
Chapters 9. Properties of Point Estimators



Recap

• Population parameter θ. Population distribution f(x; θ). The form of
f(x; θ) is known except the value of θ.

• Sample: {X1, X2, . . . , Xn} iid with distribution f(x, θ).

• Estimator θ̂: a function of samples {X1, X2, . . . , Xn}:

θ̂ = θ̂(X1, X2, . . . , Xn).

• MSE, unbiased, confidence interval.



Relative efficiency

Two estimators for θ: θ̂1 and θ̂2. The relative efficiency of θ̂1 with respect to θ̂2

is defined as

eff(θ̂1, θ̂2) =
MSE(θ̂2)

MSE(θ̂1)

Remark: When θ̂1 and θ̂2 are both unbiased, their relative efficiency reduces to

eff(θ̂1, θ̂2) =
Var(θ̂2)

Var(θ̂1)

Remark: When eff(θ̂1, θ̂2) > (<)1, θ̂1 is more (less) efficient than θ̂2.



Minimal Variance Unbiased Estimator (MVUE)

Goal: Among all the unbiased estimators, find the one with the minimal vari-
ance (most efficient unbiased estimator).

Keywords:

1. Estimator: function of samples {X1, X2, . . . , Xn}
2. Unbiased.

3. Minimal variance.



MVUE: Sufficient Statistics

Definition: A Statistics is a function of samples {X1, X2, . . . , Xn}.

Definition: A statistics t = t(X1, X2, . . . , Xn) is said to be sufficient if the
likelihood of samples {X1, X2, . . . , Xn}

L(x1, x2, . . . , xn; θ) = f(x1; θ) × f(x2; θ) × · · · × f(xn; θ)

can be written as

L(x1, x2, . . . , xn; θ) = gθ(t) × h(x1, x2, . . . , xn).



Examples of sufficient statistics

1. Bernoulii Distribution. {X1, X2, . . . , Xn} iid Bernoulli with parameter p
(target parameter). Then

n∑

i=1

Xi

is sufficient.



2. Poisson Distribution. {X1, X2, . . . , Xn} iid Poisson with parameter λ (tar-
get parameter). Then

n∑

i=1

Xi

is sufficient.



3. Uniform Distribution. {X1, X2, . . . , Xn} iid uniform on interval [0, θ] (target
parameter θ). Then

X(n) = max{X1, X2, . . . , Xn}
is sufficient.



4. Normal Distribution. {X1, X2, . . . , Xn} iid N(µ, σ2).

(a) Suppose σ is known, and µ is the target parameter. Then
n∑

i=1

Xi

is sufficient.

(b) Suppose µ and σ are both unknown (target parameters). Then
(

n∑

i=1

Xn,

n∑

i=1

X2
i

)

are (jointly) sufficient.



Remark: Sufficient statistics are not unique. Many of them.

Remark: What is the meaning of “sufficiency” — A sufficient statistics con-
tains all the information about θ from the samples {X1, X2, . . . , Xn}.

The conditional distribution of {X1, X2, . . . , Xn} given a suffi-
cient statistics t = t(X1, X2, . . . , Xn) does NOT depend on θ.

Verify the discrete case ....



MVUE: Rao-Blackwell Theorem

Theorem: Let θ̂ = θ̂(X1, X2, . . . , Xn) be an unbiased estimator for θ, and t
any sufficient statistics. Define

θ̂∗ = E[θ̂(X1, X2, . . . , Xn)|t].

Then θ̂∗ is an unbiased estimator for θ and

Var[θ̂∗] ≤ Var[θ̂]

Remark: θ̂∗ is a function of t only.

Observation: If there is only one function of t, say h(t), such that h(t) is an
unbiased estimator for θ, that is

E[h(t)] = θ,

then h(t) is the MVUE.



Definition: We say a statistics t is complete if

E[g(t)] = 0

for every θ implies g ≡ 0.

Remark: Suppose t is sufficient and complete, then there will be at most one
function of t, say h(t), that is an unbiased estimator for θ.



MVUE: A useful approach

To identify an MVUE,

1. Find a sufficient statistics, say t.

2. Argue this statistics is complete.

3. Find an unbiased estimator h(t) for θ. (One can use any unbiased estimator,

say θ̂, and then let h(t) = E[θ̂|t])
4. This estimator h(t) is MVUE.



MVUE: Examples

1. A coin with P (H) = p (target parameter). Toss coin n times,

Xi =

{
1 , if i-th toss is heads
0 , if i-th toss is tails

Identify the MVUE for p.



2. Suppose {X1, X2, . . . , Xn} are iid N(µ, σ2).

(a) If σ2 is known, what is the MVUE for µ?

(b) If µ and σ2 are both unknown, what is the MVUE for µ? for σ2?



3. Suppose {X1, X2, . . . , Xn} are iid samples from uniform distribution on
[0, θ]. Find an MVUE for θ.



4. Suppose {X1, X2, . . . , Xn} are iid samples from Poisson distribution with
parameter λ. Find an MVUE for θ. What about an MVUE for e−θ?



Maximum Likelihood Estimate (MLE)

MLE: Find θ to maximize L(x1, x2, . . . , xn; θ).

[In this maximization problem, {x1, x2, . . . , xn} are regarded as fixed]



Examples

1. Suppose {X1, X2, . . . , Xn} are iid samples from Poisson distribution with
parameter θ. Find the MLE for θ.



2. Suppose {X1, X2, . . . , Xn} are iid samples from uniform distribution [0, θ].
Find the MLE for θ.



3. Suppose {X1, X2, . . . , Xn} are iid samples from N(µ, σ2).

(a) Find the MLE for µ when σ2 is known.

(b) Find the MLE for µ and σ2 when they are both unknown.



Properties of MLE

MLE has the following nice properties under mild regularity conditions.

1. MLE is a function of sufficient statistics.

2. Consistency: An estimator θ̂ = θ̂(X1, X2, . . . , Xn) is said to be consistent
if ∣∣∣θ̂(X1, X2, . . . , Xn) − θ

∣∣∣→ 0

as n → ∞.

3. Asymptotic optimality: MLE is asymptotically normal and asymptotically
most efficient.

4. Invariance Property: Suppose θ̂ is the MLE for θ, then h(θ̂) is MLE for h(θ)
when h is a one-to-one function.


