
Chapters 8. Estimation



Basic Setup of Estimation

1. Quantity of interest: population parameter (i.e., target parameter).

Population distribution: f(x; θ), and θ is the target parameter. The
form of f is known (parametric), except the knowledge of θ.

2. Random samples: Samples, say X1, X2, . . . , Xn are iid (independent identi-
cally distributed) draws from the population. They all have common distri-
bution f(x; θ).

3. Estimator: An estimator , say θ̂, is an estimate for the population parameter
through these random samples. It is a function of the random samples,
θ̂ = T (X1, X2, . . . , Xn).

Estimate θ̂ is a random variable!



4. Analysis of the estimator θ̂: Accuracy, confidence interval, bias, efficiency,
consistency, and so on.



A baby example

A coin with P (H) = p, with p unknown.

1. Quantity of interest: p (play the role of θ).

2. Random samples: Toss coin n times. Let

Xi
.
=

{
1 , if the i-th toss is a heads
0 , if the i-th toss is a tails

{X1, X2, . . . , Xn} are iid, Bernoulli with parameter p.

3. Estimator:

p̂
.
=

X1 + X2 + . . . + Xn

n

4. Analysis of the estimator p̂: p̂ (random variable) is “unbiased” since

E[p̂] = p.

It is the best estimate for p (most efficient).



Bias and MSE

Definition: An estimate θ̂ is said to be unbiased if

E[θ̂] = θ.

Definition: The bias of an estimate θ̂ is defined as

Bias[θ̂] = E[θ̂] − θ.

Definition: The Mean Square Error (MSE) of an estimate θ̂ is defined as

MSE[θ̂] = E
[
(θ̂ − θ)2

]
=
[
Bias(θ̂)

]2

+ Var[θ̂].

“Estimators with smaller MSE are more preferable.”



Examples

1. The estimator in the “coin toss” problem. Compare with

θ̂′
.
= w1X1 + w2X2 + · · · + wnXn

where wi ≥ 0 and w1 + w2 + · · · + wn = 1.

2. Estimating the size of population: A box contain N balls marked from 1
through N . We make n selections from the box, and let X1, X2, . . . , Xn be
the observed numbers. Consider the following two estimators:

(a)

θ̂
.
= 2X̄ − 1 = 2 ·

X1 + X2 + · · · + Xn

n
− 1.

(b)

θ̂
.
=

n + 1

n
· max{X1, X2, . . . , XN}.



Common Unbiased Estimators

Textbook, Table 8.1, page 371.

1. Estimating Population Mean µ: iid random samples Y1, Y2, . . . , Yn are drawn
from the population.

µ̂ = Ȳ =
1

n
(Y1 + Y2 + · · · + Yn) = sample mean.

(a). Unbiased since E[Ȳ ] = µ.

(b). Standard deviation of Ȳ .

σȲ =
σ√
n

where σ is the population standard deviation.



Special case – Binomial parameter p. {Yi} iid Bernoulli with parameter p.

Y = Y1 + Y2 + · · · + Yn

is the total number of “success”.

The estimator is

p̂ =
Y

n
.

Unbiased,

σp̂ =

√
p(1 − p)

n



2. Estimating Difference of Population Means θ = µ1−µ2: n iid samples {Xi}
from Population 1, and m iid samples {Yj} from Population 2.

θ̂ = X̄ − Ȳ =
1

n
(X1 + · · · + Xn) −

1

m
(Y1 + · · · + Ym)

= Difference of Sample Mean.

Unbiased.

σθ̂ =

√
σ2

1

n
+

σ2
2

m

where σi is the population standard deviation for Population i, i = 1, 2.



Special case – Difference of binomial parameter θ = p1 − p2. {Xi} iid
Bernoulli with parameter p1. {Yj} are iid Bernoulli with parameter p2.

X = X1 + X2 + · · · + Xn,

Y = Y1 + Y2 + · · · + Ym.

The estimator is

θ̂ =
X

n
−

Y

m
.

Unbiased.

σθ̂ =

√
p1(1 − p1)

n
+

p2(1 − p2)

m



3. Estimating Population Variance σ2: iid samples Y1, Y2, . . . , Yn are drawn
from the population.

Sample variance = σ̂2 .
=

1

n − 1

n∑

i=1

(Yi − Ȳ )2

where Ȳ is the sample mean.

