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Abstract

We formulate a stochastic control problem with a general information structure, and show
that an optimal law exists and is characterized as the unique solution of a recursive stochastic
equation. For a special information structure of the �signal-plus-noise� type and with quadratic
cost-functions, this recursive equation is solved for the value function of the control problem.
This value function is then shown to satisfy the Mortensen equation of Dynamic Programming
in function-space.

Key words: Stochastic control, partial observations, Þltering, recursive stochastic equations,
Komlós theorem, Mortensen equation.

1 INTRODUCTION

This paper discusses a feed-forward stochastic control problem inspired by the work of Beneÿs (1991),
with general partial observation structure. For a class of convex cost-functions on the control
and on the terminal state, it is shown in Section 2 that an optimal control process exists and is
characterized as the unique solution of a certain Recursive (or �backwards�) Stochastic Equation.
The methodology of this section is based on the theorem of Komlós (1967) and on straightforward
variational arguments.

In the special case of quadratic cost-functions, simple stochastic analysis shows in Section 3
that this equation can be solved explicitly, and that the solution leads to a general formulation of
the Certainty-Equivalence Principle of stochastic control (Remark 3.1).

Section 4 specializes these results to the case of an observation-Þltration of the �signal-plus-
noise� type, generated by a Brownian motion with independent, random drift B with known prob-
ability distribution µ. In this context, Þltering theory leads to explicit computations for the value
function of the problem and for its time-derivative (subsections 4.1 and 4.2, respectively).

Once such computation has been achieved, it is natural to try and connect the results to the
dynamic programming equation of Mortensen (1966). His approach, reviewed brießy and formally
in Section 5, was designed to trade off the Þnite-dimensional, partially-observed control problem
for a completely-observed but inÞnite-dimensional one, in which the role of �state� is played by
the conditional distribution of the unobservable random drift B shifted by the cumulative action
of control, given the observations; see equation (4.7). This conditional distribution satisÞes the
Kushner-Stratonovich stochastic partial differential equation (5.3), and the formal dynamic pro-
gramming equation for the corresponding fully-observed control problem is the Mortensen equation
(5.6).

Giving rigorous meaning to the Þrst- and second-order functional derivatives appearing in this
equation turns out to be a challenging task. (The difficulty stems from the fact that, even in this
relatively simple context, there is no clear choice for the space of variations in which directional
derivatives such as those in (6.2), (6.3) can be interpreted in a rigorous manner.) Formal arguments,
leading to the explicit computations (6.4) and (6.5) for these derivatives, are carried out in Section
6. These computations indeed justify the validity of the Mortensen equation, and lead to a feed-back
expression for the optimal control law.

The formal arguments of Section 6 are justiÞed rigorously by a Þnite-dimensional analysis carried
out in Section 7. Such Þnite-dimensional analysis is possible in this case because of the simple and
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explicit formula (4.7), that maps the �prior� distribution µ into its �posterior� version µut , given
the observations, and the control process u(·) used, up to time t. This analysis bypasses the above
difficulties by singling out and analyzing only a special, Þnite-dimensional space of variations. In
this space, ordinary derivatives can be computed explicitly, and are then shown to �factor� correctly
through the functional derivatives that appear in the Mortensen equation. Such computations turn
out to be sufficient for our purpose, and provide a rigorous derivation of It�o�s rule in our context.

To our knowledge, the results of Sections 6, 7 constitute the Þrst instance of an explicit solution
to Mortensen�s equation.

2 THE CONTROL PROBLEM

We shall place ourselves on a complete probability space (Ω,F , IP), endowed with a Þtration IF =
{Ft}0≤t≤T that satisÞes F0 = {∅,Ω}, mod. IP, as well as the �usual conditions� of right-continuity
and augmentation by IP-null sets. On this space, we are given a random variable B : Ω→ IR with

known distribution µ(A)
4
= IP[B ∈ A], A ∈ B(IR), and consider the class of control processes

U =
½
u : [0, T ]× Ω→ R

±
u(·) is IF−progressively measurable and kuk 4= IE

Z T

0

¯̄
u(t)

¯̄
dt <∞

¾
.

(2.1)

Let us consider also two �cost-functions� ϕ : IR→ IR and ψ : IR→ IR; both of them are convex and
bounded from below, ψ(·) is strictly convex with ψ(±∞) = ∞, and IE[ϕ(B)] < ∞. With these
ingredients, we pose the Stochastic Control Problem of minimizing the expected cost

J(u) = IE

∙
λ

Z T

0
ψ
¡
u(t)

¢
dt+ ϕ

µ
B +

Z T

0
u(t) dt

¶¸
(2.2)

over u(·) ∈ U . Here λ > 0 is a given real constant, which weighs the �cost-of-control� R T0 ψ¡u(t)¢ dt
relative to the cost ϕ

³
B +

R T
0 u(t) dt

´
of �missing the random target −B�. A typical situation is

the quadratic ϕ(x) = ψ(x) = x2, to be studied in detail in Section 4 below.

We have the following general result.

THEOREM 2.1. There exists a unique (up to equivalence a.e. on [0, T ]) control process u∗(·) ∈ U
which is optimal for the problem of (2.2), i.e.,

V
4
= inf
u∈U

J(u) = J(u∗).(2.3)

Proof: Consider a sequence {un(·)}n∈IN ⊆ U which is �minimizing� for the control problem, i.e.
limn→∞ ↓ J(un) = V . Because

−∞ < λT · inf
IR
ψ(·) + inf

IR
ϕ(·) ≤ V ≤ λT · ψ(0) + IE[ϕ(B)] <∞,

it is clear that the sequence {J(un)}n∈IN is bounded; and because ϕ(·) is bounded from below, it
follows that

the sequence

½
IE

Z T

0
ψ
¡
un(t)

¢
dt

¾
n∈IN

is bounded.(2.4)
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However, our assumptions on the function ψ(·) imply a lower-bound of the type
ψ(x) ≥ k1 + k2|x|, ∀ x ∈ IR(2.5)

for some k1 ∈ IR, k2 > 0; and from (2.4), (2.5) we see that

the sequence

½
IE

Z T

0

¯̄
un(t)

¯̄
dt

¾
n∈IN

is bounded.

Thus, from a theorem of Komlós (1967) (see also Schwartz (1985)), there exists a measurable
process u∗ : [0, T ]× Ω→ IR and a subsequence {u0n(·)}n∈IN of {un(·)}n∈IN, such that

lim
n→∞

1

n

nX
j=1

u0j(·) = u∗(·), (`⊗ IP)− a.e. on [0, T ]× Ω ,

where ` stands for Lebesgue measure. Thanks to the conditions imposed on the Þltration IF, this
process u∗(·) can be considered in its IF-adapted, (thus also in its IF-progressively measurable)
modiÞcation; recall Proposition 1.1.12 in Karatzas & Shreve (1991). On the other hand, Fatou�s
lemma gives

IE

Z T

0

¯̄
u∗(t)

¯̄
dt ≤ lim inf

n→∞
1

n

nX
j=1

IE

Z T

0

¯̄
u0j(t)

¯̄
dt ≤ sup

n∈IN
IE

Z T

0

¯̄
un(t)

¯̄
dt < ∞ ,

so that u∗(·) ∈ U ; and the convexity of ϕ(·), ψ(·) implies

J(u∗) ≤ lim
n→∞

1

n

nX
j=1

J(u0j) = inf
u∈U

J(u),

which means that u∗(·) attains this last inÞmum. The strict convexity of ψ(·) guarantees that u∗(·)
is the only (modulo a.e.-equivalence) process in U with this property. 2

To proceed further, let us suppose that the convex functions ϕ(·) and ψ(·) satisfy the condition
f(x± 1) ≤ c1 + c2 · f(x), ∀ x ∈ IR(2.6)

for some suitable constants c1 > 0, c2 > 0.

