Chapters 3~4. A Few Topics

MOMENT GENERATING FUNCTIONS

Given a random variable X, its moment generating function M(t) is defined as $M(t) \doteq E\left[e^{tX}\right].$

Remark: It is possible that moment generating function takes infinite value for all $t \neq 0$. Say, Cauchy distribution with density

$$f(x) = \frac{1}{\pi} \frac{1}{1+x^2}, \qquad x \in \mathbb{R}.$$

Assumption: We always assume moment generating function exists in the sense that there is a number b > 0 such that M(t) is finite for all |t| < b.

WHY THE NAME?

Use expansion

$$\exp\{x\} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots$$

We have

$$M(t) = E\left[1 + tX + \frac{t^2 X^2}{2!} + \dots + \frac{t^n X^n}{n!} + \dotsb\right],$$

or

$$M(t) = 1 + tE[X] + \frac{t^2}{2!}E[X^2] + \dots + \frac{t^n}{n!}E[X^n] + \dots$$

Remark: $E[X^n]$ is called the *n*-th moment. Moreover,

$$\left. \frac{d^n M(t)}{dt^n} \right|_{t=0} = E[X^n]$$

EXAMPLES

• Discrete random variables: q = 1 - p.

Distribution	M(t)
Binomial $B(n; p)$	$\left[pe^t + q\right]^n$
Geometric with probability of success p	$\frac{pe^t}{1-qe^t}$
Possion with parameter λ	$e^{\lambda(e^t-1)}$

• Continuous random variables:

Distribution	M(t)
Uniform [0, 1]	$\frac{e^t - 1}{t}$
Exponential with rate λ	$\frac{\lambda}{\lambda - t}, t < \lambda$
Normal $N(\mu, \sigma^2)$	$\exp\left\{\mu t + \frac{t^2\sigma^2}{2}\right\}$

Theorem: Moment generating function uniquely determines the distribution.

Proof. "Probability and Measure" by Patrick Billingsley, Theorem 22.2.

EXAMPLE

1. Determine the distribution.

(a)
$$M(t) = [0.7e^t + 0.3]^4$$
.
(b) $M(t) = \frac{2e^t}{5 - 3e^t}$.
(c) $M(t) = \frac{1}{1 - 2t}$.
(d) $M(t) = 0.2e^{-t} + 0.3e^{2t} + 0.5$.

2. (This example is advanced). Suppose Y_1, Y_2, \ldots is a sequence of iid (independent, identically distributed) random variables such that

$$P(Y_i = 0) = P(Y_i = 1) = \frac{1}{2}.$$

Let

$$X = \sum_{i=1}^{\infty} \frac{Y_i}{2^i}.$$

What is the distribution of X?