso-
lution/control pair, and the corresponding importance sampling schemes
would yield asymptotically optimal performance. Since W̄ is not continu-
ously differentiable, one possibility is to resort to mollification. However, an
alternative that is possible in some cases is to show that for each ε > 0 one
can find a smooth function W̄ ε such that (W̄ ε, ᾱ) form a subsolution/control
pair and W̄ ε → W̄ as ε → 0. This approach is used in the following example.

To give a concrete example, we will work out the details for iid N(0, Id)
sequence {Y1, Y2, . . .}, where Id denotes the identity matrix of dimension d.
It follows that H(α) = ‖α‖2/2, L(β) = ‖β‖2/2, and whence

Θγ =
{
β ∈ Rd : ‖β‖ ≥

√
2γ
}

.

In this case α(β) = β, and

W̄ (x, t) .= inf {−2〈β, x〉+ 2〈β, β〉 − 2(1− t)H(β) : ‖β‖ ∈ ∂Θγ}

= inf
{
−2〈β, x〉+ 2(1 + t)γ : ‖β‖ =

√
2γ
}

= −2
√

2γ‖x‖ + 2(1 + t)γ.

It is not difficult to check that W̄ satisfies the Isaacs equation (6.1) except
at {x = 0}, W̄ (x, 1) ≤ 0 on Θγ , and W̄ (0, 0) = 2γ.

Even though W̄ is not continuously differentiable at {x = 0}, it induces
a control

ᾱ(x, t) .= −DW̄ (x, t)
2

=
√

2γ
x

‖x‖
, if x 6= 0.

42



For x = 0, we just define
ᾱ(x, 0) .=

√
2γθ, (10.17)

where θ is an arbitrarily fixed unit vector. We claim that the importance
sampling scheme corresponding to this control ᾱ is asymptotically optimal.
Indeed, consider the approximating sequence W̄ ε defined by

W̄ ε(x, t) .= −2
√

2γ
√

‖x‖2 + ε + 2(1 + t)γ.

It is not difficult to check that, for every ε > 0, W̄ ε is continuously differen-
tiable and (W̄ ε, ᾱ) is a subsolution/control pair. The asymptotic optimality
follows if one applies Theorem 8.1 to this subsolution/control pair, and ob-
serves that limε→0 W ε(0, 0) = 2γ, the optimal decay rate.

For numerical experimentation, we take d = 2 and

A
.=
{
x = (x1, x2) : (x1 + a)2 + x2

2 ≥ R2
}

for some constants 0 < a < R, whence γ = (R − a)2/2. Setting θ = (1, 0)
in equation (10.17), the importance sampling scheme is as follows. We
recursively simulate {Ȳ1, Ȳ2, . . .} and let

X̄j =
1
n

j∑

i=1

Ȳi.

The conditional distribution of Ȳj+1 given X̄j = x = (x1, x2) is

N

([
(R − a)x1/‖x‖
(R − a)x2/‖x‖

]
, I2

)

if x 6= 0, and

N

([
R − a

0

]
, I2

)

if x = 0.
For the table below we take R = 0.5, a = 0.05. We run simulations

for n = 40, 80, 120, and each estimate consists of 20,000 simulations. The
theoretical value can be obtained using standard software such as S-plus.

n = 40 n = 80 n = 120
Theoretical value 8.49× 10−3 1.00× 10−4 1.40× 10−6

Estimate 8.38× 10−3 1.04× 10−4 1.50× 10−6

Standard Error 0.18× 10−3 0.04× 10−4 0.07× 10−6

95% C.I. [8.02,8.74]× 10−3 [0.96,1.12]× 10−4 [1.36,1.64]× 10−6

Table 9. A “universal” scheme
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Remark 10.4 An important feature of this approach is that the construc-
tion does not need any information on the set A other than γ, the infimum
of L(β) over β ∈ A. However, it is often the case that one knows more
detailed properties of the target set A, which can be used to design more
efficient schemes. Furthermore, there is a practical computational issue of
obtaining W̄ as the minimum of infinitely many subsolutions in the case of,
say, sums of functionals of a Markov chain. However, here one may be will-
ing to approximate Θγ by a finite number of points and then use exponential
weighting for mollification.

11 Summary

We have shown that importance sampling schemes based on subsolutions
can be applied in a wide variety of settings and deliver excellent perfor-
mance. Besides being fast and accurate, the behavior of the schemes is very
stable across a broad range of problem formulations. For example, in each
setting and for each simulation we use the same number of samples (20,000)
with remarkably similar performance. Moreover the asymptotic behavior of
the schemes can be backed up by rigorous theoretical justification. Both
of these properties stand in sharp contrast to the instability and poor per-
formance exhibited by standard heuristic importance sampling schemes in
many situations [12, 11, 6, 7].

Compared with the schemes based on subsolutions, those based on so-
lutions can in some cases lead to better estimates with the same sample
size (e.g., 2 or 3 times better standard error), but they are often much
slower, especially when the computation involves solving nontrivial eigen-
value/eigenfunction problems. However, these comparisons are possible only
for those problems for which solutions can be found (either theoretically or
numerically), and a point that is even more important is that subsolutions
can be constructed for a much wider class of problems.