REMARK 2.1. For a convex function f : IR → IR, condition (2.6) guarantees that f(·) �does not
grow too fast�; e.g. f(x) = |x|p for p ≥ 1, or f(x) = eα|x| for α > 0 , both satisfy this condition
(but f(x) = eαx

2
for α > 0 does not). The derivatives

D±f(x) 4
= lim

ε↓0
f(x± ε)− f(x)

ε
, x ∈ IR

exist, satisfyD−f(·) ≤ D+f(·) everywhere on IR, and may differ on a set which is at most countable.
It can be checked that every convex function f(·) satisfying (2.6), also satisÞes the condition¯̄

D±f(x)
¯̄ ≤ d1 + d2 · f(x), ∀ x ∈ IR(2.7)

for suitable real constants d1 > 0, d2 > 0; furthermore, for any real h > 0, there exist βj = βj(h),
j = 1, 2 such that

f(x+ y) ≤ β1 + β2 · f(x); ∀ x ∈ IR, |y| ≤ h.(2.8)
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We shall assume, from now on, that

ϕ(·) is continuously differentiable,(2.9)

and introduce the family of Recursive Stochastic Operators

L±(t;u) 4= λ ·D±ψ¡u(t)¢+ IE ∙ϕ0µB + Z T

0
u(s) ds

¶¯̄̄̄
Ft
¸
, 0 ≤ t ≤ T(2.10)

for each u(·) ∈ U . Clearly, if ψ(·) is also continuously differentiable, we have

(2.10)0 L±(t; u) = L(t; u) 4= λ · ψ0¡u(t)¢+ IE ∙ϕ0µB + Z T

0
u(s) ds

¶¯̄̄̄
Ft
¸
.

THEOREM 2.2. If the process �u ∈ U satisÞes
L−(· ; u) ≤ 0 ≤ L+(· ; u), (`⊗ IP)− a.e. on [0, T ]× Ω,(2.11)

then �u(·) is optimal for the control problem (i.e., attains the inÞmum of (2.3)). Conversely, if both
ϕ(·) and ψ(·) satisfy the condition (2.6) and the process u∗(·) ∈ U is optimal for the control problem,
then u∗(·) satisÞes the Recursive Stochastic Inequalities of (2.11).
COROLLARY 2.1. Suppose that both ϕ(·) and ψ(·) are continuously differentiable, and satisfy
the condition (2.6). Then the Recursive Stochastic Equation

λ · ψ0¡u(t)¢+ IE ∙ϕ0µB + Z T

0
u(s) ds

¶¯̄̄̄
Ft
¸
= 0 , ∀ 0 ≤ t ≤ T(2.12)

admits a unique solution u∗(·) ∈ U , and this process u∗(·) is optimal for the control problem.

Proof of Sufficiency in Theorem 2.2: Assume that �u(·) ∈ U satisÞes (2.11); let u(·) be an arbitrary
but Þxed element of U , and set v(·) = u(·)− �u(·) ∈ U . Then the convexity of ϕ(·),ψ(·) gives

ψ
¡
u(t)

¢− ψ¡�u(t)¢ ≥ v(t) · £D+ψ¡u(t)¢ · 1{v(t)≥0} +D−ψ¡�u(t)¢ · 1{v(t)<0}¤ , 0 ≤ t ≤ T,
as well as

ϕ

µ
B +

Z T

0
u(t) dt

¶
− ϕ

µ
B +

Z T

0
�u(t) dt

¶
≥
Z T

0
v(t) dt · ϕ0

µ
B +

Z T

0
�u(s) ds

¶
almost surely, and thus

IE

∙
ϕ

µ
B +

Z T

0
u(t) dt

¶
− ϕ

µ
B +

Z T

0
�u(t) dt

¶¸
≥ IE

Z T

0
v(t) · IE

∙
ϕ0
µ
B +

Z T

0
�u(s) ds

¶ ¯̄̄̄
Ft
¸
dt

IE

∙Z T

0
ψ
¡
u(t)

¢
dt−

Z T

0
ψ
¡
�u(t)

¢
dt

¸
≥ IE

Z T

0
v(t) · ©D+ψ¡�u(t)¢1{v(t)≥0} +D−ψ¡�u(t)¢1{v(t)<0}ª dt.

Therefore,

J(u)− J(�u) ≥ IE
Z T

0
v(t)

¡
L+(t; �u) · 1{v(t)≥0} + L−(t; �u) · 1{v(t)<0}

¢
dt ≥ 0
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holds for every u(·) ∈ U , thanks to (2.11), and the optimality of �u(·) ∈ U follows.
Proof of Necessity in Theorem 2.2: Now suppose that u∗(·) ∈ U is optimal for the control problem,
and take v(·) ∈ U with values in [0, 1] but otherwise arbitrary. Then J(u∗ + εv) ≥ J(u∗) holds for
each 0 < ε < 1, and

lim inf
ε↓0

1

ε
[J(u∗ + εv)− J(u∗)] ≥ 0.(2.13)

Clearly, the inequalities

ψ
¡
u∗(t) + εv(t)

¢− ψ¡u∗(t)¢ ≤ εv(t) ·D+ψ¡u∗(t) + εv(t)¢ , 0 ≤ t ≤ T
and

ϕ

µ
B +

Z T

0

¡
u∗(t) + εv(t)

¢
dt

¶
−ϕ

µ
B +

Z T

0
u∗(t) dt

¶
≤ ε

Z T

0
v(t) dt · ϕ0

µ
B +

Z T

0

¡
u∗(t) + εv(t)

¢
dt

¶
hold almost surely, and in the light of (2.13) they lead to

lim inf
ε↓0

IE

∙
λ

Z T

0
v(t) ·D+ψ¡u∗(t) + εv(t)¢ dt+ Z T

0
v(t) · ϕ0

µ
B +

Z T

0

¡
u∗(s) + εv(s)

¢
ds

¶
dt

¸
≥ 0.

(2.14)

In this last expression, we would like to interchange the limit and the expectation. This can be
justiÞed as follows: From the assumption (2.6) and Remark 2.1 following it, we deduce the a.s.
bounds ¯̄

D+ψ
¡
u∗(t) + εv(t)

¢¯̄ ≤ d1 + d2 · ψ¡u∗(t) + εv(t)¢ ≤ γ1 + γ2 · ψ¡u∗(t)¢,
for suitable positive constants dj , γj (j = 1, 2); similarly,¯̄̄̄

ϕ0
µ
B +

Z T

0
u∗(t) dt+ ε

Z T

0
v(t) dt

¶¯̄̄̄
≤ d01 + d

0
2 · ϕ

µ
B +

Z T

0
u∗(t) dt+ ε

Z T

0
v(t) dt

¶
≤ γ01 + γ

0
2 · ϕ

µ
B +

Z T

0
u∗(t) dt

¶
, a.s.

But

IE

∙
λ

Z T

0
ψ
¡
u∗(t)

¢
dt+ ϕ

µ
B +

Z T

0
u∗(t) dt

¶¸
= J(u∗) <∞,

and so, by the right-continuity ofD+ψ(·),ϕ(·) and the Dominated Convergence Theorem, we obtain

0 ≤ IE

∙
lim
ε↓0

Z T

0
v(t)

½
λ ·D+ψ¡u∗(t) + εv(t)¢+ ϕ0µB + Z T

0
u∗(s) ds+ ε

Z T

0
v(s) ds

¶¾
dt

¸
= IE

∙Z T

0
v(t)

½
λ ·D+ψ¡u∗(t)¢+ IE ∙ϕ0µB + Z T

0
u∗(s) ds

¶ ¯̄̄̄
Ft
¸¾
dt

¸
.

