
Introduction

Method of Laplace transform is very useful in solving differential equations. Its main feature is
to convert a differential equation into an algebric equation, which allows us to obtain the Laplace
transform of the solution. There immediately lies the main difficulty – to obtain solution from its
Laplace transform (Inversion problem) is not easy at all except for some special forms. We shall
start with a brief review of improper integral.

1 Improper Integral and Laplace Transform

Suppose f(t) is a function on inteval 0 ≤ t <∞ (we can regard t as time).

Improper Integral: If the limit of integral over finite intervals

lim
h→∞

∫ h

0
f(t) dt

exists, then we say improper integral
∫ ∞
0 f(t) dt converges and define it by

∫ ∞

0
f(t) dt

�
= lim

h→∞

∫ h

0
f(t) dt.

Otherwise, we say the improper integral diverges.

Example: Evaluate the improper integral
∫ ∞

0

1
(1 + t)p

dt; here p > 0

Solution: First assume p �= 1. For h > 0, we have

∫ h

0

1
(1 + t)p

dt =
(1 + t)1−p

1− p
∣∣∣∣
h

0

=
(1 + h)1−p

1− p − 1
1− p,

which implies that

lim
h→∞

∫ h

0

1
(1 + t)p

dt =
{ 1

p−1 ; p > 1
∞ ; p < 1

Therefore the improper integral converges for p > 1, but diverges for p < 1. In case of p = 1,
we have ∫ h

0

1
(1 + t)

dt = log(1 + h) → ∞ as h→ ∞,
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and the improper integral diverges. In one word, the improper integral diverges for p ≤ 1,
and convergess for p > 1 with value∫ ∞

0

1
(1 + t)p

dt =
1

p− 1
for p > 1.

Example: Evaluate improper integral ∫ ∞

0

1
1 + t2

dt

Solution: It follows that∫ h

0

1
1 + t2

dt = arctan t|h0 = arctan h → π

2
, as h→ ∞.

Therefore, the improper integral converges with value∫ ∞

0

1
1 + t2

dt =
π

2

We state without proof a theorem that is very useful in determining the convergence of improper
integral.

Theorem: If |f(t)| ≤ g(t) for all t ≥ 0 and improper integral
∫ ∞
0 g(t) dt converges, then improper

integral
∫ ∞
0 f(t) dt also converges. On the other hand, if f(t) ≥ g(t) ≥ 0 and

∫ ∞
0 g(t) dt

diverges, then
∫ ∞
0 f(t) dt diverges.

Example: Prove that the improper integral ∫ ∞

0
e−t2 dt

converges. Actually, it can be shown that
∫ ∞

0
e−t2 dt =

√
π

2
.

Solution: It is easy to see that e−t2 ≤ e−t for t ≥ 1, and e−t2 ≤ 1 for 0 ≤ t < 1. Hence
e−t2 ≤ g(t) with

g(t)
�
=

{
1 ; 0 ≤ t < 1
e−t ; t ≥ 1

But
∫ ∞
0 g(t) dt = 1 + 1

e converges. Therefore
∫ ∞
0 e−t2 dt converges.

To calculate the improper integral, it suffices to show that

A
�
=

∫ ∞

−∞
e−t2 dt =

√
π

However, we have

A2 =
∫ ∞

−∞
e−x2

dx ·
∫ ∞

−∞
e−y2

dy =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2) dxdy.

2



Using Polar coordinates, x = r cos θ, y = r sin θ, with r ≥ 0, 0 ≤ θ < 2π, we have dxdy =
rdrdθ and

A2 =
∫ ∞

0

∫ 2π

0
e−r2

r drdθ = 2π
∫ ∞

0
re−r2

dr == −π · e−r2
∣∣∣∞
0

= π.

This completes the proof. ✷

Exercise: Determine whether the following improper integrals converge or diverge.

1.
∫ ∞
0

t√
t2+2

dt. (Hint: Diverge, since the integrand goes to 1 as t→ ∞)

2.
∫ ∞
0 e−st sin t dt. Here s > 0. (Hint: Converge, since

∣∣e−st sin t
∣∣ ≤ e−st)

3.
∫ ∞
0

1+t
1+t2 dt. (Hint: Diverge, since 1+t

1+t2 ≥ 1
1+t)

Definition of Laplace Transform: Suppose f(t) is defined for 0 ≤ t < ∞. The Laplace trans-
form of f is defined as the improper integral

L{f} = F (s)
�
=

∫ ∞

0
e−stf(t) dt

for all s such that the improper integral converges.

Remark: The Laplace transform of f(t) is a function of s.

The following theorem will give a satisfying description regarding the domain on which the Laplace
transform is well-defined.

Theorem: If improper integral
∫ ∞
0 e−stf(t) dt converges for some s = s0, then it converges for all

s > s0.

Example: Find Laplace transform of f(t) = eat. Here a is a constant.

Solution: The Laplace transform

L{
eat

}
=

∫ ∞

0
e−steat =

1
s− a, for s > a.

Example: Find Laplace transform of f(t) = 1√
t
.

Solution: The Laplace transform is

L
{

1√
t

}
=

∫ ∞

0
e−st 1√

t
dt =

2√
s

∫ ∞

0
e−x2

dx =
√
π√
s
.

Here the second equality follows from change of variable t = x2

s (we can assume s > 0,
otherwise the Laplace transform is clearly ∞).

Example: Find Laplace transform of f(t) = sin at, where a is a constant.

Solution: One way to find its Laplace transform is using formula

sin at =
eiat − e−iat

2i
.
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However, for s > 0,

L{
eiat

}
=

∫ ∞

0
e−(s−ia)t dt =

1
s− ia .