An interesting question is whether one can forgo mollification and di-
rectly use the piecewise affine subsolution (a weak sense subsolution) to
construct importance sampling schemes. This is tempting since a piecewise
affine subsolution does not suffer any loss of performance from mollification.
However, we conjecture that there are no results analogous to Theorem 8.1
except for special cases, and this is supported numerical experimentation. A
final remark on this point is that [5] rigorously shows that, in the context of
queueing networks, a weak sense subsolution (or even a weak sense solution)
to the Isaacs equation can lead to inefficient importance sampling schemes.
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A Appendix. Proof of the main theorem

Outline of the Proof of Theorem 8.1. Let V n .= E
[
(Zn)2

]
be second

moment of the importance sampling estimator and

Wn .= − 1
n

logV n.

By expressing the second moment in terms of the original random variables
[see Remark 2.1], we can write

V n = Ee−2nF (Xn)
n−1∏

j=0

[
K∑

k=1

ρn
k,j(Xj) · e〈ᾱ

n
k,j(Xj),bj+1(Yj+1)〉−H(ᾱn

k,j(Xj))

·
r(Yj+1; ᾱn

k,j(Xj))
r(Yj ; ᾱn

k,j(Xj))

]−1

.

The proof is divided into 5 parts.

1. Representation. We replace V n by an upper bound, and then derive a
stochastic control representation for the normalized logarithm of this
quantity. This produces a lower bound for Wn.

2. Tightness. Associate certain stochastic processes and measure valued
processes to the representation. Show that these processes are tight
under the assumption that the costs in the representation are bounded.

3. Identification of limits. Characterize the limit processes.

4. Analysis of the cost. Go back to the representation, and analyze the
asymptotics of the cost using weak convergence.

5. Verification. Finally, a classical verification argument to show that
the proper asymptotic bound holds for the representation.

The chain rule for relative entropy [4, Theorem C.3.1] will be used several
times in the proof. If S1 and S2 are Polish spaces and µ, ν ∈ P (S1 × S2),
then

R (µ ‖ν ) = R ([µ]1 ‖[ν]1 ) +
∫

S1

R (µ(·|y1) ‖ν(·|y1)) [µ]1(dy1). (A.1)
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A.1 Representation.

Using the convexity of ex and the definition G(x) .= W̄ (x, 1) ≤ 2F (x), the
second moment V n is bounded above by

Ṽ n .= Ee−nG(Xn)
n−1∏

j=0

exp

{
−

K∑

k=1

ρn
k,j (Xj)

[
〈
ᾱn

k,j(Xj), bj+1(Yj+1)
〉

− H
(
ᾱn

k,j(Xj)
)

+ log
r(Yj+1; ᾱn

k,j(Xj))
r(Yj ; ᾱn

k,j(Xj))

]}
.

Define
W̃n .= − 1

n
log Ṽ n.

Clearly W̃n ≤ Wn. Therefore, it suffices to show

lim inf
n→∞

W̃n ≥ W̄ (0, 0). (A.2)

We would like to use the variational representation for exponential inte-
grals to derive a stochastic control representation for W̃n. Because of the
unbounded terms 〈ᾱn

k,j(Xj), bj+1(Yj+1)〉 and G (Xn), an extension of this
representation is required.

Lemma A.1 Let λ be a probability measure on a measurable space (Ω,F),
and f : Ω → R a measurable function. If e−f and fe−f are integrable with
respect to λ, then

− log
∫

Ω
e−f dλ = inf

γ

{
R(γ‖λ) +

∫

Ω
f dγ

}
,

where the infimum is taken over all probability measures γ for which the sum
at the right-hand-side is meaningful.

The proof only involves minor changes to that of [4, Proposition 1.4.2] and is
thus omitted. It is easy to check that the condition for this representation,
that is, the finiteness of the two integrals, holds in our case. This is due
to the bound on the moment generating function of bi(y) and the assumed
Lipschitz property of W̄ .

Once one has this general relative entropy representation for exponential
integrals, it is easy to extract a more useful form by a standard argument.
Consider the total distribution, say λ, of the component random variables
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used to construct the process [here the Yi and bi(Yi)], and write the expec-
tation in terms of an exponential integral against this distribution. Apply
the relative entropy representation to this exponential integral, and let γ be
the probability measure introduced by the representation. Now factor both
the original distribution λ and the new probability measure γ as a prod-
uct of conditional distributions. For example, if λ were a distribution on
S3 it would be factored as [λ]1(dx1)[λ]2(dx2|x1)[λ]3(dx3|x1, x2). One then
decomposes the relative entropy according to the chain rule (A.1), giving
rise to a relative entropy cost for the perturbation of the conditional dis-
tribution of each component random variable. Finally, for convenience one
writes the right hand side of the relative entropy representation in terms of
this decomposition and random variables distributed according to the new
probability measure. Since the analogous elementary proof appears in many
places (e.g., [4, Theorem B.2.2]), we simply state the final result. Consider
a collection of stochastic kernels µn

j and νn
j that are defined recursively as

follows. µn
j is allowed to depend in any measurable way on {b̃n

i , 0 ≤ i ≤ j}
and {Ỹ n

i , 0 ≤ i ≤ j + 1}, νn
j is allowed to depend in any measurable way on

{b̃n
i , 0 ≤ i ≤ j} and {Ỹ n

i , 0 ≤ i ≤ j}, and µn
j and νn

j choose the conditional
distributions of b̃n

j+1 and Ỹ n
j+1, respectively. To simplify the notation the

dependencies of µn
j and νn

j on the past will not be made explicit. Let

J(µn
· , νn

· ) .= Ẽ

[
1
n

n−1∑

j=0

K∑

k=1

ρn
k,j(X̃

n
j )