Since v(·) is arbitrary, this implies L+(· ; u∗) ≥ 0, (` ⊗ IP)-a.e. on [0, T ] × Ω. It can be shown
similarly that L−(· ; u∗) ≤ 0, (`⊗ IP)-a.e. on [0, T ]× Ω. 2
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3 THE QUADRATIC CASE

In the special case ϕ(x) = ψ(x) = x2, the Recursive Stochastic Equation of (2.12) for the optimal
control process u∗(·) ∈ U , becomes

λu∗(t) + IE
∙
B +

Z T

0
u∗(s) ds

¯̄̄̄
Ft
¸
= 0, 0 ≤ t ≤ T.(3.1)

In particular, u∗(·) is a martingale in this case. Thus, the equation (3.1) can be written in terms
of another martingale, namely, the conditional expectation

�B(t)
4
= IE

£
B
¯̄Ft¤, 0 ≤ t ≤ T(3.2)

of the random variable B given the observations, in the simpler form

(3.1)0 (λ+ T − t) · u∗(t) +
Z t

0
u∗(s) ds+ �B(t) = 0, 0 ≤ t ≤ T.

This last equation can be solved readily:

u∗(t) = −ϑT (t) �B(t) +
Z t

0
ϑ2T (s)

�B(s) ds = u∗(0)−
Z t

0
ϑT (s) d �B(s) , 0 ≤ t ≤ T(3.3)

with

ϑT (t)
4
=

1

λ+ T − t , u∗(0) = − IE(B)
λ+ T

.(3.4)

Furthermore, the value of the stochastic control problem can be expressed in the form

V = J(u∗) = inf
u∈U

J(u) = IE(B2)− λ
Z T

0
ϑ2T (t) · IE

h
�B2(t)

i
dt.(3.5)

REMARK 3.1. The formula (3.3) shows that the certainty-equivalence principle holds for the prob-
lem of (2.2), when ψ(·) and ϕ(·) are quadratic but the Þltration IF is quite general. To see this,
think of the process

Xu(t) = B +

Z t

0
u(s) ds, 0 ≤ t ≤ T(3.6)

as the �state-process�. Because Xu(·) has linear dynamics, in a degenerate sense, for each Þxed
control law u(·), problem (2.2) with quadratic ψ(·) and ϕ(·) is just a partially-observed Linear
Quadratic (LQ) control problem, differing from the standard LQ problem only in that the �ob-
servation� Þltration, with respect to which the control is adapted, is general and Þxed (does not
depend on the control process u(·)). Now the equation (3.1)0 may be re-written in the form

u∗(t) = −ϑT (t) · �Xu∗(t)
4
= ϑT (t) · IE

h
Xu∗(t)

¯̄Fti , 0 ≤ t ≤ T ,(3.7)
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which identiÞes the function ϑT (·) of (3.4) as a �gain�. But it is easily checked that if B is
observable (i.e., F0−measurable), then we have

ū∗(t) = ϑT (t) ·
∙
B +

Z t

0
ū∗(s) ds

¸
= −ϑT (t) ·X ū∗(t) , 0 ≤ t ≤ T(3.8)

for the optimal control process ū∗(·). Comparison of (3.7) and (3.8) gives the certainty-equivalence
principle. Notice that no assumption of normality was placed upon the initial (prior) distribution
of Xu(0) = B.

We are not aware of such a general statement of the certainty-equivalence principle, although the
generality seems to be well-recognized. Whittle (1990) develops LQ stochastic control in discrete
time, assuming that IF is generated by an observation process whose dependence on the state-
process noise is linear. Haussmann (1987) analyzes the standard case of linear observations in
additive white noise, with initial law not necessarily normal.

Proof of (3.3): With the notation of (3.2), (3.4) and using the martingale property of u∗(·), the
equation (3.1) takes the form

�B(t) +

Z t

0
u∗(s) ds = −(λ+ T − t) · u∗(t), 0 ≤ t ≤ T

of (3.1)0. In particular, u∗(0) = −IE(B)/(λ+ T ). This expression can be written in the equivalent,
differential form

d �B(t) = −(λ+ T − t) du∗(t),
which leads directly to (3.3) after integrating by parts. 2

Proof of (3.5): The value of the control problem is

V = λ · IE
Z T

0

¡
u∗(t)

¢2
dt+ IE

µ
B +

Z T

0
u∗(s) ds

¶2
.(3.9)

Denoting by

X(t)
4
= �B(t) +

Z t

0
u∗(s) ds, 0 ≤ t ≤ T(3.10)

the conditional expectation IE
£
Xu∗(t)

¯̄ F(t)¤ of the expression of (3.6) with u(·) = u∗(·), given the
observations up to time t, we see that

IE

µ
B +

Z T

0
u∗(s) ds

¶2
= IE

³
B +X(T )− �B(T )

´2
= IE

¡
B2
¢
+ IE

³
X2(T )− �B2(T )

´
= IE

¡
B2
¢
+ IE

∙Z T

0
u∗(t) dt

µ
2 �B(T ) +

Z T

0
u∗(s) ds

¶¸
.

Thanks to the martingale property of the processes u∗(·) and �B(·), this last expectation is

IE

Z T

0
u∗(t)

∙
2 �B(T ) +

Z t

0
u∗(s) ds+

Z T

t
u∗(s) ds

¸
dt

= IE

Z T

0
u∗(t)

h
2 �B(t) +

¡
X(t)− �B(t)

¢
+ (T − t)u∗(t)

i
dt.

8



Therefore, (3.9) becomes

V = IE
¡
B2
¢
+ IE

Z T

0
u∗(t)

h
X(t) + �B(t) + (λ+ T − t)u∗(t)

i
dt(3.11)

= IE
¡
B2
¢
+ IE

Z T

0
u∗(t) �B(t) dt,

thanks to (3.1)0 and (3.10). Substituting from (3.3), we can write this last expectation as

IE

Z T

0

�B(t)u∗(t) dt = IE

Z T

0

�B(t)

∙
−ϑT (t) �B(t) +

Z t

0

�B(s)ϑ2T (s) ds

¸
dt

= − IE
Z T

0
ϑT (t) �B

2(t) dt + IE

Z T

0

�B(s)ϑ2T (s)

µZ T

s

�B(t) dt

¶
ds

= −
Z T

0
ϑT (t) · IE

³
�B2(t)

´
dt + IE

Z T

0

�B2(s)ϑ2T (s) · (T − s) ds

= −
Z T

0
IE
³
�B2(t)

´
· ϑT (t) [1− (T − t)ϑT (t)] dt

= − λ
Z T

0
ϑ2T (t) · IE

³
�B2(t)

´
dt.

Finally, substituting back into (3.11), we arrive at the expression of (3.5). 2

4 A SPECIFIC FILTRATION

Let us specialize now to the case where the Þltration IF is the augmentation F(t) of FY (t) 4
=

σ {Y (s), 0 ≤ s ≤ t}, namely, the Þltration generated by the observation process

Y (t)
4
= Bt+W (t), 0 ≤ t ≤ T.(4.1)

Here W (·) is a standard Brownian motion, independent of the random variable B. It will be
assumed throughout that

IE
¡
B2
¢
<∞.(4.2)

The distribution of B will be denoted by µ, and, if µ is absolutely continuous with respect to
Lebesgue measure, its density dµ

dx will be denoted by p(·). Given a function f , we adopt the
notation

µ(f)
4
=

Z
f(x)dµ(x), hf, pi 4=

Z
f(x)p(x) dx

whenever the integrals exist. For convenience, we shall denote by h(·) the identity mapping h(x) =
x, x ∈ IR; thus, µ(h) or hh, pi is the expectation of the random variable B.

As in Section 3, the state process is

Xu(t)
4
= B +

Z t

0
u(s) ds, 0 ≤ t ≤ T.
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The stochastic control problem (2.2), using the Þltration generated by Y (·), is a variant (special
case) of the class of problems with linear state and observation dynamics but non-Gaussian initial
distributions, studied by Haussmann (1987). In our formulation, observation and control are already
separated. Theorem 2.1 and formula (2.12) lead to a direct construction of the optimal control, by
a method different from Haussmann�s. For our problem and method, Haussmann�s strong moment
assumption IE(eεB

2
) <∞ for some ε > 0, can be relaxed to (4.2).