We have, for s > 0,

L{sin at} =
1
2i

(
1

s− ia − 1
s+ ia

)
=

a

s2 + a2

Exercise: Find the Laplace transform of f(t) = cos at. (Answer: s
s2+a2 )

There are many theorems that facilitate the computations of Laplace transforms of more com-
plicated functions. We shall state below a relatively simple one without proof.

Theorem: Suppose Laplace transform F (s) = L{f(t)} is well-defined for s > s0. We have

L{tf(t)} = −F ′(s), L{
t2f(t)

}
= F ′′(s), · · · , L{tnf(t)} = (−1)nF (n)(s), · · ·

for s > s0.

Intuition: We have F (s) =
∫ ∞
0 e−stf(t) dt. If we can exchange the order of differentiation

and integration, then

dF

ds
=
d

ds

∫ ∞

0
e−stf(t) dt =

∫ ∞

0

d

ds

(
e−stf(t)

)
dt = −

∫ ∞

0
e−st · tf(t) dt = −L{tf(t)} .

The derivation of F ′′(s), · · · follows similarly. ✷.

Let us use this theorem to calculate several examples.

Example: Find Laplace transform of f(t) = tneat. Here n ≥ 0 is an integer.

Solution: We know F (s)
�
= L{

eat
}

= 1
s−a . Hence

L{
tneat

}
= (−1)nF (n)(s) = (−1)n · (−1)n

n!
(s− a)n+1

=
n!

(s− a)n+1
.

Example: Find Laplace transform of f(t) = tn−
1
2 for all integer n ≥ 0.

Solution: We know F (s)
�
= L

{
1√
t

}
. Hence

L
{
tn−

1
2

}
= (−1)nF (n)(s) =

1 · 3 · 5 · · · (2n − 1)
2n

·
√
π

sn+ 1
2

.

2 Properties of Laplace Transform

Laplace transform is a linear operator, in the sense that

L{c1f1 + c2f2} = c1L{f1}+ c2L{f2}

for all constants c1, c2. More precisely, we have
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Theorem: If Laplace transforms of f1(t) and f2(t) converges for s > s1 and s > s2 respectively.
Then for s > max{s1, s2},

L{c1f1 + c2f2} = c1L{f1}+ c2L{f2},
where c1, c2 are constants.

Proof: Exercise.

Another extremely important property of Laplace transform is the one-to-one respondence
between functions and their Laplace transforms. More precisely, we have

Theorem: If f1 = f2, then L{f1} = L{f2}. Conversely, if L{f1} = L{f2}, then f1 = f2 provided
that f1, f2 are both continuous.

The proof of this theorem is beyond the scope of this text. More details can be found in D.V.
Widder “The Laplace Transform”.

This theorem enable us to define the inverse Laplace transform.

Definition: Suppose F is the Laplace transform of a continuous funtion f , that is

F = L{f}.
then the inverse Laplace transform of F , written as L−1{F}, is f . In another word

f = L−1{F}.

Remark: The inverse is well-defined and unambiguous by the previous theorem.

Example: Find the inverse Laplace transform of 1
s2 .

Solution: Since L{t} = 1
s2 , we have

L−1

{
1
s2

}
= t.

Exercise: Find the inverse Laplace transform of 1√
s
. (Answer: 1√

πt
).

Theorem: The inverse Laplace transform is a linear opeartor. That is

L−1 {c1F1 + c2F2} = c1L−1{F1} + c1L−1{F2}
for all constants c1, c2.

Proof: Let F1 = L{f1} and F2 = L{f2}, where f1, f2 are continuous functions. We have

L{c1f1 + c2f2} = c1L{f1} + c2L{f2} = c1F1 + c2F2

By definition, we have

L−1 {c1F1 + c2F2} = c1f1 + c2f2 = c1L−1{F1} + c1L−1{F2}.
This completes the proof. ✷
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Remark: It follows easily that

L−1 {c1F1 + c2F2 + · · · + cnFn} = c1L−1{F1} + c1L−1{F2} + · · · + cnL−1{Fn}.

for all n and constants c1, c2, · · · , cn.
The linear property of inverse Laplace transform helps to deal with more complicated Laplace

transforms. Before doing some examples, we shall briefly review Partial Fraction Expansion,
which is also very useful in solving initial value problems.

2.1 Partial Fraction Expansion

A quotient of form P (x)
Q(x) , where P (x), Q(x) are both polynomials and P (x) is of degree less than

Q(x), can be expanded into partial fractions. For example, we can expand quotient

3x− 1
x2 − 1

=
3x− 2

(x+ 1)(x− 1)

into the sum of two partial fractions
A

x+ 1
+

B

x− 1
,

where A,B are two constants yet to be determined. It is easy to see that

A

x+ 1
+

B

x− 1
=

(A+B)x+ (B −A)
x2 − 1

which implies that

A+B = 3, B −A = 1 ⇒ A = 1, B = 2 ⇒ 3x− 1
x2 − 1

=
1

x+ 1
+

2
x− 1

and we complete the partial fraction expansion.
In general, the form of each partial fraction in the expansion depends only on Q(x). It shall be

clear from the following example. Suppose

Q(x) = (x+ a)(x2 + b)(x2 + c)2(x+ d)3

and P (x) is some polynomial with degree less than Q(x). The partial fraction expansion of P (x)
Q(x)

will take form

P (x)
Q(x)

=
A

x+ a
+
Bx+ C
x2 + b

+
Dx+ E
x2 + c

+
Fx+G
(x2 + c)2

+
H

x+ d
+

I

(x+ d)2
+

H

(x+ d)3

The general rule can be concluded as

1. Term such as (x+ a) = (x+ a)1 has exponent 1 outside the parenthesis. Hence term (x+ d)
will once in the denominators of the expansion – as (x+ a).