[
R
(
µn

j (·)‖m(·|Ỹ n
j+1)

)
+ R

(
νn
j (·)‖p(Ỹ n

j , ·)
)

+
〈
ᾱn

k,j(X̃
n
j ), b̃n

j+1

〉
− H

(
ᾱn

k,j(X̃
n
j )
)

+ log
r(Ỹ n

j+1; ᾱ
n
k,j(X̃

n
j ))

r(Ỹ n
j ; ᾱn

k,j(X̃
n
j ))

]

+ G(X̃n
n)

]
. (A.3)

Then W̃n .= inf J(µn
· , νn

· ), where the infimum is over all such collections.

A.2 Tightness

To analyze the asymptotics of W̃n we first establish the tightness of the
processes that appear therein. For j = 0, . . . , n− 1 and t ∈ [j/n, (j + 1)/n)
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define

X̃n(t) .= X̃n
j

νn (dy2 |t )
.= νn

j (dy2)
µn (dz |t ) .= µn

j (dz)
θn (dy1 × dy2 |t )

.= δỸ n
j

(dy1) νn
j (dy2)

γn (dy1 × dy2 |t )
.= δỸ n

j
(dy1) p (y1, dy2)

ζn (dy × dz |t ) .= δỸ n
j+1

(dy)µn
j (dz)

ηn (dy × dz |t ) .= δỸ n
j+1

(dy)m (dz |y ) ,

and let left continuity define these processes at t = 1. We also set, for Borel
subsets A ⊂ S × S and B ⊂ [0, 1],

θn (A × B) .=
∫

B
θn (A |t) dt.

Then θn is a random probability measure on space (S×S)× [0, 1]. Similarly
define random probability measures νn, µn, γn, ζn, and ηn.

Lemma A.2 Assume Condition 4.1. Let (W̄ , ρk, ᾱk) be a generalized sub-
solution/control. Consider any subsequence and collection {(µn

j , νn
j ), j =

0, 1, . . . , n − 1} for which the expected cost J(µn
· , νn

· ) as defined in (A.3) is
uniformly bounded from above. Then (with the supremum on n restricted to
elements of the subsequence)

lim
C→∞

sup
n

Ẽ


 1

n

n∑

j=1

∥∥∥b̃n
j

∥∥∥ 1{‖b̃n
j ‖≥C}


 = 0,

the collection {(
X̃n, νn, µn, θn, γn, ζn, ηn

)}

is tight, {X̃n(1)} is uniformly integrable, and {µn} is uniformly integrable
in the sense that

lim
C→∞

sup
n

Ẽ

[∫

Rd×[0,1]
‖y‖ 1{‖y‖≥C}µ

n(dy × dt)

]
= 0.

The proof of the lemma is given in Appendix B. However, it is worth noting
that the first estimate is the key result, and that the tightness and uniform
integrability follow easily from this.
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In order to show the desired lower bound (A.2), all we need to show is

lim inf
n→∞

J(µn
· , νn

· ) ≥ W̄ (0, 0) (A.4)

for any sequence {(µn
j , νn

j ), j = 0, . . . , n−1}. Abusing notation a bit, assume
from now on that {(µn

j , νn
j ), j = 0, . . . , n − 1} is an arbitrary subsequence

such that the cost J(µn
· , νn

· ) is uniformly bounded from above. Clearly, we
only need to show inequality (A.4) along every such subsequence.

Owing to the positivity, boundedness, and Lipschitz properties of the
eigenfunctions and ᾱk (see Lemma 5.1), there exists M < ∞ such that for
all y ∈ S, k = 1, . . . , K, n ∈ Z+, j ∈ {1, . . . , n}, x1 ∈ Rd, and x2 ∈ Rd,
∣∣∣∣log

r (y; ᾱk,j−1 (x1))
r (y; ᾱk,j (x2))

∣∣∣∣ =
∣∣∣∣log

r (y; ᾱk (x1, (j − 1)/n))
r (y; ᾱk (x2, j/n))

∣∣∣∣ ≤ M(|x1 − x2|+1/n).

Thanks to the first part of Lemma A.2, for any δ > 0 and along this subse-
quence with bounded cost,

lim sup
n→∞

Ẽ


 1

n

n∑

j=1

∥∥∥b̃n
j

∥∥∥ 1{‖b̃n
j ‖≥nδ}


 = 0.

