Homework 1

1. A player is about to play a two-game chess with a computer opponent, and wants to maximize his winning chances. Each game has one of two outcomes.

(a) A win by one of the players (1 point for the winner and 0 for the loser).

(b) A draw (0.5 point for each player).

If the score is tied at 1 − 1 at the end of two games, the match goes into sudden-death mode, whereby the players continue to play until the first time one of them wins a game (and the match).

The player has two playing styles and he can choose one of the two at each game.

(a) Timid play with which he draws with probability p_d and loses with probability $1 - p_d$.

(b) Bold play with which he wins with probability p_w and loses with probability $1 - p_w$.

Thus in any given game, a timid play never wins, and a bold play never draws.

Solve the following questions.

(a) If the score is tied at 1 − 1 at the end of two games, what style should the player choose for the sudden-death mode? What is the probability that the player will win the match conditional on that the score is tied at 1 − 1 at the end of two games?

(b) Use the idea of DP to solve for the best strategy for the player in the two games. (Hint: Let the state be the current score. Write down and solve the DPE. Utilize the result from (a) to find the terminal condition.)

2. *(Deterministic Optimal Growth Model).* The dynamics of the system is defined by

$$X_{n+1} = F(X_n) - c_n, \quad n = 0, 1, \ldots$$
with the initial condition $X_0 = x$ and the control sequence $\{c_n\}$ satisfying the constraint

$$0 \leq c_n \leq F(X_n).$$

Suppose the objective is to maximize the following quantity

$$\sum_{n=0}^{\infty} \beta^n U(c_n)$$

with a discount factor $\beta \in (0, 1)$.

(a) Write down the DPE associated with this control problem, and formally justify it.

(b) Consider the special case where

$$U(c) \doteq \log(c), \quad F(x) = Ax^\alpha$$

for some constants $A > 0$ and $\alpha \in (0, 1)$. Find an explicit solution to the corresponding DPE. (*Hint:* consider a solution of form $a + b \log(x)$ for some constants a, b). Also identify the corresponding control policy.

3. Consider a deterministic optimal control whose dynamics is defined by

$$\frac{dX(t)}{dt} = u(t), \quad 0 \leq t \leq 1$$

with initial condition $X(0) = 0$. The control $u = \{u(t)\}$ can take arbitrary values in \mathbb{R}. The objective is to minimize the quantity

$$\int_0^1 \left[1 + X^2(t) \right] \cdot \left[1 + (u^2(t) - 1)^2 \right] \, dt.$$

Show that the value of this control problem is 1 by constructing appropriate controls. Argue that there does not exists an optimal control. (*Hint:* Consider controls taking value ± 1 alternatively).

4. Let $\{X_0, X_1, \ldots, X_N\}$ be a sequence of independent, non-negative, integrable random variables. Define the following sequence of constants $\{A_0, A_1, \ldots, A_N, A_{N+1}\}$ recursively:

$$A_{N+1} \doteq 0 \quad A_N \doteq E [A_{N+1} \lor X_N]$$
\[
\begin{align*}
 A_n &= E[A_{n+1} \lor X_n] \\
 &\vdots \\
 A_0 &= E[A_1 \lor X_0]
\end{align*}
\]

Show that
\[
A_0 = \sup_\tau E[X_\tau]
\]
where the supremum is taken over all stopping times \(\tau \) taking values in \(\{0, 1, \ldots, N\} \). Also show that an optimal stopping time is given by
\[
\tau^* = \inf \{ n \geq 0 : X_n \geq A_{n+1} \}.
\]

(Hint: Consider the process \(X_n \lor A_{n+1} \), and show it is a supermartingale with respect to the filtration (i.e., information) generated by the sequence \(\{X_n\} \).)

5. Assume that a certain quantity of raw material is required by time \(N \). Denote by \(X_n \) the price of the raw material at time \(n = 0, 1, \ldots, N \). One must decide, given the price at any time, whether to purchase at that price or wait a further period, during which the price may go up or down. Assume that the price dynamics are
\[
X_{n+1} = \lambda X_n + \xi_{n+1}, \quad n = 0, 1, \ldots, N-1,
\]
where \(\{\xi_n\} \) is a sequence of iid non-negative random variables with mean \(\mu = E[\xi_n] > 0 \), and \(\lambda \in [0,1) \) is a constant. The goal is to find a stopping time \(\tau \) taking values in \(\{0, 1, \ldots, N\} \) so as to minimize
\[
E[X_\tau]
\]
(a) Write the DPE for this problem.
(b) Show that the optimal policy is as follows: there exist a sequence of positive numbers \(\alpha_0 \leq \alpha_1 \leq \cdots \leq \alpha_{N-1} \) such that it is optimal to purchase the raw material the first time when the price \(X_n \) is below \(\alpha_n \).