2. Term such as (x2 + b) = (x2 + b)1 has exponent 1 outside the parenthesis. Hence term (x+ d)
will once in the denominators of the expansion – as (x2 + b).
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3. Term such as (x + d)3 has exponent 3 outside the parenthesis. Hence term (x + d) will
appear three times in the denominators of the expansion – as (x+ d), (x+ d)2, and (x+ d)3

respectively.

4. Term such as (x2 + c)2 has exponent 2 outside the parenthesis. Hence term (x2 + c) will
appear twice in the denominators of the expansion – as (x2 + c) and (x2 + c)2 respectively.

5. Each numerator is a polynomial of degree one less than that of the term inside the parenthesis
of its denominator.

Let us study the following examples.

Example: With the aid of partial fraction expansion, find the Inverse Laplace Transforms of the
following functions.

1. 3s+2
s(s+1)(s+2) 2. s

s2+2s+1
3. 3s2+s+1

s(s2+1)

Solution: From the general rule of determining the form of each term in partial fraction
expansion, it follows that

2s− 3
s(s+ 1)(s + 2)

=
A

s
+

B

s+ 1
+

C

s+ 2
⇒ A = B = 1, C = −2

s+ 2
s2 + 2s+ 1

=
s+ 2

(s+ 1)2
=

A

s+ 1
+

B

(s+ 1)2
⇒ A = 1, B = −1

3s2 + s+ 1
s(s2 + 1)

=
A

s
+
Bs+ C
s2 + 1

⇒ A = 1, B = 2, C = 1

Therefore, the inverse Laplace transform are

(1) 1 + e−t − 2e−2t (2) e−t − te−t (3) 1 + 2 cos t+ sin t

respcetively. ✷

3 Solutions to Initial Value Problems with Constant Coefficients

Consider the following linear differential equation

L[y]
�
= a0y(n) + a1y(n−1) + · · · + an−1y

′ + any = f(t),

where a0, a1, · · · , an are constants with an �= 0. An advantange of Laplace transform method is
that non-homogeneous (g(t) ≡ 0) and non-homogeneous (g(t) �= 0) equations are handled exactly
the same way.

Taking Laplace transform on both sides, we have

a0L
{
y(n)

}
+ a1L

{
y(n−1)

}
+ · · · + an−1L

{
y′

}
+ anL{y} = L{f(t)} := F (s)

Our next task is to evaluate L{
y(n)

}
in terms of Y (s)

�
= L{y}. We have the following important

theorem.
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Theorem: Let Y (s)
�
= L{y(t)}. We have, for n ≥ 1,

L
{
y(n)

}
= snY (s)− sn−1y(0) − · · · − sy(n−2)(0) − y(n−1)(0)

under some reguarlity conditions.

Proof: We first assume n = 1. In this case,

L{y′} =
∫ ∞

0
e−sty′(t) dt =

∫ ∞

0
e−st dy(t)

= e−sty(t)
∣∣∞
0

+
∫ ∞

0
y(t)se−st dt = sY (s) − y(0).

(In the last equality, we implicitly assume that limt→∞ e−sty(t) = 0). Similarly

L{y′′} = sL{y′} − y′(0) = s
[
sY (s)− y(0)] − y′(0) = s2Y (s)− sy(0) − y′(0).

Here we implicitly assume limt→∞ e−sty′(t) = 0 for the first equality and limt→∞ e−sty(t) = 0
for the second equality. In general, it can be shown that

L
{
y(n)

}
= snY (s)− sn−1y(0) − · · · − sy(n−2)(0) − y(n−1)(0)

under condition limt→∞ e−sty(k)(t) = 0 for k = 0, 1, · · · , n− 1. ✷

Remark: The condition that ensure the theorem to hold is

lim
t!1

e�sty(k)(t) = 0, k = 0, 1, · · · , n − 1.

This condition usually holds, especially, it always holds for a solution obtained by Laplace
transform method; see D. Widder, Advanced Calculus (1961), for details. In the following
examples, we will omit the details of verifying this condition for the solutions we obtained.

Example: Use the Laplace transform method to solve initial value problem

y′ + 2y = e−x, y(0) = 0

Solution: Observe that F (s)
�
= L{e−x} = 1

s+1 . Taking Laplace transform on both sides, and

letting Y (s)
�
= L{y}, we have

L{y′} + 2Y (s) =
1

s+ 1
⇒ sY (s) + 2Y (s) =

1
s+ 1

⇒ Y (s) =
1

(s+ 1)(s + 2)

To determine the inverse Laplace transform of 1
(s+1)(s+2) , we expand it in partial fraction. It

follows that

Y (s) =
1

(s + 1)(s + 2)
=

A

s+ 1
+

B

s+ 2
=
A(s+ 2) +B(s+ 1)

(s+ 1)(s + 2)
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which yileds that
A+B = 0, 2A+B = 1 ⇒ A = 1, B = −1

or

Y (s) =
1

s+ 1
− 1
s+ 2

⇒ y(t) = L−1
{
Y (s)

}
= L−1

{
1

s+ 1

}
− L−1

{
1

s+ 2

}

But L−1
{

1
s−a

}
= eat, we have

y(t) = e−t − e−2t.

Exercise: Solve initial value problem

y′ + 2y = e−x, y(0) = 4

Solution: It is very similar to the preceding example – the only difference is that L{y′} =
sY (s)− y(0) = sY (s) − 4. We obtain that

(s+ 2)Y (s) − 4 =
1

s+ 1
⇒ Y (s) =

4s + 5
(s+ 1)(s + 2)

=
1

s+ 1
+

3
s+ 2

We have y(t) = e−t + 3e−2t.