Therefore, the Lipschitz properties of the ρk that are part of the definition
of a generalized subsolution and the definition X̃n

j+1 = X̃n
j + b̃n

j+1/n imply

lim sup
n→∞

Ẽ


 1

n

n−1∑

j=0

K∑

k=1

ρn
k,j(X̃

n
j )

∣∣∣∣∣log
r(Ỹ n

j+1; ᾱ
n
k,j(X̃

n
j ))

r(Ỹ n
j ; ᾱn

k,j(X̃
n
j ))

∣∣∣∣∣




≤ lim sup
n→∞

Ẽ


 1

n

n∑

j=1

K∑

k=1

ρn
k,j(X̃

n
j )

∣∣∣∣∣log
r(Ỹ n

j ; ᾱn
k,j−1(X̃

n
j−1))

r(Ỹ n
j ; ᾱn

k,j(X̃
n
j ))

∣∣∣∣∣




+ lim sup
n→∞

Ẽ


 1

n

n−1∑

j=0

K∑

k=1

∣∣∣ρn
k,j+1(X̃

n
j+1)− ρn

k,j(X̃
n
j )
∣∣∣

·
∣∣∣log r(Ỹ n

j+1; ᾱ
n
k,j(X̃

n
j ))
∣∣∣
]

= 0. (A.5)

Thanks to (A.3) and (A.5), in order to show (A.4) it suffices to prove

lim inf
n→∞

Ẽ

[
1
n

n−1∑

j=0

K∑

k=1

ρn
k,j(X̃

n
j )
[
R
(
µn

j (·)
∥∥∥m(·|Ỹ n

j+1)
)

+ R
(
νn
j (·)

∥∥∥p(Ỹ n
j , ·)

)

49



+
〈
ᾱn

k,j(X̃
n
j ), b̃n

j+1

〉
− H

(
ᾱn

k,j(X̃
n
j )
)]

+ G(X̃n
n)

]
≥ W̄ (0, 0).

Note that the relative entropy terms do not depend on k, and so they can
be moved past the corresponding sum. Thanks to the uniform boundedness
and Lipschitz continuity of ρk and ᾱk , the uniform integrability of {µn}
(Lemma A.2), and the chain rule for relative entropy (A.1), all we need to
show is the lower bound

lim inf
n→∞

J̄n ≥ W̄ (0, 0), (A.6)

where

J̄n .= Ẽ

[
R (ζn ‖ηn ) + R (θn ‖γn ) −

K∑

k=1

∫ 1

0
ρk(X̃n(t), t)H(ᾱk(X̃n(t), t))dt

+
K∑

k=1

∫

Rd×[0,1]
ρk(X̃n(t), t)

〈
ᾱk(X̃n(t), t), z

〉
µn (dz × dt) + G(X̃n(1))

]
.

A.3 Identification of the Limits.

In order to show (A.6), we need to identify limits of the involved processes.

Lemma A.3 Assume Condition 4.1, and consider any subsequence along
which J(µn

· , νn
· ) is uniformly bounded from above and
(
X̃n, νn, µn, θn, γn, ζn, ηn

)
→
(
X̃, ν, µ, θ, γ, ζ, η

)

in distribution. Then the following conclusions hold. Each of the measures
ν, µ, θ, γ, ζ, η (for example, ν) can be factored in the form ν (dy × dt) =
ν (dy |t)dt, where dt is Lebesgue measure. Furthermore, w.p.1

X̃(t) =
∫

[0,t]

∫

Rd
zµ (dz |s)ds,

γ (dy1 × dy2 |t) = ν (dy1 |t) p (y1, dy2)
η (dy × dz |t) = ν (dy |t )m (dz |y ) ,

and
[θ]1(dy|t) = [θ]2(dy|t) = ν(dy|t),

[ζ]1(dy|t) = ν(dy|t), [ζ]2(dy|t) = µ(dy|t).
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Proof. The fact that the t-marginal of the random measures is Lebesgue
measure follows from the weak convergence and the fact that the same is
true of the analogous prelimit measures. Also, the existence of the factored
form is standard [4, Lemma 3.3.1].

We next consider the representation for X̃, and use an argument similar
to that of [4, Theorem 5.3.5]. For any 0 ≤ j ≤ n, we can write

X̃n (j/n) =
1
n

j−1∑

i=0

∫

Rd

zµn
i (dz) + Mn (j/n)

=
∫ j/n

0

∫

Rd
zµn (dz × dt) + Mn (j/n)

where

Mn (j/n) .=
1
n

j−1∑

i=0

[
b̃n
i+1 −

∫

Rd

zµn
i (dz)

]

is a martingale. Fix δ > 0, and define random variables and random mea-
sures

cn
j

.= b̃n
j 1{‖b̃n

j ‖≥nδ}, λn
j (dz) .= µn

j (dz)1{‖z‖≥nδ} + δ0(dz)µn
j ({‖z‖ < nδ}),

where δ0(dz) is the probability measure with mass 1 at zero. It is not difficult
to see that λn

j gives the conditional distribution of cn
j+1, whence

Nn(j/n) .=
1
n

j−1∑

i=0

[
cn
i+1 −

∫

Rd

zλn
i (dz)

]

is also a martingale. By Chebyshev’s inequality and a conditioning argu-
ment,

P̃

{
max

j=1,...,n
‖Nn(j/n)‖ ≥ ε

}
≤ 1

ε
Ẽ

[
1
n

n−1∑

i=0

(∥∥cn
i+1

∥∥+
∫

Rd

‖z‖λn
i (dz)

)]

=
1
ε
Ẽ

[
2
n

n−1∑

i=0

∥∥cn
i+1

∥∥
]

=
2
ε
Ẽ

[
1
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥ 1{‖b̃n
i ‖≥nδ}

]
.

