Chapters 6. Functions of Random Variables

Question: Given a collection of random variables $X_{1}, X_{2}, \ldots, X_{d}$ and a function h, what is the distribution of the random variable

$$
Y \doteq h\left(X_{1}, X_{2}, \ldots, X_{d}\right) .
$$

The method of distribution function:

1. When Y is continuous, compute $F(t)=P(Y \leq t)$ or $1-F(t)=P(Y>t)$ for any t, and then taking derivatives of F to obtain the density of Y.
2. When Y is discrete, compute $P\left(Y=y_{i}\right)$ for each i.

The method of distribution function

1. Suppose X is uniform on $(0,1)$.
(a) What is the distribution of $-\ln (X)$?
(b) What is the density of \sqrt{X} ?
2.(a) Let X and Y be indepedent geometric random variables with rates λ and μ respectively. What is the distribution of $\min \{X, Y\}$?
(b) Same question, with X and Y be indepedent exponential random variables with rates λ and μ respectively.
2. Suppose X and Y are independent, identically distributed exponential random variables with rate λ. What is the distribution of $X /(X+Y)$?
3. Suppose X has cdf F and density f. Find the cdf and density for $a X+b$ where $a>0$.
4. Suppose X is a continuous random variable with cumulative distribution function F. What is the distribution of $F(X)$?

Another approach is to use the moment generating function, and use the fact that moment generating function uniquely determines the distribution!

The moment generating function for $N\left(\mu, \sigma^{2}\right)$ is

$$
M(t)=\exp \left\{\mu t+\frac{1}{2} \sigma^{2} t^{2}\right\}
$$

Proposition.

- X is $N\left(\mu, \sigma^{2}\right)$. Then

$$
a X+b \text { is } N\left(a \mu+b, a^{2} \sigma^{2}\right)
$$

- Suppose X is $N\left(\mu, \sigma^{2}\right)$ and Y is $N\left(\nu, \theta^{2}\right)$. Assume X and Y are independent. Then

$$
a X+b Y \text { is } N\left(a \mu+b \nu, a^{2} \sigma^{2}+b^{2} \theta^{2}\right)
$$

(This example is advanced). Suppose Y_{1}, Y_{2}, \ldots is a sequence of iid (independent, identically ditributed) random variables such that

$$
P\left(Y_{i}=0\right)=P\left(Y_{i}=1\right)=\frac{1}{2} .
$$

Let

$$
X=\sum_{i=1}^{\infty} \frac{Y_{i}}{2^{i}} .
$$

What is the distribution of X ?

Order Statistics

Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid continuous random variables with common density $f(x)$. The order-statistics is denoted by $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$, where

$$
X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}
$$

is the re-ordering of $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ in an increasing order.

1. What are the cdf and density for $X_{(1)}$? $X_{(n)}$?
2. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are iid uniform random variables on $[0, \theta]$. Find

$$
E\left[X_{(n)}\right] .
$$

The joint density of order statistics

$$
f_{(1)(2) \cdots(n)}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left\{\begin{array}{cl}
n!f\left(x_{1}\right) f\left(x_{2}\right) \ldots f\left(x_{n}\right) & , \quad x_{1} \leq x_{2} \leq \cdots \leq x_{n} \\
0 & , \text { otherwise }
\end{array}\right.
$$