Example: Use Laplace transform method to solve initial value problem

y′′ − 2y′ + y = et, y(0) = 1, y′(0) = 0

Solution: Let Y (s) = L{y(t)}. It follows that

L{y′′} = s2Y (s) − sy(0)− y′(0) = s2Y (s)− s
L{y′} = sY (s)− y(0) = sY (s)− 1

Taking Laplace transform on both sides, we have

s2Y (s)− s− 2sY (s) + 2 + Y (s) =
1

s− 1

which implies that

Y (s) =
1

(s− 1)3
+

s− 2
(s − 1)2

=
1

(s− 1)3
+

(s− 1) − 1
(s− 1)2

=
1

(s− 1)3
− 1

(s− 1)2
+

1
s− 1

Therefore y(t) = (t2 − t+ 1)et (exercise!).

Exercise: Solve initial value problem

y(4) − y = 0, y(0) = 1, y′(0) = 0, y′′(0) = 2, y′′′(0) = 0.

Solution: Let Y (s)
�
= L{y(t)}, we have

s4Y (s) − s3 − 2s− Y (s) = 0 ⇒ Y (s) =
s3 + 2s
s4 − 1

=
s3 + 2s

(s+ 1)(s − 1)(s2 + 1)
.
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Usinf partial fraction, we have

Y (s) =
A

s+ 1
+

B

s− 1
+
Cs+D
s2 + 1

⇒ A = B = −1
4
, C =

3
2
,D = 0

which implies that

y(t) = −1
4

(
e−t + et

)
+

3
2

cos t.

Example (Resonance): Consider initial value problem

y′′ + ω2
0y =

F0

m
cosωt, y(0) = 0, y′(0) = 0

Solution: Taking Laplace transform on both sides, we have

Y (s) =
F0

m

s

(s2 + ω2
0)(s2 + ω2)

In case ω �= ω0, we have

Y (s) =
As

s2 + ω2
− Bs

s2 + ω2
0

,

where A = B = F0

m(ω2
0−ω2)

. This implies that

y(t) =
F0

m(ω2
0 − ω2)

(cosωt− cosω0t)

In case that ω = ω0 (Resonance), we have

Y (s) =
F0

m

s

(s2 + ω2
0)2

= −F ′(s)

where

F (s)
�
=
F0

2m
· 1
s2 + ω2

0

= L
{
F0

2mω0
sinω0t

}

Therefore,

y(t) =
F0

2mω0
t sinω0t

We recover the same results. ✷

Example: (linear system) Solve the following system of first order equations:

z′1 = 2z1 + 4z2
z′2 = −z1 − 3z2

with initial condition z1(0) = 0, z2(0) = 1.

Solution: Let Zi(s) = L{zi(t)} for i = 1, 2. We have

L{z′1} = sZ1(s) − z1(0) = sZ1, L{z′2} = sZ2(s) − z2(0) = sZ2 − 1.
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Therefore

sZ1 = 2Z1 + 4Z2

sZ2 − 1 = −Z1 − 3Z2

or

Z1 =
4

(s+ 2)(s − 1)
=

−4
3

s+ 2
+

4
3

s− 1
, Z2 =

s− 2
(s+ 2)(s − 1)

=
4
3

s+ 2
+

−1
3

s− 1
,

which implies

z1 =
4
3

(
et − e−2t

)
, z2 =

1
3

(−et + 4e−2t
)

The main difficulty lies in the fact that the inverse Laplace transform is not that easy to calculate,
contrary to what we have shown in examples. We have to resort to numerical schemes to obtain
the inverse in most cases.

Remark: In above discussions, the initial conditions are evaluated at t = 0. There is no loss of
generality, indeed. For example, if the initial value problem takes form

L[y] = f(t), y(t0) = y0, y′(t0) = y′0, · · · , y(n−1)(t0) = y(n−1)
0

We can define ỹ(t)
�
= y(t+ t0), we have an equivalent initial value problem

L[ỹ](t) = f(t+ t0), ỹ(0) = y0, ỹ′(0) = y′0, · · · , ỹ(n−1)(0) = y(n−1)
0 .

For example, consider initial value problem

y′′ + 4y = −3 sin t, y(π) = 0, y′(π) = 1.

Let ỹ(t)
�
= y(t+ π). It follows that

ỹ′′ + 4ỹ = −3 sin(t+ π) = 3 sin t, ỹ(0) = 0, ỹ′(0) = 1.

It is not difficult to find the solution as

ỹ(t) = sin t (exercise)

Hence, y(t) = ỹ(t− π) = − sin t.

Exercise: To find Ỹ (s) = L{ỹ}, show that

Ỹ (s) =
1

s2 + 1
,

which implies that ỹ = sin t.
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4 Miscellaneous Results of Laplace Transform

In this section we collect some useful results about Laplace transform. Let us start with the
following lemma.

Lemma: Suppose F (s) = L{f(t)}, or f(t) = L−1{F (s)}. We have

L{
ectf(t)

}
= F (s − c) or L−1

{
F (s− c)} = ectf(t)

Proof: Use definition. ✷

Example: Solve the following initial value problem

y′′ − 2y′ + 5y = 0, y(0) = 1, y′(0) = 0.

Solution: Let Y (s)
�
= L{y}. We have

L{y′′} = s2Y (s)− s, L{y′} = sY (s) − 1.

It follows that
Y (s) =

s− 2
s2 − 2s+ 5

=
s− 2

(s− 1)2 + 4
= F (s− 1)

where
F (s)

�
=
s− 1
s2 + 4

⇒ L−1{F} = cos 2t− 1
2

sin 2t

Hence y(t) = et
(
cos 2t− 1

2 sin 2t
)
.

Remark: We can also use partial fraction expansion to solve the inverse problem in this example
with the aid of complex variable. Indeed

Y (s) =
s− 2

(s− 1)2 + 4
=

s− 2(
s− (1 + 2i)

)(
s− (1 − 2i)

) =
A

s− (1 + 2i)
+

B

s− (1 − 2i)

It follows that

A+B = 1, A(1 − 2i) +B(1 + 2i) = 2 ⇒ A =
1
2

+
1
4
i, B =

1
2
− 1

4
i.