Let µut (respectively, p
u
t (·)) denote the �posterior distribution� (respectively, the �posterior

density�), of the state Xu(t) given F(t), for a Þxed u ∈ U . Explicit formulae and recursive
equations for µut (or p

u
t (·)) are well-known from Þltering theory. We state these next. Our purpose

is to derive an explicit expression for the dependence of the value function on the law of B in the
quadratic case, and to provide background for the Mortensen dynamic programming equation in
function-space. We take up these tasks in the subsequent section.

Direct calculation shows that the posterior distribution of B, given the observations up to time
t, is given as

ηt(A)
4
= IP

¡
B ∈ A ¯̄Ft¢ = R

A exp
£
xY (t)− t

2x
2
¤
µ(dx)R

IR exp
£
xY (t)− t

2x
2
¤
µ(dx)

.(4.3)

For later purposes, it is convenient to adopt the notation

S(t, y)(x)
4
= exp

£
xy − t

2
x2
¤

and to deÞne the multiplication operator S(t, y)ν, which takes the measure ν to the new measure£
S(t, y)ν

¤
(A)

4
=

Z
A
exp

£
xy − t

2
x2
¤
ν(dx), A ∈ B(IR).(4.4)

DeÞne also the function

F (t, y;µ)
4
=
£
S(t, y)µ

¤
(IR) =

Z
IR
exp

£
xy − t

2
x2
¤
µ(dx) , t > 0, x ∈ IR,(4.5)

and observe that it satisÞes the backward heat equation

Ft +
1

2
Fyy = 0, on (0,∞)× IR.

Then (4.3) can be written as

ηt =
S
¡
t, Y (t)

¢
µ

F
¡
t, Y (t);µ

¢ .(4.6)

Finally, for ξ ∈ IR, let τξ denote the operation of translation by −ξ:£
τξν
¤
(A)

4
= ν(A− ξ).

Then the �posterior� distribution of Xu(t), given the observations (and the control u(·) used) up
to time t, is

µut (A) = IP
£
Xu(t) ∈ A ¯̄F(t)¤ = IP ∙B ∈ µA− Z t

0
u(s) ds

¶ ¯̄̄̄
F(t)

¸
(4.7)

= [τξηt] (A)
¯̄̄
ξ=U(t)

=
[τξS(t, y)µ] (A)

F (t, y;µ)

¯̄̄̄
y=Y (t), ξ=U(t)

=

£
S
¡
t, Y (t)

¢
µ
¤¡
A− U(t)¢

F
¡
t, Y (t);µ

¢ ,

10



where U(t)
4
=
R t
0 u(s) ds. From these identities it follows that

�B(t) = IE
£
B
¯̄F(t)¤ = G¡t, Y (t);µ¢, t ≥ 0,(4.8)

where

G(t, y;µ)
4
=

µ
Fy
F

¶
(t, y;µ) =

1

F (t, y;µ)

Z
IR
xS(t, y)(x)µ(dx).(4.9)

Similarly, the posterior variance of B is

Vart(B)
4
= IE

h¡
B − �B(t)

¢2 ¯̄F(t)i = Gy
¡
t, Y (t);µ

¢
.(4.10)

It is well-known from Þltering theory that the �innovations process�

N(t)
4
= Y (t)−

Z t

0

�B(s) ds = Y (t)−
Z t

0
G
¡
s, Y (s);µ

¢
ds, 0 ≤ t ≤ T(4.11)

is an IF-Brownian motion (cf. Kallianpur (1980), or Liptser & Shiryaev (2000), Chapter 8).
By It�o�s rule and the equation

Gt +
1

2
Gyy +GGy = 0, on (0,∞)× IR,(4.12)

we obtain the equation

d �B(t) = Vart(B) dN(t), �B(0) = µ(h),(4.13)

which is also well-known from Þltering theory.

§4.1 The Value Function in the case of Quadratic Cost-Functions

Let us consider the special case ϕ(x) = ψ(x) = x2. Then, in light of (3.5) and (4.8), the value
V ≡ V (T, µ) of the partially-observed stochastic control problem may be written explicitly

V (T, µ) = µ(h2)− λ
Z T

0
ϑ2T (t) · IEµ

£
G2
¡
t, Bt+W (t);µ

¢¤
dt ,(4.14)

as a function of the time-to-go T and of the �prior� distribution µ for the random variable B. We
are using the notation

IEµ
£
H
¡
t, Bt+W (t)

¢¤ 4
=

Z
IR
µ(db)

Z
IR
H(t, bt+ w)

e−
w2

2t√
2πt

dw

 .(4.15)

REMARK 4.1. A change of variables and an integration show that

(4.15)0 IEµ
£
H
¡
t, Bt+W (t)

¢¤
= IE

£
H
¡
t,W (t)

¢ · F¡t,W (t);µ¢¤
in the notation of (4.5) and (4.15). Then, in (4.14), we may write

IEµ
£
G2
¡
t, Bt+W (t);µ

¢¤
= IE

"Ã
F 2y
F

!¡
t,W (t);µ

¢#
,(4.16)

a simpliÞcation which is sometimes useful.
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REMARK 4.2. We shall assume often that µ has density p(·) = dµ
dx with respect to Lebesgue

measure. In such a case, we shall Þnd it useful to replace µ everywhere in the notation, by p(·), for
instance

F (t, y; p) =

Z
IR
exy−

t
2
x2p(x) dx, G(t, y; p) =

Fy(t, y; p)

F (t, y; p)

in (4.5), (4.9), or

(4.14)0 V (T, p) = hh2, pi− λ
Z T

0
ϑ2T (t) · IEp

£
G2
¡
t, Bt+W (t); p

¢¤
dt

in (4.14). This should cause no confusion.

§4.2 The Time-Derivative of V (t, µ)

The following relatively simple calculation will be needed in the sequel.

LEMMA 4.1. The function V (T, µ) of (4.14) has temporal derivative

∂

∂T
V (T, µ) = − λ

(λ+ T )2
µ2(h)− λ

Z T

0
ϑ2T (t) · IEµ

£
G2y
¡
t, Bt+W (t);µ

¢¤
dt.(4.17)

Proof: Differentiation in (4.14) gives

−1
λ

∂

∂T
V (T, µ) = ϑ2T (T ) · IEµ

£
G2
¡
T,BT +W (T );µ

¢¤− Z T

0
IEµ
£
G2
¡
t, Bt+W (t);µ

¢¤ · ∂
∂t

¡
ϑ2T (t)

¢
dt

= ϑ2T (0)µ
2(h) +

Z T

0
ϑ2T (t) ·

∂

∂t
IEµ
£
G2
¡
t, Bt+W (t);µ

¢¤
dt,

which leads directly to (4.17) in conjunction with the observation

IEµ
£
G2
¡
t, Bt+W (t);µ

¢¤
= µ2(h) +

Z t

0
IEµ
£
G2y
¡
s,Bs+W (s);µ

¢¤
ds, 0 ≤ t ≤ T.(4.18)

To see that (4.18) holds, re-write it in the form

(4.18)0 IE
³
�B2(t)

´
= µ2(h) +

Z t

0
IE (Vars(B))

2 ds, 0 ≤ t ≤ T

using the notation of (4.8) and (4.10), and observe that

d
³
�B(t)

´2
= 2 �B(t) · Vart(B) dN(t) + (Vart(B))2 dt

is a consequence of (4.13) and It�o�s rule. In particular,

IE
³
�B2(t ∧ τn)

´
= IE

¡
B2
¢
+ IE

Z t∧τn

0
(Vars(B))

2 ds, ∀ n ∈ IN,

where τn
4
= inf

n
t ≥ 0± | �B(t)|+Vart(B) ≥ no ∧ T . Then (4.18) follows by letting n→∞, thanks

to the Monotone and the Dominated Convergence Theorems, as well as Doob�s inequality

IE

"
sup
0≤t≤T

�B2(t)

#
≤ 4 · IE

h
�B2(T )

i
≤ 4 · IE £B2¤ <∞ ,

which is valid since �B(·) is a martingale. 2
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5 A FORMAL HJB EQUATION OF MORTENSEN

Throughout this section, which is mostly heuristic, it will be assumed that the initial distribution
µ of B admits a probability density function p(·).