Unbiased.

Sample variance is often used as an approximation of the population
variance!



Confidence Interval

Confidence Interval is a measurement for the accuracy of the estimator.



Illustration through example

1. Population distribution is N(µ, 1). Wish to estimate µ.

iid samples {X1, X2, . . . , Xn} are drawn. The (unbiased) estimator is

X̄ =
1

n
(X1 + X2 + · · · + Xn).

The 95% confidence interval is an interval of type

[X̄ − b, X̄ + b]

such that
P (µ ∈ [X̄ − b, X̄ + b]) = 95%.

Remark: It is NOT the parameter µ that is random, it is the confidence
interval that is random since X̄ is a random variable.



Computation of b.

X̄ is N (µ, 1/n) ⇒ Z =
√

n(X̄ − b) is N(0, 1).

P (µ ∈ [X̄ − b, X̄ + b]) = P (−b ≤ X̄ − µ ≤ b)

= P (−b
√

n ≤ Z ≤ b
√

n)

= 0.95.

b
√

n = 1.96 ≈ 2, b =
2√
n
.

The 95% confidence interval is

[
X̄ −

2√
n
, X̄ +

2√
n

]



What is the meaning of confidence interval?

Suppose in the previous example we simulate 100 samples, and get sample
mean X̄ = 2.3. The 95% confidence interval is

[2.3 − 0.2, 2.3 + 0.2] = [2.1, 2.5].

Is it true that THIS interval, namely [2.1, 2.5], covers the true population
mean µ with probability 95%? [NO]

Remark: When we say 95% confidence interval covers the true value with
probability 95%, the true value is regarded as FIXED, while the confidence
interval is regarded as RANDOM.

For example, if one repeats the experiment 10 times (independently), each
times producing a 95% confidence interval. Then the number of intervals
that cover the true parameter has a distribution B(10, 0.95).



Remark: “95%” is called confidence level or confidence coefficient. In general,
it can be 1 − α with α ∈ (0, 1).

Remark: If the population distribution is N(µ, σ2) with σ known, then the
(1 − α) confidence interval for µ is

[X̄ −
σ√
n
zα/2, X̄ +

σ√
n
zα/2]

where zα/2 is defined such that

P (N(0, 1) ≥ zα/2) =
α

2
.

Note that we can also rewrite the confidence interval as

[X̄ − σX̄zα/2, X̄ + σX̄zα/2].

Remark: The tighter the confidence interval, the better the estimate. As
n increase, the confidence interval becomes tighter, whence the estimate
becomes more accurate.



2. A coin P (H) = p. Wishes to estimate p.

Toss the coin n times (assume n big), X = total number of heads. The
estimator is

p̂ =
X

n
.

What is the 95% confidence interval?

Solution: p̂ is unbiased,

E[p̂] = p, σp̂ =

√
p(1 − p)

n

The distribution of p̂ is approximately (normal approximation)

N
(
p, σ2

p̂

)

As before, the 95% confidence interval will be approximately

[p̂ − 2σp̂, p̂ + 2σp̂]



But we do not know σp̂. In this case, we can approximate

σp̂ =

√
p(1 − p)

n
≈
√

p̂(1 − p̂)

n

For example, suppose we toss coin 100 times and get 58 heads. Then p̂ =
0.58, and the 95% confidence interval is


0.58 − 2

√
0.58(1 − 0.58)

100
, 0.58 + 2

√
0̂.58(1 − 0.58)

100




or
[0.48, 0.68]



Generalization: Large-Sample Confidence Interval

Consider a target parameter θ and an unbiased estimator θ̂. When the sam-
ple size are large, the distribution of θ̂ can often be approximated by normal
distribution. Example include: µ, p, µ1 − µ2, p1 − p2.

More precisely, the distribution of θ̂ is approximately N(θ, σθ̂). And

Z =
θ̂ − θ

σθ̂

is approximately N(0, 1).

The (1 − α) confidence interval is just
[
θ̂ − zα/2σθ̂, θ̂ + zα/2σθ̂

]

Remark: Occasionally σθ̂ is known. More often it has to be estimated from the
sample.