Therefore,

y(t) = Ae(1+2i)t +Be(1−2i)t =
(

1
2

+
1
4
i

)
· et(cos 2t+ i sin 2t) +

(
1
2
− 1

4
i

)
· et(cos 2t− i sin 2t)

= et
(
cos 2t− 1

2
sin 2t

)

Exercise: Solve the linear system

z′1 = −3z1 − 5z2
z′2 = z1 + z2

with initial condition z1(0) = 1, z2(0) = 1. (Answer: z1 = e−t(cos t− 7 sin t), z2 = e−t(cos t+
3 sin t).)
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4.1 Convolution and Integral Equation

The Faltung Theorem, which is very useful helping evaluating integrals, involves the convolution
of two functions. Let us first give the definition.

Definition of Convolution: The convolution of two functions f and g, denoted by f ∗ g, is a
function whose value at t is determined by

(f ∗ g)(t) �
=

∫ t

0
f(t− s)g(s) ds

This integral is called convolution integral.

Example: Let f(t)
�
= t, g(t)

�
= cos t. Determine f ∗ g.

Solution: By definition, we have

(f ∗ g)(t) =
∫ t

0
(t− s) cos s ds = (t− s) sin s|t0 +

∫ t

0
sin s ds = 1 − cos t

Here we state several properties of convolution product, which resemble those of ordinary product.

Lemma: For any functions f, g, h, we have

1. (Commutative Law) f ∗ g ≡ g ∗ f .
2. (Distributive Law) f ∗ (g + h) ≡ f ∗ g + f ∗ h.
3. (Associative Law) (f ∗ g) ∗ h ≡ f ∗ (g ∗ h).

Proof: We will only give the proof of Associative Law. The Commutative and Distributive
Laws are left as exercises. By definition, we have

(
(f ∗ g) ∗ h)(t) =

∫ t

0
(f ∗ g)(t− u)h(u) du =

∫ t

0

[∫ t−u

0
f(t− u− w)g(w)h(u) dw

]
du

For the integral in the bracket, make change of variable w = s− u. We have
(
(f ∗ g) ∗ h)(t) =

∫ t

0

[∫ t

u
f(t− s)g(s− u)h(u) ds

]
du

This multiple integral is carried out over the region

{(s, u); 0 ≤ u ≤ s ≤ t}
as depicted by shaded region in the following graph.

Change the order of integration, we have
(
(f ∗g)∗h)(t) =

∫ t

0

[∫ s

0
f(t− s)g(s− u)h(u) du

]
ds =

∫ t

0
f(t−s)(g∗h)(s) ds =

(
f ∗(g∗h))(t)

This completes the proof. ✷
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The importance of convolution shows in the following theorem.

Faltung theorem: Let F (s) = L{f(t)}, G(s) = L{g(t)}. We have

F ·G = L{f ∗ g} or L−1{F ·G} = f ∗ g = L−1{F} ∗ L−1{G}

Proof: By definition,

L{f ∗ g}(s) =
∫ ∞

0
e−st

[∫ t

0
f(t− u)g(u) du

]
dt =

∫ ∞

0

[∫ t

0
e−stf(t− u)g(u) du

]
dt

The multiple integral is carried out over region

{(t, u); 0 ≤ u ≤ t}
as depicted by the shaded region in the following graph.

Changing the order of integration, we have

L{f ∗ g}(s) =
∫ ∞

0

[∫ ∞

u
e−stf(t− u)g(u) dt

]
du =

∫ ∞

0
s−sug(u)

[∫ ∞

u
e−s(t−u)f(t− u) dt

]
du

=
∫ ∞

0
e−sug(u)

[∫ ∞

0
e−swf(w) dw

]
du =

∫ ∞

0
e−sug(u) · F (s) du

= F (s)
∫ ∞

0
e−sug(u) du = F (s) ·G(s)

This completes the proof. ✷

An immediate application of Faltung theorem is finding a particular solution of the non-
homogeneous linear equation. We will illustrate with a second-order linear equation, but same
methodology works for higher order linear equations too. Consider non-homogeneous equation

ay′′ + by′ + cy = g(t).

We wish to find a particular solution. Actually, it suffices to solve the following initial value problem

ay′′ + by′ + cy = g(t), y(0) = 0, y′(0) = 0.

Suppose the solution to this initial value problem is yp(t). Let Yp(s) = L{yp(t)}. We have

Yp(s) =
G(s)

as2 + bs+ c
, here G(s) = L{g(t)}

Letting h(t)
�
= L−1

{
1

as2+bs+c

}
, we have that

yp(t) = (h ∗ g)(t) =
∫ t

0
h(t− s)g(s) ds.

14



Remark: Function h(t) is easy to obtain. Let r1,2 stand for the two roots of the characteristic
equation as2 + bs+ c = 0. It follows that as2 + bs+ c = a(s− r1)(s − r2).

1. r1 �= r2 are both real: Using partial fraction expansion, we have

1
as2 + bs+ c

=
1

a(r1 − r2)
(

1
s− r1 − 1

s− r2

)

or
h(t) =

1
a(r1 − r2)

(
er1t − er2t

)
.

2. r1 = r2 := r are both real: In this case

1
as2 + bs+ c

=
1
a

1
(s− r)2 = −F ′(s)

where F (s)
�
= 1

a
1

s−r . Therefore,

h(t) =
1
a
tert.

3. r1 �= r2 are complex: Write r1,2 = λ± iµ. Using partial expansion, we still have that

h(t) =
1

a(r1 − r2)
(
er1t − er2t

)
=

1
aµ
eλt sinµt.

Example: Write the solution of the initial value problem

y′′ + 4y′ + 5y = f(t), t ≥ 0; y(0) = 0, y′(0) = 1,

in term of a definite integral.