In the framework of the speciÞc Þltration of Section 4, we may express the cost functional J(u)
of (2.2) as

J(u;T, p) = IE

∙
λ

Z T

0
ψ
¡
u(t)

¢
dt+ ϕ

¡
Xu(T )

¢¸
= IE

∙
λ

Z T

0
ψ
¡
u(t)

¢
dt+ hϕ, puT i

¸
,(5.1)

using the notation of Section 4 for the posterior density puT (·) of the random variable Xu(T ) at
time T , and indicating explicitly the dependence on time-to-go T and on the prior density p(·).
Similarly, we write the value function as

V (T, p)
4
= inf
u∈U

J(u;T, p).(5.2)

Now observe that the process {put (·), 0 ≤ t ≤ T}, satisÞes the Kushner-Stratonovich Þltering
equation ½

dput (x) = −u(t) · ∂∂xput (x) dt+
¡
x− hh, put i

¢
put (x) dN(t) ; t > 0, x ∈ IR

pu0(x) = p(x) ; x ∈ IR(5.3)

(cf. Kallianpur (1980), or Liptser & Shiryaev (2000), Chapter 8), where N(·) is the innovation
process of (4.11). If the �prior� density p(·) is continuously differentiable, then (5.3) follows by It�o
differentiation of the formula

put (x) =
exp

h¡
x− U(t)¢Y (t)− t

2

¡
x− U(t)¢2i

F
¡
t, Y (t); p

¢ · p¡x− U(t)¢ ,(5.4)

where U(t) =
R t
0 u(s) ds. The expression of (5.4) is just the density version of (4.7).

More generally, (5.3) is valid in a weak form. If f : IR → IR is any C1-function with compact
support, then from (4.7) we have

dµut (f) = ut · µut (f 0) dt+ µut
¡
(h− µt(h))f

¢
dN(t).(5.5)

Now the equations (5.2)-(5.3) describe a fully-observed stochastic control problem. Mortensen
(1966) suggested a Hamilton-Jacobi-Bellman-type equation for this kind of reformulation of par-
tially observed control, by analogy with ordinary stochastic control. If one has (5.3) as the equation
of evolution in an inÞnite-dimensional space of densities p(·), along with a deÞnition of Þrst- and
second-order functional derivatives DpV (T, p)[q] and DppV (T, p)[q1, q2] on this space (as in (6.2)
and (6.3)), Mortensen�s equation takes the form

 ∂V
∂T (T, p) = 1

2DppV (T, p) [h− hh, pi, h− hh, pi] + mina∈IR
µ
λψ(a)− a ·DpV (T, p)[p0]

¶
,

V (0, p) = hϕ, pi,

(5.6)

13



for the problem under consideration. Going further, if for a Þxed T ∈ (0,∞) we set

u∗(t, p) 4= argmina∈IR
©
λψ(a)− a ·DpV (T − t, p)[p0]

ª
,(5.7)

or equivalently,

u∗(t, p) =
¡
ψ0
¢−1µ 1

λ
·DpV (T − t, p)[p0]

¶
,(5.8)

then (5.8) should provide an optimal law in feedback form; that is, if p∗(·) solves the evolution
equation ½

dp∗t (x) = −u∗(t, p∗t ) · ∂∂xp∗t (x) dt+
¡
x− hh, p∗t i

¢
p∗t (x) dN(t), t > 0

p∗0(x) = p(x),

then {u∗(t, p∗t ), 0 ≤ t < T} should be an optimal control law for the partially-observed stochastic
control problem under consideration.

As usual, the connection between (5.6) and stochastic control is forged through It�o�s rule. Sup-
pose one has a candidate solution V to (5.6). Then from (5.3) it follows that

dV (T − t, put ) =
½
− ∂

∂T
V (T − t, put )− utDpV (T − t, put )

£
(put )

0¤(5.9)

+
1

2
DppV (T − t, put )

£¡
h− hh, put i

¢
put ,
¡
h− hh, put i

¢
put
¤¾

dt

+DpV (T − t, put )
£¡
h− hh, put i

¢
put
¤
dN(t).

In conjunction with (5.6), the semimartingale decomposition (5.9) implies, again formally, thatn
V (T − t, put ) + λ

R t
0 ψ
¡
u(s)

¢
ds, 0 ≤ t ≤ T

o
is a (local) supermartingale, and hence, with some

extra work, that V (T, p) ≤ J(u, T, p). In other words, V (T, p) is a lower bound on the value of the
stochastic control problem. Likewise, if u∗(·) as in (5.7) deÞnes an admissible control, (5.6) and
(5.9) should imply V (T, p) = J(u∗;T, p), since then

n
V (T − t, pu∗t ) + λ

R t
0 ψ
¡
u∗(s)

¢
ds, 0 ≤ t ≤ T

o
is a (local) martingale.

To what extent can Mortensen�s idea be developed into a rigorous theory that covers the sto-
chastic control problem of (5.2)-(5.3)? This question was posed and discussed in a broad context
by Beneÿs & Karatzas (1983). They gave an analytic sense to (5.6) but offered no examples. In
Section 6, we show that the function V (T, p), deÞned in (4.14) for the quadratic case, does indeed
provide such an example, if we calculate DpV and DppV formally.

The ideal theory for Mortensen�s equation would start with an analytic and general deÞni-
tion of the functional derivatives DpV and DppV , build spaces of regular functionals based on
these derivatives � analogues of IL2(IR) or the Sobolev space H2(IR) � and prove that V be-
longs to such a class. This we have not attemped, for reasons to be discussed shortly. But we
do show in Section 7 that (5.9) is rigorously valid for our formally deÞned DpV (T, p)[p

0] and
DppV

£¡
h− hh, pi¢p, ¡h− hh, pi¢p¤. From the point of view of stochastic control, (5.9) is the fact

one really needs; its validity explains, in a loose sense, why the formal veriÞcation of Mortensen�s
equation is valid.
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Fleming & Pardoux (1982) introduced another viewpoint on the idea of regarding partially-
observed control as the fully-observed control of an inÞnite-dimensional stochastic evolution. They
re-wrote the problem as one of the controlling the Zakai equation for the unnormalized conditional
density. Because the Zakai equation can often be treated as an evolution equation in a nice Hilbert
space, for example IL2(IR), the Fleming-Pardoux approach can be made rigorous under fairly general
assumptions and does provide a framework for Mortensen�s equation. See Lions (1988, 1989)
for analytic developments of this theory using viscosity solution ideas. The advantage of the
Hilbert space context is that it allows for easy and general deÞnitions of the Þrst- and second-order
functional derivatives.

A parallel development of a general theory for partially-observed stochastic control (on an inÞ-
nite horizon, with discounting) appears in the work of Hijab (1991, 1992). This authos discusses the
existence, uniqueness and Þrst-order smoothness of solutions for the analogue of Mortensen equa-
tion (5.6) in the space P(IRd) of probability measures on IRd, with suitable deÞnitions of Þrst- and
second-derivatives. Hijab studies Þrst-order smoothness of the value function of partially-observed
control problems as a functional on the space P(IRd), using the following approach. Consider, for
example, a functional Φ on P(IRd); the tangent space T (P ;µ) to P ≡ P(IRd) at a probability
measure µ, is deÞned to be the set of bounded, signed measures ν, such that µ + |t|ν ∈ P(IRd)
for all sufficiently small t. (This �tangent space� differs for different µ; the space of probability
measures cannot be characterized as a manifold modelled on a Banach space.) The differential of
Φ at µ, if it exists, is given by a function ψµ(·) such that d

dtΦ(µ + tν)|t=0 = ν(ψµ) ≡
R
ψµ(x) dx ,

for every ν ∈ T (P;µ). It can be veriÞed that V (T, µ) as deÞned in (4.14) is differentiable in that
sense. Hijab gives general conditions under which the value function has such Þrst-order regularity.