The last quantity tends to zero as n tends to infinity for each fixed δ > 0
by Lemma A.2. Applying a standard submartingale inequality to Mn −Nn,
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we have

P̃

{
max

j=1,...,n
‖Mn(j/n)− Nn(j/n)‖ ≥ ε

}

≤ 1
ε2

Ẽ



∥∥∥∥∥∥

1
n

n−1∑

j=0

(
b̃n
j+11{‖b̃n

j+1‖<nδ} −
∫

Rd

zµn
j (dz)1{‖z‖<nδ}

)∥∥∥∥∥∥

2


=
1

n2ε2

n−1∑

j=0

Ẽ

[∥∥∥∥b̃n
j+11{‖b̃n

j+1‖<nδ} −
∫

Rd

zµn
j (dz)1{‖z‖<nδ}

∥∥∥∥
2
]

≤ 1
n2ε2

n∑

j=1

Ẽ

[∥∥∥b̃n
j

∥∥∥
2
1{‖b̃n

j ‖<nδ}

]

≤ δ

ε2

n∑

j=1

Ẽ

[
1
n

∥∥∥b̃n
j

∥∥∥
]

.

Sending first n → ∞ and then δ → 0, it follows that for each ε > 0

P̃

{
max

j=1,...,n
‖Mn(j/n)‖ ≥ 2ε

}
→ 0

as n → ∞. Thus

X̃n(j/n)−
∫ j/n

0

∫

Rd

zµn(dz × dt) → 0

uniformly in j ∈ {1, . . . , n}, in probability. Using the uniform integrability
and weak convergence of µn we justify the limit

X̃(t) −
∫ t

0

∫

Rd
zµ(dz × ds) = 0

for all t ∈ [0, 1], w.p.1. When combined with the factorization µ (dz × ds) =
µ (dz|s)ds, this proves the representation for X̃.

Finally, we discuss the formulas for the limit measures. These all follow
easily from analogous properties of the prelimit measures. For example,
consider the random probability measure θn. Let g be an arbitrary bounded
continuous function on S. By definition,

∫

S×[0,1]

g(y)[θn]1,3(dy × dt) =
1
n

n−1∑

j=0

g(Ỹ n
j ) =

1
n

n−1∑

j=0

g(Ỹ n
j+1) + In,
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where
|In| =

1
n

∣∣∣g(Ỹ n
0 ) − g(Ỹ n

n )
∣∣∣ ≤ 2

n
‖g‖∞

almost surely.
Fix arbitrary ε > 0. Let N0 ∈ N be such that |In| ≤ ε/2 for all n ≥ N0.

Since νn
j is the conditional distribution of Ỹ n

j+1, by Chebyshev’s inequality
and a conditioning argument, for n ≥ N0

P̃

{∣∣∣∣∣

∫

S×[0,1]
g(y)[θn]1,3(dy × dt)−

∫

S×[0,1]
g(y) [θn]2,3 (dy × dt)

∣∣∣∣∣ ≥ ε

}

≤ P̃





∣∣∣∣∣∣
1
n

n−1∑

j=0

(
g(Ỹ n

j+1)−
∫

S
g(y)νn

j (dy)
)∣∣∣∣∣∣

≥ ε/2





≤ 4
ε2

Ẽ


 1

n2

n−1∑

j=0

(
g(Ỹ n

j+1)−
∫

S
g(y)νn

j (dy)
)2



≤ 16 ‖g‖2
∞

ε2n
.

Sending n → ∞ and then ε → 0, Fatou’s Lemma and the arbitrariness of g

imply [θ]1,3 = [θ]2,3 almost surely. Since [θn]2,3 = νn,

[θ]1,3(dy × dt) = [θ]2,3(dy × dt) = ν(dy × dt) = ν(dy|t)dt,

which proves [θ]1(dy|t) = [θ]2(dy|t) = ν(dy|t).
With regard to the decomposition of γ, an analogous argument shows

that, for any ε > 0 and bounded continuous functions g1, g2 on S, we have

0 = lim
n→∞

P̃

{∣∣∣∣∣

∫

S2×[0,1]
g1(y1)g2(y2)γn(dy1 × dy2 × dt)

−
∫

S2×[0,1]
g1(y1)g2(y2)νn(dy1 × dt)p(y1, dy2)

∣∣∣∣∣ ≥ ε

}

However, by the Feller property the mapping y1 7→
∫
S g(y2)p(y1, dy2) is

bounded and continuous. The decomposition of γ now follows from the weak
convergence of γn and νn, Fatou’s Lemma, the arbitrariness of ε, and the
fact that product functions are convergence determining (see, for example,
[4, Theorem A.3.14]).