Solution: Let F = L{f} and Y = L{y}. We have

L{y′} = sY (s), L{y′′} = s2Y (s) − 1

and

L{y′′}+ 4L{y′}+ 5L{y} = L{f} ⇒ s2Y (s) − 1 + 4sY (s) + 5Y (s) = F (s).

Hence
Y (s) =

1 + F (s)
s2 + 4s+ 5

=
1

(s + 2)2 + 1
+

1
(s + 2)2 + 1

· F (s)

Note that

L−1

{
1

(s+ 2)2 + 1

}
= e−2t sin t.

It follows that

y(t) = e−2t sin t+
∫ t

0
e−2(t−s) sin(t− s)f(s) ds ✷
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Example (Beta Functions): Show that
∫ 1

0
(1 − t)mtn dt = m!n!

(m+ n+ 1)!

for all non-negative integers m,n.

Proof: Let f(x)
�
= xm and g(x)

�
= xn. It follows that

h(x)
�
= (f ∗ g)(x) =

∫ x

0
f(x− t)g(t) dt =

∫ x

0
(x− t)mtn dt.

However, Faltung theorem yields that

H(s)
�
= L{h(x)} = L{f(x)} · L{g(x)} =

m!
sm+1

· n!
sn+1

=
m!n!
sm+n+2

=
m!n!

(m+ n+ 1)!
(m+ n+ 1)!
sm+n+2

Therefore, for all x,

h(x) = L−1{H(s)} =
m!n!

(m+ n+ 1)!
tm+n+1.

In particular,

h(1) =
∫ 1

0
(1 − t)mtn dt = m!n!

(m+ n+ 1)!
.

This completes the proof. ✷

4.2 Elementary Volterra Integral Equation

Convolution is very useful in the study of Volterra integral equations, which take form

y(t) =
∫ t

0
y(t− s)g(s) ds + y0(t), t ≥ 0.

Here g(t), y0(t) defined on t ≥ 0 are given functions. We shall assume throughout this section that
g(t) and y0(t) are both non-negative functions, which implies the solution y(t) is also a non-negative
function.

Population Model (with age structure): Suppose in a population, the fraction of individuals
that will survive to age s is ρ(s), while each individual of age s will produce offspring at
rate β(s). We are interested in the dynamics of y(t), the overall birth rate at time t for the
population. That is, in a small time interval [t, t + dt), the total popaultion will produce
y(t) dt new offsprings.

Now at time t, the number of individuals aged from s to s + ds (where 0 ≤ s ≤ t) is
y(t − s)ρ(s) ds. These individuals will produce offspring y(t − s)ρ(s) ds · β(s) dt in time
interval [t, t + dt). Let y0(t) denote the birth rate of individuals with age greater than t (or
born before time 0). We have

y(t) dt =
∫ t

0
y(t− s)ρ(s) ds · β(s) dt + y0(t) dt

16



which implies that

y(t) =
∫ t

0
y(t− s)g(s) ds + y0(t)

where g(s)
�
= ρ(s) · β(s). ✷

The integral can be rewritten as

y(t) = (y ∗ g)(t) + y0(t).

Taking Laplace transform on both sides, we obtain

Y (s) = Y (s)G(s) + Y0(s) ⇒ Y (s) =
Y0(s)

1−G(s)

Here Y (s) = L{y(t)}, G(s) = L{g(t)} and Y0(s)
�
= L{y0(t)}. We will first take a look of a few

examples that are explicitly solvable.

Example: If y0(t) ≡ 0, then Y0(s) ≡ 0, which in turn imples that Y (s) ≡ 0, or y(t) ≡ 0.

Example: Solve the integral equation

y(t) =
∫ t

0
sin(t− s)y(s) ds + 1.

Solution: Taking Laplace transform on both sides, we have

Y (s) =
1

s2 + 1
Y (s) +

1
s

⇒ Y (s) =
s2 + 1
s3

=
1
s

+
1
s3

Therefore
y(t) = 1 +

1
2
t2.

Example: Solve the following integrodifferential equation

y′′(t) − 2
∫ t

0
sin(t− s)y(s) ds = 0; t ≥ 0

with initial condition y(0) = 0, y′(0) = 1.

Solution: Let Y (s) = L{y(t)}. We have

L{y′′} = s2Y (s) − 1.

Hence,

s2Y (s) − 1− 2
1

s2 + 1
Y (s) = 0 ⇒ Y (s) =

s2 + 1
s4 + s2 − 2

=
s2 + 1

(s2 + 2)(s + 1)(s − 1)
.

Partial fraction expansion yields

Y (s) =
1
3

1
s2 + 2

+
1
3

1
s− 1

− 1
3

1
s+ 1

Therefore,

y(t) =
1

3
√

2
sin

√
2t+

1
3
(et − e−t).
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In general it is impossible to find explicit inverse Laplace transform. However, we can obtain
an asymptotic result as t→ ∞ using Laplace transform. From now on, we assume that function g
is non-negative and Y0 = L{y0} is bounded.

It can be shown that y(t) ∼ Cert for some constant C and r, as t→ ∞. In another word,

lim
t→∞

y(t)
Cert

= 1

for some constants C > 0 and r. This asymptotic result shows that y(t) increases (or decay)
exponentially with exponent r. The question now is how to determine C and r using Laplace
transform. Actually, we have

r is the unique solution to equation G(r) = 1, while C = −Y0(r)
G′(r) .

We shall illustrate the main idea without being rigorous.
The following lemma plays a key role in the development, which is also of its own interest.

Lemma: Let F (s) = L{f(t)}. If f(t) → c as t→ ∞, then sF (s) → c as s→ 0.