In the problem of our paper, these approaches do not appear helpful when the cost functions
ϕ(·),ψ(·) are unbounded. For example, V (T, p) as deÞned in (4.14) does not extend naturally to
a linear space such as IL

1 4
=
©
ρ ∈ IL1 ± hh2, ρi <∞ª, because the term F (t, y; p) that appears in

the denominator of G can vanish if p(·) is not positive. This difficulty goes to the heart of deÞning
DpV (T, p)[p

0] and DppV (T, p)[q1, q2] rigorously, because the choice of space of the variation in
direction q(·) from p(·) is delicate. In our treatment, we stick with the formal deÞnitions and do
not try rigorously to formulate a notion of Þrst- and second-order derivatives. The formal directions
of differentiation for the expressions in Mortensen equation are not necessarily in the tangent space,
anyway. Rather, they are the expressions, to the Þrst order, of a special, Þnite-dimensional, space
of nonlinear variations in the space of probability measures. Fortunately, in order to establish (5.9),
one need analyze rigorously only these variations, and show that they may be computed in terms
of the formal derivatives derived in Section 6. This program is carried out in Section 7.

6 FORMAL VALIDITY OF MORTENSEN�S EQUATION

Let ϕ(x) = ψ(x) = x2. Then Mortensen�s equation (5.6) becomes½
∂V
∂T (T, p) = 1

2DppV (T, p) [h− hh, pi, h− hh, pi]− 1
4λ (DpV (T, p)[p

0])2 , T > 0
V (T, p) = hh2, pi.(6.1)

In this section, we undertake all our formal calculations assuming p ∈ IL1(IR) ∩ C1(IR) and
IE(B4) = hh4, pi < ∞. Let V (T, p) be deÞned as in (4.14), Remark 4.2. We shall deÞne the
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directional derivatives

DpV (T, p)[q]
4
=

d

dε
V (T, p+ εq)

¯̄̄̄
ε=0

(6.2)

DppV (T, p)[q, r]
4
=

d

dε
DpV (T, p+ εr)[q]

¯̄̄̄
ε=0

,(6.3)

formally assuming that V (T, p + εq), V (T, p + εr) make sense for all sufficiently small ε, that the
derivatives and integrals may be interchanged, and that all Þnal expressions are well-deÞned.

In the resulting expression for DpV (T, p)[p
0], all dependence on p0(·) factors through integrals

of the type hg, p0i. We evaluate DpV (T, p)[p0], assuming the integration by parts formula hg, p0i =
−hg0, pi whenever hg, p0i appears. With these assumptions, we show formally that

DpV (T, p)[p
0] = − 2λ

λ+ T
· hh, pi ,(6.4)

DppV (T, p)
£¡
h− hh, pi¢p, ¡h− hh, pi¢p¤ = −2λ

Z T

0
ϑ2T (t) · IEp

£
G2y
¡
t, Bt+W (t); p

¢¤
dt.(6.5)

In conjunction with

∂

∂T
V (T, p) = − λ

(λ+ T )2
hh, pi2 − λ

Z T

0
ϑ2T (t) · IE

£
G2y
¡
t, Bt+W (t); p

¢¤
dt,

the expression of (4.17) for the temporal derivatives of V (T, p), the formal computations (6.4) and
(6.5) show that V obeys the Mortensen equation (6.1).

Recall from (3.7) that the optimal control u∗(·) satisÞes

−(λ+ T − t) · u∗(t) = IE
h
Xu∗(t)

¯̄F(t)i = hh, pu∗t i ;
thus, in light of (6.4), we have

u∗(t) =
1

2λ
·DpV (T − t, pu∗t )

£¡
pu

∗
t

¢0¤
, 0 ≤ t < T,

thereby verifying the feedback formula (5.7).

§6.1 Heuristic Computation of (6.2) and (6.3)

Differentiating formally the expression of (4.14)0 for V (T, p), Remark 4.2, with respect to its func-
tional argument as in (6.2), yields

DpV (T, p)[q] = hh2, qi− λ
Z T

0
ϑ2T (t) · IEq

£
G2
¡
t, Bt+W (t); p

¢¤
dt

− λ
Z T

0
ϑ2T (t) · IEp

£
2G
¡
t, Bt+W (t); p

¢ ·DpG¡t, Bt+W (t); p¢[q]¤ dt ;(6.6)
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here DpG(t, y; p)[q] is deÞned formally as in (6.2). Differentiating formally again, as in (6.3), leads
to

− 1

2λ
·DppV (T, p)[q, q] = 2

Z T

0
ϑ2T (t) · IEq

£
G
¡
t, Bt+W (t); p

¢ ·DpG¡t, Bt+W (t); p¢[q]¤ dt
+

Z T

0
ϑ2T (t) · IEp

h¡
DpG

¡
t, Bt+W (t); p

¢
[q]
¢2i

dt(6.7)

+

Z T

0
ϑ2T (t) · IEp

£
G
¡
t, Bt+W (t); p

¢ ·DppG¡t, Bt+W (t); p¢[q, q]¤ dt.
§6.2 Formal Derivation of (6.4)

Formal integration by parts leads to the formulae

F (t, y; p0) = (tFy − yF )(t, y; p), Fy(t, y; p
0) = (tFyy − yFy − F )(t, y; p).(6.8)

Hence, by simple calculation using the linearity of F, Fy, etc. in p(·), we get

DpG(t, y; p)[p
0] =

d

dε
G(t, y; p+ εp0)

¯̄̄̄
ε=0

= −
µ
1 + tG2 − tFyy

F

¶
(t, y; p) = −1 + tGy(t, y; p).(6.9)

On the other hand, integration by parts in (4.15) yields:

IEp0
£
G2
¡
t, Bt+W (t); p

¢¤
= −2t · IEp

£
(GGy)

¡
t, Bt+W (t); p

¢¤
.(6.10)

By substitution of (6.9) and (6.10) into (6.6) and use of

IEp
£
G
¡
t, Bt+W (t); p

¢¤
= IE[ �B(t)] = IE[B] = hh, pi,

we obtain

DpV (T, p)[p
0] = −2hh, pi+ 2λ

Z T

0
IEp
£
G
¡
t, Bt+W (t); p

¢¤ · ∂
∂t
ϑT (t) dt

= 2hh, pi £λ¡ϑT (T )− ϑT (0)¢− 1¤
= − 2λ

λ+ T
· hh, pi,

proving (6.4).

§6.3 Formal Derivation of (6.5)

Let r =
¡
h − hh, pi¢p. Because ∂k

∂yk
F (t, y; hp) = ∂k+1

∂yk+1
F (t, y; p) and F (t, y;αp) = αF (t, y; p) for

α ∈ IR, we have

DpG(t, y; p)[r] =
d

dε
G
¡
t, y; p+ εr

¢¯̄̄̄
ε=0

= Gy(t, y; p)(6.11)

and

DppG(t, y; p)[r, r] =
d

dε
DpG

¡
t, y; p+ εr)

¢
[r]

¯̄̄̄
ε=0

= −2Gy(t, y; p)
£
G(t, y; p)− hh, pi¤.(6.12)
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Substitution into (6.8), along with the observation that IEr[H] = IEp[BH]− hh, piIEp[H], leads to

− 1

2λ
·DppV (T, p)[r, r] = 2

Z T

0
ϑ2T (t) · IEp

h
G2y
¡
t, Bt+W (t); p

¢
+ ξ(t)

³
B − �B(t)

´i
dt,

where ξ(t)
4
= (GGy)

¡
t, Bt+W (t); p

¢
. But ξ(t) is F(t)-measurable for each 0 < t ≤ T , and so

IEp

h
ξ(t)

³
B − �B(t)

´i
= IEp

h
ξ(t)

³
�B(t)− �B(t)

´i
= 0.

