Chapters 9. Properties of Point Estimators
Recap

- Population parameter θ. Population distribution $f(x; \theta)$. The form of $f(x; \theta)$ is known except the value of θ.
- Sample: $\{X_1, X_2, \ldots, X_n\}$ iid with distribution $f(x, \theta)$.
- Estimator $\hat{\theta}$: a function of samples $\{X_1, X_2, \ldots, X_n\}$:
 $$\hat{\theta} = \hat{\theta}(X_1, X_2, \ldots, X_n).$$
- MSE, unbiased, confidence interval.
Relative efficiency

Two estimators for θ: $\hat{\theta}_1$ and $\hat{\theta}_2$. The relative efficiency of $\hat{\theta}_1$ with respect to $\hat{\theta}_2$ is defined as

$$\text{eff}(\hat{\theta}_1, \hat{\theta}_2) = \frac{\text{MSE}(\hat{\theta}_2)}{\text{MSE}(\hat{\theta}_1)}$$

Remark: When $\hat{\theta}_1$ and $\hat{\theta}_2$ are both unbiased, their relative efficiency reduces to

$$\text{eff}(\hat{\theta}_1, \hat{\theta}_2) = \frac{\text{Var}(\hat{\theta}_2)}{\text{Var}(\hat{\theta}_1)}$$

Remark: When $\text{eff}(\hat{\theta}_1, \hat{\theta}_2) > (<)1$, $\hat{\theta}_1$ is more (less) efficient than $\hat{\theta}_2$.
Minimal Variance Unbiased Estimator (MVUE)

Goal: Among all the unbiased estimators, find the one with the minimal variance (most efficient unbiased estimator).

Keywords:

1. Estimator: function of samples \(\{X_1, X_2, \ldots, X_n\} \)
2. Unbiased.
3. Minimal variance.
MVUE: Sufficient Statistics

Definition: A *Statistics* is a function of samples \(\{X_1, X_2, \ldots, X_n\} \).

Definition: A statistics \(t = t(X_1, X_2, \ldots, X_n) \) is said to be *sufficient* if the *likelihood* of samples \(\{X_1, X_2, \ldots, X_n\} \)

\[
L(x_1, x_2, \ldots, x_n; \theta) = f(x_1; \theta) \times f(x_2; \theta) \times \cdots \times f(x_n; \theta)
\]
can be written as

\[
L(x_1, x_2, \ldots, x_n; \theta) = g_\theta(t) \times h(x_1, x_2, \ldots, x_n).
\]
Examples of sufficient statistics

1. Bernoulli Distribution. \(\{X_1, X_2, \ldots, X_n\} \) iid Bernoulli with parameter \(p \) (target parameter). Then

\[
\sum_{i=1}^{n} X_i
\]

is sufficient.
2. Poisson Distribution. \(\{X_1, X_2, \ldots, X_n\} \) iid Poisson with parameter \(\lambda \) (target parameter). Then

\[
\sum_{i=1}^{n} X_i
\]

is sufficient.
3. **Uniform Distribution.** \(\{X_1, X_2, \ldots, X_n\} \) iid uniform on interval \([0, \theta]\) (target parameter \(\theta\)). Then

\[
X_{(n)} = \max\{X_1, X_2, \ldots, X_n\}
\]

is sufficient.
4. Normal Distribution. \(\{X_1, X_2, \ldots, X_n\} \) iid \(N(\mu, \sigma^2) \).

(a) Suppose \(\sigma \) is known, and \(\mu \) is the target parameter. Then
\[
\sum_{i=1}^{n} X_i
\]

is sufficient.

(b) Suppose \(\mu \) and \(\sigma \) are both unknown (target parameters). Then
\[
\left(\sum_{i=1}^{n} X_n, \sum_{i=1}^{n} X_i^2 \right)
\]

are (jointly) sufficient.
Remark: Sufficient statistics are not unique. Many of them.

Remark: What is the meaning of “sufficiency” — A sufficient statistics contains all the information about θ from the samples $\{X_1, X_2, \ldots, X_n\}$.

The conditional distribution of $\{X_1, X_2, \ldots, X_n\}$ given a sufficient statistics $t = t(X_1, X_2, \ldots, X_n)$ does NOT depend on θ.

