Chapters 9. Properties of Point Estimators

RECAP

- Population parameter θ . Population distribution $f(x; \theta)$. The form of $f(x; \theta)$ is known except the value of θ .
- Sample: $\{X_1, X_2, \ldots, X_n\}$ iid with distribution $f(x, \theta)$.
- Estimator $\hat{\theta}$: a function of samples $\{X_1, X_2, \ldots, X_n\}$:

$$\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n).$$

• MSE, unbiased, confidence interval.

RELATIVE EFFICIENCY

Two estimators for θ : $\hat{\theta}_1$ and $\hat{\theta}_2$. The relative efficiency of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$ is defined as

$$\operatorname{eff}(\hat{\theta}_1, \hat{\theta}_2) = \frac{\operatorname{MSE}(\theta_2)}{\operatorname{MSE}(\hat{\theta}_1)}$$

Remark: When $\hat{\theta}_1$ and $\hat{\theta}_2$ are both unbiased, their relative efficiency reduces to $\operatorname{eff}(\hat{\theta}_1, \hat{\theta}_2) = \frac{\operatorname{Var}(\hat{\theta}_2)}{\operatorname{Var}(\hat{\theta}_1)}$

Remark: When $\operatorname{eff}(\hat{\theta}_1, \hat{\theta}_2) > (<)1$, $\hat{\theta}_1$ is more (less) efficient than $\hat{\theta}_2$.

MINIMAL VARIANCE UNBIASED ESTIMATOR (MVUE)

Goal: Among all the unbiased estimators, find the one with the minimal variance (most efficient unbiased estimator).

Keywords:

- 1. Estimator: function of samples $\{X_1, X_2, \ldots, X_n\}$
- 2. Unbiased.
- 3. Minimal variance.

MVUE: SUFFICIENT STATISTICS

Definition: A *Statistics* is a function of samples $\{X_1, X_2, \ldots, X_n\}$.

Definition: A statistics $t = t(X_1, X_2, ..., X_n)$ is said to be *sufficient* if the *likelihood* of samples $\{X_1, X_2, ..., X_n\}$

$$L(x_1, x_2, \dots, x_n; \theta) = f(x_1; \theta) \times f(x_2; \theta) \times \dots \times f(x_n; \theta)$$

can be written as

$$L(x_1, x_2, \ldots, x_n; \theta) = g_{\theta}(t) \times h(x_1, x_2, \ldots, x_n).$$

Examples of sufficient statistics

1. Bernoulii Distribution. $\{X_1, X_2, \ldots, X_n\}$ iid Bernoulli with parameter p (target parameter). Then

is sufficient.

2. Poisson Distribution. $\{X_1, X_2, \ldots, X_n\}$ iid Poisson with parameter λ (target parameter). Then

is sufficient.

3. Uniform Distribution. $\{X_1, X_2, \ldots, X_n\}$ iid uniform on interval $[0, \theta]$ (target parameter θ). Then

$$X_{(n)} = \max\{X_1, X_2, \dots, X_n\}$$

is sufficient.

4. Normal Distribution. $\{X_1, X_2, \ldots, X_n\}$ iid $N(\mu, \sigma^2)$.

(a) Suppose σ is known, and μ is the target parameter. Then

is sufficient.

(b) Suppose μ and σ are both unknown (target parameters). Then

$$\left(\sum_{i=1}^{n} X_n, \sum_{i=1}^{n} X_i^2\right)$$

are (jointly) sufficient.

Remark: Sufficient statistics are not unique. Many of them.

Remark: What is the meaning of "sufficiency" — A sufficient statistics contains all the information about θ from the samples $\{X_1, X_2, \ldots, X_n\}$.

The conditional distribution of $\{X_1, X_2, \ldots, X_n\}$ given a sufficient statistics $t = t(X_1, X_2, \ldots, X_n)$ does **NOT** depend on θ .

Verify the discrete case

MVUE: RAO-BLACKWELL THEOREM

THEOREM: Let $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ be an unbiased estimator for θ , and t any sufficient statistics. Define

$$\hat{\theta}^* = E[\hat{\theta}(X_1, X_2, \dots, X_n)|t].$$

Then $\hat{\theta}^*$ is an unbiased estimator for θ and

$$\operatorname{Var}[\hat{\theta}^*] \leq \operatorname{Var}[\hat{\theta}]$$

Remark: $\hat{\theta}^*$ is a function of t only.

Observation: If there is only one function of t, say h(t), such that h(t) is an unbiased estimator for θ , that is

$$E[h(t)] = \theta,$$

then h(t) is the MVUE.

Definition: We say a statistics t is complete if

$$E[g(t)] = 0$$

for every θ implies $g \equiv 0$.

Remark: Suppose t is sufficient and complete, then there will be at most one function of t, say h(t), that is an unbiased estimator for θ .

MVUE: A USEFUL APPROACH

To identify an MVUE,

- 1. Find a sufficient statistics, say t.
- 2. Argue this statistics is complete.
- 3. Find an unbiased estimator h(t) for θ . (One can use any unbiased estimator, say $\hat{\theta}$, and then let $h(t) = E[\hat{\theta}|t]$)
- 4. This estimator h(t) is MVUE.

MVUE: EXAMPLES

1. A coin with P(H) = p (target parameter). Toss coin n times,

$$X_i = \begin{cases} 1 & , & \text{if } i\text{-th toss is heads} \\ 0 & , & \text{if } i\text{-th toss is tails} \end{cases}$$

Identify the MVUE for p.

2. Suppose {X₁, X₂,..., X_n} are iid N(μ, σ²).
(a) If σ² is known, what is the MVUE for μ?
(b) If μ and σ² are both unknown, what is the MVUE for μ? for σ²?

3. Suppose $\{X_1, X_2, \ldots, X_n\}$ are iid samples from uniform distribution on $[0, \theta]$. Find an MVUE for θ .

4. Suppose $\{X_1, X_2, \ldots, X_n\}$ are iid samples from Poisson distribution with parameter λ . Find an MVUE for θ . What about an MVUE for $e^{-\theta}$?

MAXIMUM LIKELIHOOD ESTIMATE (MLE)

MLE: Find θ to maximize $L(x_1, x_2, \ldots, x_n; \theta)$.

[In this maximization problem, $\{x_1, x_2, \ldots, x_n\}$ are regarded as fixed]

EXAMPLES

1. Suppose $\{X_1, X_2, \ldots, X_n\}$ are iid samples from Poisson distribution with parameter θ . Find the MLE for θ .

2. Suppose $\{X_1, X_2, \ldots, X_n\}$ are iid samples from uniform distribution $[0, \theta]$. Find the MLE for θ . 3. Suppose $\{X_1, X_2, \ldots, X_n\}$ are iid samples from $N(\mu, \sigma^2)$.

(a) Find the MLE for μ when σ^2 is known.

(b) Find the MLE for μ and σ^2 when they are both unknown.

PROPERTIES OF MLE

MLE has the following nice properties under mild regularity conditions.

- 1. MLE is a function of sufficient statistics.
- 2. Consistency: An estimator $\hat{\theta} = \hat{\theta}(X_1, X_2, \dots, X_n)$ is said to be consistent if $\left| \hat{\theta}(X_1, X_2, \dots, X_n) \theta \right| \to 0$

as
$$n \to \infty$$
.

- 3. Asymptotic optimality: MLE is asymptotically normal and asymptotically most efficient.
- 4. Invariance Property: Suppose $\hat{\theta}$ is the MLE for θ , then $h(\hat{\theta})$ is MLE for $h(\theta)$ when h is a one-to-one function.