This last step uses the assumption hh4, pi < ∞ since, by the methodology of Lemma 7.1 below
(in particular, the inequalities (7.13)-(7.16) with ε = 0, t > 0, k = 1, 2), we have then |ξ(t)| ≤
Kt
£
1 + |Bt+W (t)|3¤ and | �B(t)| ≤ Kt [1 + |Bt+W (t)|] for some real constant Kt; thus ξ(t)(B−

�B(t)) is integrable. The result (6.5) follows.

REMARK 6.1. Let ν be a positive, Þnite measure on IR, and denote by ν 0 the distributional
derivative of ν. Formally replacing p(·) by ν, and p0(·) by ν0 , in (6.4) and (6.5), we make the
identiÞcations

DpV (T, ν)[ν
0] ≡ − 2λ

λ+ T
hh, νi(6.13)

and

DppV (T, ν)
£¡
h− hh, νi¢ν, ¡h− hh, νi¢ν¤ ≡ −2λZ T

0
ϑ2T (t) · IEν

£
G2y
¡
t, Bt+W (t); ν

¢¤
dt.(6.14)

Here and below, hν is the measure [hν](A)
4
=
R
A xν(dx).

7 THE FORMAL DERIVATIVE AND IT�O RULE

In this section we return to considering the value function V (T, µ) of (4.14) for general probability
measures µ such that µ(h2) =

R
x2µ(dx) <∞. Our aim is to establish, with the identiÞcations of

DpV (T, µ)[µ
0] and DppV (T, µ)

£¡
h− hh, µi¢µ, ¡h− hh, µi¢µ¤ as in (6.13) and (6.14), the It�o formula

(5.9).

THEOREM 7.1. For 0 ≤ t < T , with the identiÞcations of (6.13), (6.14), and with µut deÞned as
in (4.7), we have the It�o rule

dV (T − t, µut ) =
½
− ∂

∂T
V (T − t, µut )− ut DpV (T − t, µut )

£
(µut )

0¤
+
1

2
DppV (T − t, µut )

£¡
h− hh, µut i

¢
µut ,

¡
h− hh, µut i

¢
µut
¤¾
dt(7.1)

+DpV (T − t, µut )
£¡
h− hh, µut i

¢
µut
¤
dN(t).
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Proof: Fix a probability measure µ on B(IR), and let

M(t, y, ξ)
4
=
τξS(t, y)µ

F (t, y;µ)
,

in the notation of (4.4)-(4.7). DeÞne

∂M

∂y
(t, y, ξ)

4
=
τξSy(t, y)µ

F (t, y;µ)
−G(t, y;µ)M(t, y, ξ),(7.2)

where

[τξSy(t, y)µ] (A)
4
=

Z
A

∂

∂y
S(t, y)(x− ξ)µ(dx− ξ) = [hτξS(t, y)µ] (A)− ξ · [τξS(t, y)µ] (A).

By substituting this expression in (7.2) and observing that

hh,M(t, y, ξ)i = ξ +G(t, y;µ),
we get

∂M

∂y
(t, y, ξ) =

¡
h− hh,M(t, y, ξ)i¢M(t, y, ξ).(7.3)

Now, from (4.7) and with U(t) =
R t
0 u(s) ds, we have µ

u
t =M

¡
t, Y (t), U(t)

¢
, thus also

V (T − t, µut ) = V
¡
T − t,M(t, y, ξ)¢¯̄

y=Y (t), ξ=U(t)
.(7.4)

We study the function
(T, r, y, ξ) 7−→ V

¡
T,M(r, y, ξ)

¢
on {T > 0, r > 0, y ∈ IR, ξ ∈ IR}, and show that it is continuously differentiable in (T, r, y, ξ),
that it is twice continuously differentiable in y, and that we have

∂V

∂T

¡
T,M(r, y, ξ)

¢
=

µ
− λ

(λ+ T )2
ν2(h)− λ

Z T

0
ϑ2T (t) · IEν

£
G2y
¡
t, Bt+W (t); ν

¢¤
dt

¶¯̄̄̄
ν=M(r,y,ξ)

(7.5)

by analogy with (4.17), as well as

∂V

∂r

¡
T,M(r, y, ξ)

¢
= DpV

¡
T,M(r, y, ξ)

¢ ∙∂M
∂r
(r, y, ξ)

¸
;(7.6)

∂V

∂y

¡
T,M(r, y, ξ)

¢
= DpV

¡
T,M(r, y, ξ)

¢ ∙∂M
∂y
(r, y, ξ)

¸
;(7.7)

∂V

∂ξ

¡
T,M(r, y, ξ)

¢
=

2λ

λ+ T
hh,M(r, y, ξ)i = −DpV

¡
T,M (r, y, ξ)

¢ £
M(r, y, ξ)0

¤
;(7.8)

∂2V

∂y2
¡
T,M(r, y, ξ)

¢
= DppV

¡
T,M(r, y, ξ)

¢∙∂M
∂y
(r, y, ξ),

∂M

∂y
(r, y, ξ)

¸
(7.9)

+DpV
¡
T,M(r, y, ξ)

¢ ∙ ∂2
∂y2

M(r, y, ξ)

¸
,
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with the indentiÞcations of (6.13), (6.14) and (7.3). In (7.6), we interpret

∂M

∂r
(r, y, ξ)

4
=

τξSr(r, y)µ

F (r, y;µ)
− Fr(r, y;µ)
F (r, y;µ)

M(r, y, ξ),

while in (7.9) we interpret

∂2M

∂y2
(r, y, ξ)

4
=

τξSyy(r, y)µ

F (r, y;µ)
−G(r, y;µ)

∙
τξSy(r, y)µ

F (r, y;µ)
+
∂M

∂y
(r, y, ξ)

¸
−Gy(r, y;µ)M(r, y, ξ)

in accordance with (7.2). Since Sr +
1
2Syy = 0, Fr +

1
2Fyy = 0, and thus Gy +G

2 = −2Fr/F , one
may check ∙

∂M

∂r
+
1

2

∂2M

∂y2

¸
(r, y, ξ) = −G(r, y;µ) ∂M

∂y
(r, y, ξ).(7.10)

The formulae (7.5)-(7.9) express the fact that variations in r, y, and ξ factor correctly through the
formal functional derivatives. Part of the assertion of (7.5)-(7.9) is that the right-hand sides are
well-deÞned for r > 0 , T > 0.

The It�o rule of (7.1) now follows easily by application of the ordinary It�o rule to the process©
V
¡
T − t,M(t, Y (t), ξ(t))¢; 0 < t < Tª using (7.2), (7.5)-(7.9), (7.10) and the observation
DpV

¡
T,M(r, y, ξ)

¢ ∙
G(r, y;µ)

∂M

∂y
(r, y, ξ)

¸
= G(r, y;µ) ·DpV

¡
T,M(r, y, ξ)

¢ ∙∂M
∂y
(r, y, ξ)

¸
,

which is due to the linearity of DpV (T, p)[q] in q. Recall �B(t) = G
¡
t, Y (t);µ) in making this

calculation.
It remains to establish (7.5)-(7.9). Note Þrst thatZ

eδx
2
M(s, y, ξ)(dx) <∞, if 0 < δ <

s

2
.(7.11)

Thus, the measureM(s, y, ξ) has strong moment properties. We already established (7.5) in Lemma
4.1 of Section 4, when M is replaced by a measure µ with weak moment properties, namely,
µ(h2) =

R
x2µ(dx) <∞.

We use the condition (7.11) in a crucial way in the proof of the identities (7.6), (7.7) and (7.9).
(Note that Haussmann (1987) imposes (7.11) on the prior distribution µ; namely, he assumesR
eδx

2
µ(dx) < ∞ for some δ ∈ (0,∞). The results of Section 3 show that this is not necessary in

our problem in order to obtain certainty-equivalence; and the results of the present section shows
that this is not necessary for justifying the Mortensen equation either.)