Proof: For any ε > 0, there exists T > 0 such that |f(t)− c| < ε for all t ≥ T . It follows that,

for all s < min
(

εR T
0 |f(t)| dt

,− log(1−ε/|c|)
T

)
,

∣∣sF (s)− c∣∣ =
∣∣∣∣s

∫ T

0
e−stf(t) dt+ s

∫ ∞

T
e−stf(t) dt− c

∣∣∣∣
≤ s

∫ T

0
|f(t)| dt + s

∫ ∞

T
e−st|f(t)− c| dt +

∣∣∣∣s
∫ ∞

T
e−stc dt− c

∣∣∣∣
≤ ε+ ε · s

∫ ∞

T
e−st dt+

(
1 − e−sT

) |c|
≤ ε+ ε+ ε = 3ε.

This completes the proof. ✷

Now suppose y(t) ∼ Cert or
lim
t→∞ e

−rty(t) = C.

It follows from the preceding lemma that

sL{
e−rty(t)

}
= sY (s+ r) =

sY0(s+ r)
1 −G(s+ r)

→ C as s→ 0.

However, since sY0(s + r) → 0, we have 1 − G(s + r) → 0 as s → 0, or G(r) = 1. But G is a
decreasing function. It follows that r is uniquely determined. By L’Hospital rule, we have

C = lim
s→0

sY0(s+ r)
1 −G(s+ r)

= lim
s→0

Y0(s+ r) + sY ′
0(s+ r)

−G′(s+ r)
= −Y0(r)

G′(r)

This completes our discussion.
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Example: Suppose that k(t) is positive and continuous, with
∫ ∞
0 k(t) dt < 1. Let y(t) be a smooth

function that solve the Volterra Equation

y(t) = 1 +
∫ t

0
k(t− s)y(s) ds, t ≥ 0

Show that y(t) is non-decreasing and limt→∞ y(t) =
(
1 − ∫ ∞

0 k(s)
)−1.

Proof: We have

y(t) = 1 +
∫ t

0
y(t− s)k(s) ds.

Taking derivatives on both sides, we obtain

y′(t) = y(0)k(t) +
∫ t

0
y′(t− s)k(s) ds

However, y(0) = 1, therefore, with φ(t)
�
= y′(t), we have

φ(t) = k(t) +
∫ t

0
φ(t− s)k(s) ds ⇒ φ(0) = k(0) > 0.

It follows that φ(t) > 0 for all t ≥ 0 (why?) and y(t) is increasing. Hence, limt→∞ y(t) must
exist, say c (could be +∞). We have

c = lim
s→0

sL{y}(s) := lim
s→0

sY (s)

However, taking Laplace transform on both sides of the integral equation,

Y (s) =
1
s

+K(s)Y (s) ⇒ sY (s) =
1

1−K(s)
⇒ c =

1
1 − lims→0K(s)

By definition

K(s) =
∫ ∞

0
e−stk(t) dt ⇒ lim

s→0
K(s) =

∫ ∞

0
lim
s→0

e−stk(t) dt =
∫ ∞

0
k(t) dt.

This completes the proof. ✷

Example (Abel Equation): Formally solve the Abel equation

ϕ(x) =
∫ x

0

y(s)√
x− s ds, t ≥ 0.

Here ϕ is a given non-negative, smooth function with ϕ(0) = 0. See the following graph:

Solution: Note the equation is indeed ϕ = y ∗
√

1
x . Taking Laplace transform on both sides,

we have, with Φ = L{ϕ}, that

Φ(s) = Y (s) ·
√
π√
s

⇒ Y (s) =
1√
π
Φ(s) · √s
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But there is no function with Laplace transform as
√
s. However, note

L{ϕ′} = sΦ(s)− sϕ(0) = sΦ(s).

It follows that

Y (s) =
1
π
sΦ(s) ·

√
π√
s

=
1
π
L{ϕ′} · L{ 1√

x
},

which implies that

y(t) =
1
π
ϕ′ ∗ 1√

x
=

1
π

∫ x

0

ϕ′(s)√
x− s ds.
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5 Discontinuous and Impulse forcing funcitons

The same idea of Laplace transform can be carried out to solve differential equations with discon-
tinuous non-homogeneous terms.

Example: Consider the following initial value problem

y′′ + 2y′ + 5y = g(t) =
{

5 ; 0 ≤ t < 1
0 ; t ≥ 1.

with initial condition y(0) = 0, y′(0) = 0.

Solution: Let Y (s) = L{y}. It follows that

Ly′ = sY − y(0) = sY ; Ly′′ = s2Y − sy(0) − y′(0) = s2Y.

Therefore, we have

(s2 + 2s+ 5)Y = L{g} =
∫ ∞

0
e−stg(t) dt =

∫ 1

0
5e−st dt =

5
s

(
1 − e−s

)
,

which implies that

Y (s) =
5

s(s2 + 2s+ 5)
(
1− e−s

)
= H(s)−H(s)e−s ⇒ y(t) = L−1 {H(s)}−L−1

{
H(s)e−s

}
.

We first compute L−1{H}, which is straightforward since

H(s) =
5

s(s2 + 2s + 5)
=

1
s
− s+ 2
s2 + 2s + 5

=
1
s
− (s+ 1) + 1

(s+ 1)2 + 4

or

h(t) = L−1{H} = 1 − e−t

(
cos 2t+

1
2
sin 2t

)
.

It remains to compute L−1 {e−sH} (to be continued).

In general, suppose L{f} = F , or
∫ ∞

0
e−stf(t) dt = F (s).

For any constant c, assume

g(t) =
{

0 ; 0 ≤ t < c
f(t− c) ; t ≥ c ,

in other words, g is a translation of f ; see the following graph.

21



The Laplace transform of g is

L{g} =
∫ ∞

0
e−stg(t) dt =

∫ ∞

c
e−stf(t− c) dt = e−csF (s).

Notation: From now on, we will denote

uc(t)
�
=

{
0 ; 0 ≤ t < c
1 ; t ≥ c

Furthermore, it follows from the preceding discussion that

L{uc(t)f(t− c)} = e−csF (s), or L−1
{
e−csF (s)

}
= uc(t)f(t− c).

