Chapters $3 \sim 4$. A Few Topics

Moment Generating Functions

Given a random variable X, its moment generating function $M(t)$ is defined as

$$
M(t) \doteq E\left[e^{t X}\right]
$$

Remark: It is possible that moment generating function takes infinite value for all $t \neq 0$. Say, Cauchy distribution with density

$$
f(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}, \quad x \in \mathbb{R}
$$

Assumption: We always assume moment generating function exists in the sense that there is a number $b>0$ such that $M(t)$ is finite for all $|t|<b$.

Why The name?

Use expansion

$$
\exp \{x\}=1+x+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}+\cdots
$$

We have

$$
M(t)=E\left[1+t X+\frac{t^{2} X^{2}}{2!}+\cdots+\frac{t^{n} X^{n}}{n!}+\cdots\right]
$$

or

$$
M(t)=1+t E[X]+\frac{t^{2}}{2!} E\left[X^{2}\right]+\cdots+\frac{t^{n}}{n!} E\left[X^{n}\right]+\cdots
$$

Remark: $E\left[X^{n}\right]$ is called the n-th moment. Moreover,

$$
\left.\frac{d^{n} M(t)}{d t^{n}}\right|_{t=0}=E\left[X^{n}\right]
$$

Examples

- Discrete random variables: $q=1-p$.

Distribution	$M(t)$
Binomial $B(n ; p)$	$\left[p e^{t}+q\right]^{n}$
Geometric with probability of success p	$\frac{p e^{t}}{1-q e^{t}}$
Possion with parameter λ	$e^{\lambda\left(e^{t}-1\right)}$

- Continuous random variables:

Distribution	$M(t)$
Uniform $[0,1]$	$\frac{e^{t}-1}{t}$
Exponential with rate λ	$\frac{\lambda}{\lambda-t}, \quad t<\lambda$
Normal $N\left(\mu, \sigma^{2}\right)$	$\exp \left\{\mu t+\frac{t^{2} \sigma^{2}}{2}\right\}$

Theorem: Moment generating function uniquely determines the distribution.

Proof. "Probability and Measure" by Patrick Billingsley, Theorem 22.2.

Example

1. Determine the distribution.
(a) $M(t)=\left[0.7 e^{t}+0.3\right]^{4}$.
(b) $M(t)=\frac{2 e^{t}}{5-3 e^{t}}$.
(c) $M(t)=\frac{1}{1-2 t}$.
(d) $M(t)=0.2 e^{-t}+0.3 e^{2 t}+0.5$.
2. (This example is advanced). Suppose Y_{1}, Y_{2}, \ldots is a sequence of iid (independent, identically ditributed) random variables such that

$$
P\left(Y_{i}=0\right)=P\left(Y_{i}=1\right)=\frac{1}{2}
$$

Let

$$
X=\sum_{i=1}^{\infty} \frac{Y_{i}}{2^{i}} .
$$

What is the distribution of X ?