The expressions for ζ and η can be proved in the same way, and we omit
the proof.
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A.4 Analysis of the cost.

We claim that lim infn→∞ J̄n [see equation (A.6)] is bounded below by

Ẽ

[
R (θ ‖γ ) + R (ζ ‖η ) −

K∑

k=1

∫

[0,1]
ρk(X̃(t), t)H(ᾱk(X̃(t), t))dt

+
K∑

k=1

∫

Rd×[0,1]
ρk(X̃(t), t)

〈
ᾱk(X̃(t), t), z

〉
µ (dz × dt) + G(X̃(1))

]
.

The bound for the first two relative entropy terms follows from the weak
convergence, Fatou’s Lemma, and the lower semicontinuity of relative en-
tropy [4, Lemma 1.4.3]. The convergence of the next two terms follows from
the weak convergence, the continuity and boundedness properties of the ρk

and ᾱk, and the Dominated Convergence Theorem. Lastly, we show that

lim inf
n→∞

Ẽ
[
G(X̃n(1))

]
≥ Ẽ

[
G(X̃(1))

]
. (A.7)

Indeed, by the Lipschitz property of W̄ , there exists C > 0 such that

G(x) = W̄ (x, 1) ≥ −C(‖x‖ + 1). (A.8)

By Fatou’s Lemma,

lim inf
n→∞

Ẽ
[
G(X̃n(1)) + C‖X̃n(1)‖

]
≥ Ẽ

[
G(X̃(1)) + C‖X̃(1)‖

]
.

Since the uniform integrability of {X̃n(1)} proved in Lemma A.2 implies
limn→∞ Ẽ‖X̃n(1)‖ = Ẽ‖X̃(1)‖, the inequality (A.7) follows.

Using the factorization properties of relative entropy (A.1), we now do
some rewriting of the various terms. We have

R (θ ‖γ ) =
∫ 1

0
R (θ(dy1 × dy2|t)‖γ(dy1 × dy2|t)) dt

R (ζ ‖η ) =
∫ 1

0
R (ζ(dy × dz|t)‖η(dy × dz|t))dt.

However, by Lemma A.3, [θ]1 (· |t) = [θ]2 (· |t) = ν (· |t ), γ(·|t) = ν(·|t) ⊗ p,
η(·|t) = ν(·|t) ⊗ m, and ζ(·|t) = ν(·|t) ⊗ qt for some stochastic kernel qt. It
follows from the definition of L in (4.2) that

R (θ ‖γ ) + R (ζ ‖η ) ≥
∫ 1

0
L (β(t))dt,
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where for each t,

β(t) .=
∫

S

∫

Rd
zqt(dz|y)ν(dy|t)

=
∫

S×Rd

zζ(dy × dz|t)

=
∫

Rd

z[ζ]2(dz|t)

=
∫

Rd

zµ(dz|t).

Moreover, the definition of β(t) gives
∫

Rd×[0,1]

〈
ᾱ(X̃(t), t), z

〉
µ (dz × dt) =

∫

[0,1]

〈
ᾱ(X̃(t), t), β(t)

〉
dt.

We thus obtain a lower bound for lim infn→∞ J̄n in the form

Γ .= Ẽ

[∫ 1

0

K∑

k=1

ρk(X̃(t), t)

[
L (β(t))− H(ᾱk(X̃(t), t))

+
〈
ᾱk(X̃(t), t), β(t)

〉]
dt + G(X̃(1))

]
.

A.5 Verification.

We now do a classical verification argument to show Γ ≥ W̄ (0, 0). By
assumption (see Definition 6.1),

W̄t(X̃(t), t) +
〈
DW̄ (X̃(t), t), β(t)

〉

=
K∑

k=1

ρk(X̃(t), t)
[
rk(X̃(t), t) +

〈
sk(X̃(t), t), β(t)

〉]

≥
K∑

k=1

ρk(X̃(t), t)
[
L(β(t)) +

〈
ᾱk(X̃(t), t), β(t)

〉
− H(ᾱk(X̃(t), t))

]
.

Integrating both sides from 0 to 1, and using the fact that β(t) = dX̃(t)/dt,

E

[∫ 1

0

K∑

k=1

ρk(X̃(t), t)
[
L(β(t)) +

〈
ᾱk(X̃(t), t), β(t)

〉
− H(ᾱk(X̃(t), t))

]
dt

]

≥ W̄ (0, 0)− EW̄ (X̃(1), 1).

Since G(x) = W̄ (x, 1) we complete the proof of Theorem 8.1.
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B Appendix. Proof of Lemma A.2

The proof uses ideas from [4, Proposition 5.3.2]. We start by observing a
few facts. Thanks to (A.8),

−2G
(
X̃n

n

)
≤ 2C

(
1
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥ + 1

)
.