Example (continued): We have
L−1

{
e−sH

}
= u1(t)h(t− 1),

and the solution
y(t) = h(t) − u1(t)h(t− 1); t ≥ 0.

Example: Find the Laplace inverse of the following functions

(1).
e−cs

s
; (2).

e−πs

s2 + 1

Solution: (1) The Laplace inverse is uc(t).

(2) The Laplace inverse is
uπ(t) sin(t− π) = −uπ(t) sin t.

Example: Solve the initial value problem

y′′ + 2y′ + 5y = 5
∞∑

n=0

(−1)nun(t); t ≥ 0

with initial condition y(0) = 0, y′(0) = 0.

Solution: The function
∑∞

n=0(−1)nun(t) looks like

Letting Y = L{y}, we have

(s2 + 2s+ 5)Y = 5
∞∑

n=0

(−1)n
e−ns

s
.
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or

Y (s) =
∞∑

n=0

(−1)ne−ns · 5
s(s2 + 2s+ 5)

or

y(t) =
∞∑

n=0

(−1)nun(t)h(t− n).

Exercise: Solve the above equation with a different initial condition y(0) = 4, y′(0) = 2.

Hint: The solution is

y(t) = e−t(4 cos 2t+ 3 sin 2t) +
∞∑

n=0

(−1)nun(t)h(t − n).

Example: Find the Laplace inverse of the following function

F (s) =
1

s2 + 1
· 1
1 − e−πs

; s > 0

and graph the inverse function (roughly).

Solution: Using the formula

1
1 − a = 1 + a+ a2 + a3 + · · · , ∀ |a| < 1,

we have
1

1 − e−πs
= 1 + e−πs + e−2πs + · · · =

∞∑
n=0

e−nπs.

Since L−1
{

1
s2+1

}
= sin t, we have

f(t) = L−1{F} =
∞∑

n=0

unπ(t) sin(t− nπ) = sin t ·
∞∑

n=0

(−1)nunπ(t)

Below are the figures.

23



5.1 Impulse functions

The impulse function is not a function in the usual sense – indeed, it is a generalized derivative of
step funcitons.

One way to define the unit impluse function δ(t) is as the intuitive limit of a sequence of
functions

δ(t)
�
= lim

ε→0
fε(t) := lim

ε→0

{
1
2ε ; |t| < ε
0 ; |t| ≥ ε .

The function δ has the following property:

1. δ(t) = 0 as t �= 0.

2.
∫ ∞
−∞ δ(t) dt = 1.

3.
∫ ∞
−∞ δ(t)g(t) dt = g(0) for all functions g(t) continuous at t = 0.

These properties are straightforward; e.g.,∫ ∞

−∞
δ(t)g(t) dt = lim

ε→0

1
2ε

∫ ε

−ε
g(t) dt = g(0)

Intuitively, the impulse function δ(t) can be understood as a force of a large magnitude acting for
a very short amount of time around t = 0, hence the name “impusle”. In general, one can define
impulse function δ(t− t0) (sometimes denoted by δt0(t)), which satisfies

1. δ(t − t0) = 0 as t �= t0.
2.

∫ ∞
−∞ δ(t− t0) dt = 1.

3.
∫ ∞
−∞ δ(t− t0)g(t) dt = g(t0) for all functions g(t) continuous at t = t0.

It is easy to see that the Laplace transform of δ(t − t0), t0 ≥ 0 is

L{δ(t− t0)} =
∫ ∞

0
e−stδ(t− t0) dt =

∫ ∞

−∞
e−stδ(t− t0) dt = e−st0 .

Remark: The other way to define the impulse function δ(t) is to understand it as the generalized
derivative of the step function

h(t)
�
=

{
0 ; t < 0
1 ; t ≥ 0

.

It roughly goes as follows. For any continuously differentiable function f , its derivative f ′

can be uniquely characterized by the following identity∫ ∞

−∞
f(t)g′(t) dt = −

∫ ∞

−∞
f ′(t)g(t), dt; ∀ g ∈ C∞

0 (IR).

Here C∞
0 (IR) is the set of all smooth functions with compact support (i.e., g(t) = 0 for all t

outside some interval). This definition of derivatives can be easily extended to obtained the
generalized derivative of h(t). In other words, h′(t) is defined so that∫ ∞

−∞
h(t)g′(t) dt = −

∫ ∞

−∞
h′(t)g(t), dt; ∀ g ∈ C∞

0 (IR).
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But ∫ ∞

−∞
h(t)g′(t) dt =

∫ ∞

0
g′(t) dt = −g(0) ⇒

∫ ∞

−∞
h′(t)g(t) dt = g(0).

for all g ∈ C∞
0 (IR). It is easy to see that h′(t) also satisfies the property 3 above. Indeed, h′(t)

here is the true meaning of δ(t).

Example: Solve the IVP

y′′ + 2y′ + 5y = δ(t− 1); y(0) = 0, y′(0) = 0.

Solution: Let Y = L{y}. We have

(s2 + 2s+ 5)Y = e−s ⇒ Y =
1

(s+ 1)2 + 4
e−s

Hence
y(t) = u1(t)f(t− 1), where f(t) =

1
2

sin 2t · e−t.

Remark: There is another way to find the Laplace inverse of function of form e−csF (s). Indeed,
by Faltung theorem,

L−1
{
e−csF (s)

}
= L−1

{
e−cs

} ∗ L−1{F} = δc ∗ f

However,

(δc∗f)(t) =
∫ t

0
f(t−s)δc(s) ds =

∫ t

0
f(t−s)δ(s−c) ds =

{
0 ; t < c

f(t− c) ; t ≥ c
}

= uc(t)f(t−c).
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