Examples

1. In order to estimate the average television viewing time per family in a large
southern city, a sociologist took a random sample of 500 families. The sample
yielded a mean of 28.4 hours per week, and the sample standard deviation
is 8.3 hours per week. Find the 95% confidence interval for the population
mean.

Remark: Let {X1, X2, . . . , Xn} be the iid samples. The sample variance is

S2 =
1

n − 1

n∑

i=1

(Xi − X̄)2.

and the sample standard deviation is

S =
√

S2.



2. Estimate the difference in mean life of nonsmokers and smokers.

sample-size sample-mean sample std
Nonsmokers n = 36 x̄ = 72 s1 = 9

Smokers m = 44 ȳ = 62 s2 = 11

Find the 95% confidence interval for the difference of population means.

Remark: Note that θ̂ = X̄ − Ȳ , and

σθ̂ =

√
σ2

1

n
+

σ2
2

m
≈
√

s2
1

n
+

s2
2

m



Selecting sample size

Sometimes we have a prescribed length for confidence intervals, and the question
is how large the sample size n should be.

In the set up when CLT approximation holds, the length of a (1−α) confidence
interval is

2zα/2σθ̂.



1. The population distribution is N(µ, 1). Wish to estimate µ. How many
samples do we need so that the 95% confidence interval is within ±0.1 of µ.

Solution: The estimator θ̂ is sample mean and the confidence interval length
is

2zα/2σθ̂ = 2zα/2
1√
n

= 4
1√
n
.

So

4
1√
n
≤ 2 × 0.1 = 0.2

or
n ≥ 400.



2. We wish to estimate the population proportion p of voters in favor of Demo-
cratic. And we want the 95% confidence interval to be within ±3% of the
true value p. How large should the sample be?

Solution:

σp̂ =

√
p(1 − p)

n
So we need to find n such that

2zα/2σθ̂ = 4

√
p(1 − p)

n
≤ 0.03 × 2

or

n ≥
(

2
√

p(1 − p)

0.03

)2



(a) If we know p is approximately, say 0.6, then

n ≥
(

2
√

0.6(1 − 0.6)

0.03

)2

= 1067.

(b) If we do not know p. We can have a conservation bound using the in-
equality p(1 − p) ≤ 1/4 to obtain

n ≥ (1/0.03)2 = 1111.



General confidence intervals

A general (1 − α) two-sided confidence interval is [θ̂L, θ̂U ] such that

• θ̂L and θ̂U are both functions of samples. So they are RANDOM.

• P (θ̂L ≤ θ ≤ θ̂U) = 1 − α.



The Pivotal Method

This is a general method to obtain a confidence interval. Let samples be
X1, X2, . . . , Xn.

1. Find a quantity that is a function of {Xi} and θ.

2. The distribution of this quantity is independent of θ.



Examples

1. Let X1, X2, . . . , Xn be iid samples from a uniform distribution on (0, θ).
Wish to estimate θ. Our estimate is

θ̂ = X(n) = max{X1, X2, . . . , Xn}.

Consider the function

Y =
X(n)

θ
.

Then Y has a density

f(y) =

{
nyn−1 , if 0 < y < 1

0 , otherwise

For a (1 − α) confidence interval, consider β1 and β2 such that

P (β1 ≤ Y ≤ β2) = 1 − α.



There are infinitely many such choices. For each such choice,

P

[
X(n)

β2
≤ θ ≤

X(n)

β1

]
= 1 − α

A special choice is that

P (Y < β1) = P (Y > β2) = α/2.



2. Confidence Interval for σ2 for normal random variables. Assume {Xi} are
iid samples from N(µ, σ2). Both unknown. An unbiased estimate for σ2 is

σ̂2 =
1

n − 1

n∑

i=1

(Xi − X̄)2.

Then

Y
.
=

(n − 1)σ̂2

σ2

has the so called χ2(n − 1) distribution.

Remark: A chi-square distribution with degree of freedom k, or χ2(k),
is the distribution of

Z2
1 + Z2

2 + · · · + Z2
k

where {Z1, Z2, . . . , Zk} are iid N(0, 1).