By Lemma 5.1, the eigenfunctions r(y; α) are bounded uniformly from above
and below away from zero on {α : ‖α‖ ≤ C}, and H(α) is bounded from
below on this set since H is finite and convex (whence continuous). These
and the non-negativity of relative entropy imply the existence of C1 < ∞
and C2 < ∞ such that

sup
n

Ẽ

[
1
n

n−1∑

i=0

R
(
µn

i (·)
∥∥∥m(·|Ỹ n

i+1 )
)
− C1

1
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥
]
≤ C2, (B.1)

where the supremum is over the same subsequence as in the statement of the
lemma. It follows immediately that µn

i (·) � m(·|Ỹ n
i+1) for all i = 0, . . . , n−

1, with probability one. We can find non-negative, measurable, random
functions fn

i such that fn
i is a measurable version of dµn

i (·)/dm(·|Ỹ n
i+1).

We use the fact that for all a ≥ 0, c ≥ 0, and ρ ≥ 1,

ac ≤ eρa +
1
ρ

(c log c − c + 1) .

Since c log c − c + 1 ≥ 0, it follows that

Ẽ

[
1
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥
]

≤ Ẽ

[
1
n

n−1∑

i=0

∫

Rd
‖z‖ fn

i (z)m(dz|Ỹ n
i+1)

]

≤ Ẽ

[
1
n

n−1∑

i=0

1
ρ

∫

Rd

(fn
i (z) log fn

i (z) − fn
i (z) + 1)m(dz|Ỹ n

i+1)

+
1
n

n∑

i=1

∫

Rd

eρ‖z‖m(dz|Ỹ n
i+1)

]
.

Under Condition 4.1, for each ρ there is a finite and uniform bound B(ρ) on∫
Rd eρ‖z‖m (dz |y ) for all y ∈ S. This allows us to continue the inequality as

Ẽ

[
1
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥
]
≤ B(ρ) +

1
ρ
Ẽ

[
1
n

n−1∑

i=0

R
(
µn

i (·)
∥∥∥m(·|Ỹ n

i+1)
)]

.
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Choosing 1/ρ = 2C1 and rearranging (B.1),

1
2

sup
n

Ẽ

[
1
n

n−1∑

i=0

R
(
µn

i (·)
∥∥∥m(·|Ỹ n

i+1)
)]

≤ C2 + B

(
1

2C1

)
. (B.2)

By a very similar argument to that just used, we find

Ẽ

[
1
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥ 1{‖b̃n
i ‖≥C}

]
≤ sup

y∈S

∫

Rd

1{‖z‖≥C}e
ρ‖z‖m(dz|y)

+
1
ρ
Ẽ

[
1
n

n−1∑

i=0

R
(
µn

i (·)
∥∥∥m(·|Ỹ n

i+1)
)]

.

Under Condition 4.1,

sup
y∈S

∫

Rd

1{‖z‖≥C}e
ρ‖z‖m (dz |y ) ≤ e−C sup

y∈S

∫

Rd

e(ρ+1)‖z‖m (dz |y ) → 0

as C → ∞. Thanks to the uniform bound (B.2), the first part of the lemma
follows by first sending C → ∞ and then ρ → ∞.

We define a piecewise linear process X̄n by setting

dX̄n(t)
dt

= b̃n
i for t ∈

(
i − 1

n
,

i

n

)
.

Then X̄n is the piecewise linear interpolation that agrees with X̃n at times
of the form i/n. It follows that if X̄n converges in distribution in the sup
norm to a limit X̃ then so does X̃n, since the sup norm of X̃n−X̄n converges
to 0 in probability. Therefore, in order to show the tightness of {X̃n}, it
suffices to show that {X̄n} is tight. To this end, define the modulus

wn(δ) .= sup
{s,t∈[0,1]:0≤t−s≤δ}

∥∥X̄n(t) − X̄n(s)
∥∥ .

Tightness of
{
X̄n
}

will hold if for each ε > 0 and η > 0 there is δ ∈ (0, 1)
such that for all n

P̃ {wn(δ) ≥ ε} ≤ η.

Choose C < ∞ such that for all n

Ẽ

[
1
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥ 1{‖b̃n
i ‖≥C}

]
≤ ηε/2,
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and let δ
.= (ε/2C) ∧ 1. Write f(t) = dX̄n(t)/dt, then since Cδ ≤ ε/2

P̃ {wn(δ) ≥ ε} ≤ P̃

{
sup

{s,t∈[0,1]:0≤t−s≤δ}

∫ t

s
‖f(r)‖dr ≥ ε

}

≤ P̃

{
sup

{s,t∈[0,1]:0≤t−s≤δ}

∫ t

s
‖f(r)‖1{‖f(r)‖≥C}dr ≥ ε/2

}

≤ P̃

{∫ 1

0

‖f(r)‖ 1{‖f(r)‖≥C}dr ≥ ε/2
}

≤ 2
ε
Ẽ

[
1
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥ 1{‖b̃n
i ‖≥C}

]

≤ η.

As for the uniform integrability of {X̃n(1)}, observe that for every C ≥ 0,

‖X̃n(1)‖ ≤ 1
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥ ≤ C +
1
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥ 1{‖b̃n
i ‖≥C}.