Proving (7.6), (7.7) and (7.9) is really a matter of interchanging differentiation and integra-
tion. If f(t, x) is differentiable in t and if for any compact set K ⊆ IR the set of functions©
∂
∂tf(t, x); t ∈ K

ª
can be dominated by an integrable, then

∂

∂t

Z
f(t, x) dx =

Z
∂f

∂t
(t, x) dx .

We use this principle to establish (7.7)-(7.9). Condition (7.11) is useful for obtaining the dominator.
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LEMMA 7.1. Suppose that
R
eεx

2
ν(dx) <∞ for some ε > 0. Then for each k ∈ IN, there exists

a constant Kν,k such that

sup
t∈[0,T ]

¯̄̄̄
¯̄ ∂

k

∂yk
F (t, y; ν)

F (t, y; ν)

¯̄̄̄
¯̄ ≤ µ2|y|ε

¶k
+Kν,k , ∀ y ∈ IR.(7.12)

Proof: Assume that ν
¡
[0,∞)¢ > 0. With y > 0, integration over the interval h−2yt+ε ,

2y
t+ε

i
and its

complement separately, leads to¯̄̄̄
∂k

∂yk
F (t, y; ν)

¯̄̄̄
≤

µ
2y

t+ ε

¶k
F (t, y; ν) +

Z
IR
|x|ke 12εx2ν(dx) ,(7.13)

for t ≥ 0, ε ≥ 0 with t+ ε > 0, because xy − t+ε
2 x

2 ≤ 0 for |x| ≥ 2y
t+ε . We have also

F (t, y; ν) ≥
Z ∞

0
e−Tx

2/2ν(dx) > 0, if y > 0, 0 < t ≤ T.(7.14)

Thus we obtain (7.12) for y > 0 and

Kν,k =

Z
IR
|x|keεx2/2ν(dx)

Á Z ∞

0
e−Tx

2/2ν(dx).

A similar bound will hold for y < 0, if ν
¡
(−∞, 0)¢ > 0. On the other hand, if ν¡[0,∞)¢ = 0 and

y > 0, we have¯̄̄̄
∂k

∂yk
F (t, y; ν)

¯̄̄̄
≤

µ
2y

t+ ε

¶k
F (t, y; ν) + e−

4
t+ε

y2
Z
{x<−2y/(t+ε)}

|x|keεx2/2ν(dx) ,(7.15)

for t ≥ 0, ε ≥ 0 with t+ ε > 0. Choosing an a < 0 such that ν¡[a, 0]¢ > 0, we have
F (t, y; ν) ≥ eya

Z 0

a
e−Tx

2/2 ν(dx),(7.16)

and thus (7.12) works for y > 0 and

Kν,k = max
y>0

³
e−

4
T+ε

y2−ay´ · Z
IR
|x|keεx2/2ν(dx)

Á Z 0

a
e−Tx

2/2 ν(dx). 2

COROLLARY 7.1. If C is a compact set in (0,∞)× IR2 and 0 < ε < inf {t / ∃(t, y, ξ) ∈ C}, then
for each n ∈ IN one can choose a constant Kk such that (7.12) obtains when Kν,k is replaced by Kk
for all ν ∈ {M(t, y, ξ); (t, y, ξ) ∈ C}.
Proof: The constants deÞning Kν,k in the various cases of the proof of Lemma 7.1 depend contin-
uously on the parameters t, y, ξ. 2
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Consider (7.7). By direct differentiation, we have

∂

∂y
G2
¡
t, b;M(s, y, ξ)

¢
= 2G

¡
t, b;M(s, y, ξ)

¢ ·DpG¡t, b;M(s, y, ξ)¢ ∙∂M
∂y
(s, y, ξ)

¸
= 2G

¡
t, b;M(s, y, ξ)

¢(Fy¡t, b; ∂M∂y (s, y, ξ)¢
F
¡
t, b;M(s, y, ξ)

¢ −
F
¡
t, b; ∂M∂y (s, y, ξ)

¢
F
¡
t, b;M(s, y, ξ)

¢ G¡t, b;M(s, y, ξ)¢) .
Now, from (7.2), we obtain

F

µ
t, b;

∂M

∂y
(s, y, ξ)

¶
= Fy

¡
t, b;M(s, y, ξ)

¢− hh,M(s, y, ξ)i F ¡t, b;M(s, y, ξ)¢
since F (t, b; hµ) = Fy(t, b;µ). Likewise,

Fy

µ
t, b;

∂M

∂y
(s, y, ξ)

¶
= Fyy

¡
t, b;M(s, y, ξ)

¢− hh,M(s, y, ξ)i Fy¡t, b;M(s, y, ξ)¢.
Thus

∂

∂y
G2
¡
t, b;M(s, y, ξ)

¢
= 2G

¡
t, b;M(s, y, ξ)

¢ · "Fyy
F
−
µ
Fy
F

¶2# ¡
t, b;M(s, y, ξ)

¢
,

and Lemma 7.1 gives

sup
t∈[0,T ]

¯̄̄̄
∂

∂y
G2
¡
t, b;M(s, y, ξ)

¢¯̄̄̄ ≤ KC ¡|b|3 + 1¢(7.17)

for a constant KC ∈ (0,∞), for (s, y, ξ) varying in any given compact set C ⊆ (0,∞)× IR2. Since

∂

∂y
IE
£
G2
¡
t, Bt+W (t);M(s, y, ξ)

¢¤
= IE

∙
2GDpG

¡
t, Bt+W (t);M(s, y, ξ)

¢ ∙∂M
∂y
(s, y, ξ)

¸¸
,

(7.18)

it is then clear from (7.17) that there is a dt× µ(db)-integrable function which dominates
∂

∂y

£
S(t, y)(b− ξ) · IEG2¡t, b;M(s, y, ξ)¢¤ = Sy(t, y)(b− ξ) · IEG2¡t, b;M(s, y, ξ)¢

+ S(t, y)(b− ξ) · IE
∙
2GDpG

¡
t, b;M(s, y, ξ)

¢ ∙∂M
∂y
(s, y, ξ)

¸¸
for (s, y, ξ) varying in any compact set C ⊆ (0,∞)× IR2. Since we have

V
¡
T,M(s, y, ξ)

¢
= hh2,M(s, y, ξ)i(7.19)

− λ
Z T

0

µZ
S(t, y)(b− ξ) · IEG2¡t, Bt+W (t);M(s, y, ξ)¢µ(db− ξ)¶ ϑ2T (t) dt

from (4.14), we see that differentiation with respect to y and integration can be integchanged; thus,
by the deÞnition of (6.6) of DpV (T, p)[q], the identity (7.7) is valid. Formulae (7.6) and (7.9) are
proved similarly.
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Formula (7.8) is handled differently. Observe by direct calculation that, if ν is a measure such
that hh2, νi <∞, we have

G(t, y; τξν) = ξ +G(t, y − ξt; ν)
and so

IEτξν
£
G2
¡
t, Bt+W (t); τξν

¢¤
= IEν

£
G2
¡
t, Bt+ ξt+W (t); τξν

¢¤
= IEν

£
ξ +G

¡
t, Bt+W (t); ν

¢¤2
.

Therefore, (4.14) gives

V (T, τξν) = ν
¡
(h+ ξ)2

¢− λZ T

0

³
IEν
£
ξ +G

¡
t, Bt+W (t); ν

¢¤2´
ϑ2T (t) dt.

It follows that

d

dξ
V (T, τξν)

¯̄̄̄
ξ=0

= 2ν(h)− 2λ
Z T

0

¡
IEν
£
G
¡
t, Bt+W (t); ν

¢¤¢
ϑ2T (t) dt.

But
IEν
£
G
¡
t, Bt+W (t); ν

¢¤
= IE[ �B(t)] = IE[B] = ν(h)

so that
d

dξ
V (T, τξν)

¯̄̄̄
ξ=0

=
2λ

λ+ T
ν(h).

Formula (7.8) follows immediately. 2
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