Review of Multivariable Calculus

Two-dimensional integral takes form

$$
\iint_{D} f(x, y) d x d y
$$

where D is a subset of \mathbb{R}^{2}.
D : the domain on which the integral takes place.
f : integrand.
x, y : dummy variables.

To compute this integral, the key step is to express the domain D in the following form.

$$
D=\left\{(x, y): a \leq x \leq b, h_{1}(x) \leq y \leq h_{2}(x)\right\}
$$

Always draw a graph of domain D if possible.

Examples

1. $D=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 1\}$.
2. $D=\{(x, y): 0 \leq x \leq 1,0 \leq x+y \leq 1\}$.
3. $D=\{(x, y): 0 \leq y \leq x\}$.
4. $D=\{(x, y): x+y \leq 0\}$.
5. $D=\{(x, y): 0 \leq x \leq y, x+y \leq 2\}$.
6. $D=\{(x, y):|x|+y \leq 1, y \geq 0\}$.
7. $D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$. Unit disk.

Then the integral can be written as

$$
\iint_{D} f(x, y) d x d y=\int_{a}^{b} d x\left[\int_{h_{1}(x)}^{h_{2}(x)} f(x, y) d y\right] .
$$

The calculation of this integral goes as follows.
Step 1. For each x, calculate

$$
\int_{h_{1}(x)}^{h_{2}(x)} f(x, y) d y
$$

In this calculation, regarding x as if it were a fixed number. This integral will yield a function of x alone.

Step 2. Integrate from a to b the function of x you obtained from Step 1.

Examples

1. Compute integral

$$
\iint_{D}(x+x y) d x d y
$$

on region

$$
D=\{(x, y): 0 \leq x \leq 1,0 \leq y \leq 2\}
$$

2. Compute integral

$$
\iint_{D} e^{x-y} d x d y
$$

on region

$$
D=\{(x, y): x \leq 1, y \geq 1\}
$$

3. Compute integral

$$
\iint_{D}\left(x^{2} y+y^{2}\right) d x d y
$$

on region

$$
D=\{(x, y): 0 \leq x \leq y \leq 1\} .
$$

4. Compute the integral

$$
\iint_{D} 2 e^{-(x+2 y)} d x d y
$$

on region

$$
D=\{(x, y): 0 \leq x \leq y\}
$$

and region

$$
D=\{(x, y): 0 \leq y \leq x\}
$$

5. Compute the integral

$$
\iint_{D} x d x d y
$$

on region

$$
D=\left\{(x, y): x \geq 0, y \geq 0, x^{2}+y^{2} \leq 1\right\} .
$$

Useful Relations

$$
\iint_{D} c f=c \iint_{D} f
$$

$$
\iint_{D}[f+g]=\iint_{D} f+\iint_{D} g
$$

$$
\iint_{D} f=\iint_{D_{1}} f+\iint_{D_{2}} f
$$

provided $D_{1} \cap D_{2}=\emptyset, D_{1} \cup D_{2}=D$.

Special Cases

1.

$$
\iint_{D} d x d y=\text { Area of region } \mathrm{D}
$$

2. When $D=[a, b] \times[c, d]$ and $f(x, y)=g(x) \cdot h(y)$,

$$
\iint_{D} f(x, y) d x d y=\left[\int_{a}^{b} g(x) d x\right] \cdot\left[\int_{c}^{d} h(y) d y\right]
$$