This implies

‖X̃n(1)‖1{‖X̃n(1)‖≥2C} ≤ C1{‖X̃n(1)‖≥2C} +
1
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥ 1{‖b̃n
i ‖≥C}

≤ ‖X̃n(1)‖
2

1{‖X̃n(1)‖≥2C} +
1
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥ 1{‖b̃n
i ‖≥C},

or

‖X̃n(1)‖1{‖X̃n(1)‖≥2C} ≤
2
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥ 1{‖b̃n
i ‖≥C},

which in turn implies the uniform integrability of {X̃n(1)}.
The tightness and uniform integrability properties of the random mea-

sure {µn(dy × dt)} is easy. Indeed,

Ẽ

[∫

Rd×[0,1]

‖y‖ 1{‖y‖≥C}µ
n(dy × dt)

]
= Ẽ




n−1∑

j=0

∫

Rd

‖y‖ 1{‖y‖≥C}µ
n
j (dy)




= Ẽ

[
1
n

n∑

i=1

∥∥∥b̃n
i

∥∥∥ 1{‖b̃n
i ‖≥C}

]
.

Uniform integrability holds since the last quantity tends to zero uniformly in
n as C → ∞, and the tightness is a consequence of the uniform integrability
[4, Theorem A.3.17].
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C Appendix. The mixed open/closed network

Proof of Equation (10.12). For δ = (δ1, δ2) ∈ R2 define

L0(δ)
.= λ`

(
δ1

λ

)
+ µ12`

(
δ2

µ12

)
.

Similarly, for η = (η1, η2) ∈ R2 define

L1(η) .= inf

{
λ`

(
λ̂1

λ

)
+ µ11`

(
µ̂11

µ11

)
+ µ2`

(
µ̂2

µ2

)}
,

where the infimum is taken over all (λ̂1, µ̂11, µ̂2) such that

λ̂1 − µ̂11 = η1, − µ2 = η2.

It is not difficult to show by direct computation that Li is the Legendre
transform of Hi, for each i = 0, 1. Given θ = (θ1, θ2) ∈ R2, let

Q(θ) .= inf {ρ0L0(δ) + ρ1L1(η) : ρ0 ≥ 0, ρ1 ≥ 0, ρ0 + ρ1 = 1, ρ0δ + ρ1η = θ} .

Thanks to [4, Corollary D.4.3], G is the Legendre transform of H0∨H1. But
it is easy to see by definition that L(β) = Q(β, 0), whence L is the Legendre
transform of H .

Proof of Equations (10.13) – (10.15). For every fixed α, H0(α, q) is a
strictly increasing function of q with limq→∞ H0(α, q) = +∞ and H1(α, q) is
a strictly decreasing function of q with limq→−∞ H1(α, q) = +∞. It follows
that, for each fixed α, there exists a unique q = q(α) such that

H0(α, q(α)) = H1(α, q(α)) = H(α).

Therefore, solving H(α) = 0 is equivalent to finding (α, q) such that

H0(α, q) = H1(α, q) = 0,

which yields the γ of (10.13) and the q∗ of (10.15). Thus (γ, q∗) satisfies

H0(γ, q∗) = H1(γ, q∗) = 0. (C.1)

(It turns out that (0, 0) is also a solution, but it is elementary that this root
does not characterize the relevant solution to the PDE.) The computation
for Θ∗ is straightforward and thus omitted.
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Proof that (W̄ , Θ∗) is a subsolution/control pair. We only need to
show that

inf
β

[
−2γβ + L̄(β, Θ∗)

]
≥ 0. (C.2)

However, analogous to the proof of equation (10.12), one can show that
L̄(β, Θ∗) is convex with respect to β and its Legendre transform is

H̄(α) = inf
q

[
H̄0(α, q)∨ H̄1(α, q)

]

with

H̄0(α, q) =
(

λ2

λ∗
0

eα − 2λ + λ∗
0

)
+
(

µ2
12

µ∗
12

eq − 2µ12 + µ∗
12

)

H̄1(α, q) =
(

λ2

λ∗
1

eα − 2λ + λ∗
1

)
+
(

µ2
11

µ∗
11

e−α − 2µ11 + µ∗
11

)
+
(

µ2
2

µ∗
2

e−q − 2µ2 + µ∗
2

)
.

Then the inequality (C.2) reduces to −H̄(2γ) ≥ 0. Indeed, we claim that
H̄(2γ) = 0. To this end, note that by direction computation, equations
(10.14) and (C.1), we have

H̄0(2γ, 2q∗) = 2λ(eγ − 1) + µ12(eq∗ − 1) = 2H0(γ, q∗) = 0,

and

H̄1(2γ, 2q∗) = 2λ(eγ − 1) + 2µ11(e−γ − 1) + 2µ2(e−q∗ − 1) = 2H1(γ, q∗) = 0.

It is now very easy to argue that

H̄(2γ) = inf
q

[
H̄0(2γ, q)∨ H1(2γ, q)

]
= H̄0(2γ, 2q∗) ∨ H1(2γ, 2q∗) = 0,

which completes the proof.
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