6. Consider an unemployed worker who is searching for a job. At each time period \(n \), the worker receives an offer \(X_n \). The worker has the option of rejecting the offer, in which case he or she receives \(c \) this period in unemployment compensation. Alternatively, the worker can
accept the offer to work at wage X_n, in which case he or she receive a wage X_n per period forever (i.e. the wage is fixed at X_n for each period $j = n, n+1, \ldots$). Neither quitting nor firing is permitted. Let $\beta \in (0, 1)$ be the discounted factor. The goal is to maximizing the total expected discounted income

$$E \left[\sum_{j=0}^{\tau-1} \beta^j c + \sum_{j=\tau}^{\infty} \beta^j X_j \right] = E \left[\sum_{j=0}^{\tau-1} \beta^j c + \beta^\tau \frac{X_\tau}{1-\beta} \right]$$

by judiciously choosing a stopping time τ (which represents the time that he or she accepts the offer).

Assume the offer at time 0 is X_0, and that the distribution of the subsequent offers $\{X_n : n = 1, 2, \ldots\}$ are iid, non-negative, bounded random variables with $P\{X_n > c\} > 0$. Write down the DPE and solve it explicitly.

7. A burglar may at any night n choose to retire with his cumulated earnings X_n or enter a house and bring home an amount ξ_n (and thus $X_{n+1} = X_n + \xi_n$). However, in the latter case, he gets caught with probability p, and then he is forced to terminate his activities and forfeit his earnings thus far. Assume that $\{\xi_n\}$ are iid, non-negative random variables with mean $\mu > 0$. The goal is to find a policy that maximizes the burglar’s expected earnings over N nights. Write down the DPE and show that the optimal policy is to retire whenever the cumulated wealth X_n exceeds the threshold $(1 - p)\mu/p$. Note this threshold does not depend on n even though it is a finite-horizon problem.

8. In the above problem, consider its infinite horizon counterpart. Write down the DPE. Solve the DPE explicitly under the extra assumption that $\{\xi_n\}$ are iid exponential random variables with rate $\lambda = 1/\mu$.

9. Assume that a certain quantity of raw material is required by time N. Denote by X_n the price of the raw material at time $n = 0, 1, \ldots, N$. One must decide, given the price at any time, whether to purchase at that price or wait a further period, during which the price may go up or down. Assume that the price dynamics are

$$X_{n+1} = \lambda X_n + \xi_{n+1}, \quad n = 0, 1, \ldots, N - 1,$$

where $\{\xi_n\}$ is a sequence of iid non-negative random variables with mean $\mu = E[\xi_n] > 0$, and $\lambda \in (0, 1)$ is a constant. The goal is to find
a stopping time τ taking values in $\{0, 1, \ldots, N\}$ so as to minimize

$$E [X_\tau]$$

(a) Write the DPE for this problem.

(b) Show that the optimal policy is as follows: there exist a sequence of positive numbers $\alpha_0 \leq \alpha_1 \leq \cdots \leq \alpha_{N-1}$ such that it is optimal to purchase the raw material the first time when the price X_n is below α_n.

10. Consider an unemployed worker who is searching for a job. At each time period n, the worker receives an offer X_n. The worker has the option of rejecting the offer, in which case he or she receives c this period in unemployment compensation. Alternatively, the worker can accept the offer to work at wage X_n, in which case he or she receive a wage X_n per period forever (i.e. the wage is fixed at X_n for each period $j = n, n+1, \ldots$). Neither quitting nor firing is permitted. Let $\beta \in (0, 1)$ be the discounted factor. The goal is to maximizing the total expected discounted income

$$E \left[\sum_{j=0}^{\tau-1} \beta^j c + \sum_{j=\tau}^{\infty} \beta^j X_\tau \right] = E \left[\sum_{j=0}^{\tau-1} \beta^j c + \beta^\tau \frac{X_\tau}{1-\beta} \right]$$

by judiciously choosing a stopping time τ (which represents the time that he or she accepts the offer).

Assume the offer at time 0 is X_0, and that the distribution of the subsequent offers $\{X_n : n = 1, 2, \ldots\}$ are iid, non-negative, bounded random variables with $P \{X_n > c\} > 0$. Write down the DPE and solve it explicitly.

11. A burglar may at any night n choose to retire with his cumulated earnings X_n or enter a house and bring home an amount ξ_n (and thus $X_{n+1} = X_n + \xi_n$). However, in the latter case, he gets caught with probability p, and then he is forced to terminate his activities and forfeit his earnings thus far. Assume that $\{\xi_n\}$ are iid, non-negative random variables with mean $\mu > 0$. The goal is to find a policy that maximizes the burglar’s expected earnings over N nights. Write down the DPE and show that the optimal policy is to retire whenever the cumulated wealth X_n exceeds the threshold $(1-p)\mu/p$. Note this threshold does not depend on n even though it is a finite-horizon problem.
12. In the above problem, consider its infinite horizon counterpart. Write down the DPE. Solve the DPE explicitly under the extra assumption that \(\{\xi_n\} \) are iid exponential random variables with rate \(\lambda = 1/\mu \).