Verify the discrete case
MVUE: Rao-Blackwell Theorem

Theorem: Let \(\hat{\theta} = \hat{\theta}(X_1, X_2, \ldots, X_n) \) be an unbiased estimator for \(\theta \), and \(t \) any sufficient statistics. Define

\[
\hat{\theta}^* = E[\hat{\theta}(X_1, X_2, \ldots, X_n)|t].
\]

Then \(\hat{\theta}^* \) is an unbiased estimator for \(\theta \) and

\[
\text{Var}[\hat{\theta}^*] \leq \text{Var}[\hat{\theta}]
\]

Remark: \(\hat{\theta}^* \) is a function of \(t \) only.

Observation: If there is only one function of \(t \), say \(h(t) \), such that \(h(t) \) is an unbiased estimator for \(\theta \), that is

\[
E[h(t)] = \theta,
\]

then \(h(t) \) is the MVUE.
Definition: We say a statistics t is complete if

$$E[g(t)] = 0$$

for every θ implies $g \equiv 0$.

Remark: Suppose t is sufficient and complete, then there will be at most one function of t, say $h(t)$, that is an unbiased estimator for θ.
MVUE: A USEFUL APPROACH

To identify an MVUE,

1. Find a sufficient statistics, say t.
2. Argue this statistics is complete.
3. Find an unbiased estimator $h(t)$ for θ. (One can use any unbiased estimator, say $\hat{\theta}$, and then let $h(t) = E[\hat{\theta}|t]$)
4. This estimator $h(t)$ is MVUE.
MVUE: Examples

1. A coin with $P(H) = p$ (target parameter). Toss coin n times,

 $$X_i = \begin{cases}
 1 & \text{if i-th toss is heads} \\
 0 & \text{if i-th toss is tails}
 \end{cases}$$

 Identify the MVUE for p.
2. Suppose \(\{X_1, X_2, \ldots, X_n\} \) are iid \(N(\mu, \sigma^2) \).

(a) If \(\sigma^2 \) is known, what is the MVUE for \(\mu \)?
(b) If \(\mu \) and \(\sigma^2 \) are both unknown, what is the MVUE for \(\mu \) for \(\sigma^2 \)?
3. Suppose \(\{X_1, X_2, \ldots, X_n\} \) are iid samples from uniform distribution on \([0, \theta]\). Find an MVUE for \(\theta \).
4. Suppose \(\{X_1, X_2, \ldots, X_n\} \) are iid samples from Poisson distribution with parameter \(\lambda \). Find an MVUE for \(\theta \). What about an MVUE for \(e^{-\theta} \)?
Maximum Likelihood Estimate (MLE)

MLE: Find θ to maximize $L(x_1, x_2, \ldots, x_n; \theta)$.

[In this maximization problem, \{x_1, x_2, \ldots, x_n\} are regarded as fixed]
1. Suppose \(\{X_1, X_2, \ldots, X_n\} \) are iid samples from Poisson distribution with parameter \(\theta \). Find the MLE for \(\theta \).
2. Suppose \(\{X_1, X_2, \ldots, X_n\} \) are iid samples from uniform distribution \([0, \theta]\). Find the MLE for \(\theta \).
3. Suppose \(\{X_1, X_2, \ldots, X_n\} \) are iid samples from \(N(\mu, \sigma^2) \).

(a) Find the MLE for \(\mu \) when \(\sigma^2 \) is known.
(b) Find the MLE for \(\mu \) and \(\sigma^2 \) when they are both unknown.
Properties of MLE

MLE has the following nice properties under mild regularity conditions.

1. MLE is a function of sufficient statistics.
2. **Consistency**: An estimator \(\hat{\theta} = \hat{\theta}(X_1, X_2, \ldots, X_n) \) is said to be *consistent* if
 \[
 \left| \hat{\theta}(X_1, X_2, \ldots, X_n) - \theta \right| \to 0
 \]
as \(n \to \infty \).
3. **Asymptotic optimality**: MLE is asymptotically normal and asymptotically most efficient.
4. **Invariance Property**: Suppose \(\hat{\theta} \) is the MLE for \(\theta \), then \(h(\hat{\theta}) \) is MLE for \(h(\theta) \) when \(h \) is a one-to-one function.