Chapters 8. Estimation

Basic Setup of Estimation

1. Quantity of interest: population parameter (i.e., target parameter).

Population distribution: $f(x ; \theta)$, and θ is the target parameter. The form of f is known (parametric), except the knowledge of θ.
2. Random samples: Samples, say $X_{1}, X_{2}, \ldots, X_{n}$ are iid (independent identically distributed) draws from the population. They all have common distribution $f(x ; \theta)$.
3. Estimator: An estimator, say $\hat{\theta}$, is an estimate for the population parameter through these random samples. It is a function of the random samples, $\hat{\theta}=T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.

Estimate $\hat{\theta}$ is a random variable!
4. Analysis of the estimator $\hat{\theta}$: Accuracy, confidence interval, bias, efficiency, consistency, and so on.

A BABY EXAMPLE

A coin with $P(H)=p$, with p unknown.

1. Quantity of interest: p (play the role of θ).
2. Random samples: Toss coin n times. Let

$$
X_{i} \doteq \begin{cases}1 & , \\ \text { if the } i \text {-th toss is a heads } \\ 0 & , \\ \text { if the } i \text {-th toss is a tails }\end{cases}
$$

$\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ are iid, Bernoulli with parameter p.
3. Estimator:

$$
\hat{p} \doteq \frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

4. Analysis of the estimator $\hat{p}: \hat{p}$ (random variable) is "unbiased" since

$$
E[\hat{p}]=p
$$

It is the best estimate for p (most efficient).

Bias and MSE

Definition: An estimate $\hat{\theta}$ is said to be unbiased if

$$
E[\hat{\theta}]=\theta
$$

Definition: The bias of an estimate $\hat{\theta}$ is defined as

$$
\operatorname{Bias}[\hat{\theta}]=E[\hat{\theta}]-\theta
$$

Definition: The Mean Square Error (MSE) of an estimate $\hat{\theta}$ is defined as

$$
\operatorname{MSE}[\hat{\theta}]=E\left[(\hat{\theta}-\theta)^{2}\right]=[\operatorname{Bias}(\hat{\theta})]^{2}+\operatorname{Var}[\hat{\theta}]
$$

"Estimators with smaller MSE are more preferable."

Examples

1. The estimator in the "coin toss" problem. Compare with

$$
\hat{\theta}^{\prime} \doteq w_{1} X_{1}+w_{2} X_{2}+\cdots+w_{n} X_{n}
$$

where $w_{i} \geq 0$ and $w_{1}+w_{2}+\cdots+w_{n}=1$.
2. Estimating the size of population: A box contain N balls marked from 1 through N. We make n selections from the box, and let $X_{1}, X_{2}, \ldots, X_{n}$ be the observed numbers. Consider the following two estimators:
(a)

$$
\hat{\theta} \doteq 2 \bar{X}-1=2 \cdot \frac{X_{1}+X_{2}+\cdots+X_{n}}{n}-1
$$

(b)

$$
\hat{\theta} \doteq \frac{n+1}{n} \cdot \max \left\{X_{1}, X_{2}, \ldots, X_{N}\right\}
$$

Common Unbiased Estimators

Textbook, Table 8.1, page 371.

1. Estimating Population Mean μ : iid random samples $Y_{1}, Y_{2}, \ldots, Y_{n}$ are drawn from the population.

$$
\hat{\mu}=\bar{Y}=\frac{1}{n}\left(Y_{1}+Y_{2}+\cdots+Y_{n}\right)=\text { sample mean. }
$$

(a). Unbiased since $E[\bar{Y}]=\mu$.
(b). Standard deviation of \bar{Y}.

$$
\sigma_{\bar{Y}}=\frac{\sigma}{\sqrt{n}}
$$

where σ is the population standard deviation.

Special case - Binomial parameter p. $\left\{Y_{i}\right\}$ iid Bernoulli with parameter p.

$$
Y=Y_{1}+Y_{2}+\cdots+Y_{n}
$$

is the total number of "success".

The estimator is

$$
\hat{p}=\frac{Y}{n}
$$

Unbiased,

$$
\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}
$$

2. Estimating Difference of Population Means $\theta=\mu_{1}-\mu_{2}: n$ iid samples $\left\{X_{i}\right\}$ from Population 1, and m iid samples $\left\{Y_{j}\right\}$ from Population 2.

$$
\hat{\theta}=\bar{X}-\bar{Y}=\frac{1}{n}\left(X_{1}+\cdots+X_{n}\right)-\frac{1}{m}\left(Y_{1}+\cdots+Y_{m}\right)
$$

$=$ Difference of Sample Mean.

Unbiased.

$$
\sigma_{\hat{\theta}}=\sqrt{\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{m}}
$$

where σ_{i} is the population standard deviation for Population i, $i=1,2$.

Special case - Difference of binomial parameter $\theta=p_{1}-p_{2}$. $\left\{X_{i}\right\}$ iid Bernoulli with parameter $p_{1} .\left\{Y_{j}\right\}$ are iid Bernoulli with parameter p_{2}.

$$
\begin{aligned}
X & =X_{1}+X_{2}+\cdots+X_{n}, \\
Y & =Y_{1}+Y_{2}+\cdots+Y_{m} .
\end{aligned}
$$

The estimator is

$$
\hat{\theta}=\frac{X}{n}-\frac{Y}{m} .
$$

Unbiased.

$$
\sigma_{\hat{\theta}}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n}+\frac{p_{2}\left(1-p_{2}\right)}{m}}
$$

3. Estimating Population Variance σ^{2} : iid samples $Y_{1}, Y_{2}, \ldots, Y_{n}$ are drawn from the population.

$$
\text { Sample variance }=\hat{\sigma}^{2} \doteq \frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

where \bar{Y} is the sample mean.

Unbiased.

Sample variance is often used as an approximation of the population variance!

Confidence Interval

Confidence Interval is a measurement for the accuracy of the estimator.

ILLUSTRATION THROUGH EXAMPLE

1. Population distribution is $N(\mu, 1)$. Wish to estimate μ.
iid samples $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ are drawn. The (unbiased) estimator is

$$
\bar{X}=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right) .
$$

The 95% confidence interval is an interval of type

$$
[\bar{X}-b, \bar{X}+b]
$$

such that

$$
P(\mu \in[\bar{X}-b, \bar{X}+b])=95 \%
$$

Remark: It is NOT the parameter μ that is random, it is the confidence interval that is random since \bar{X} is a random variable.

Computation of b.

$$
\begin{aligned}
& \bar{X} \text { is } N(\mu, 1 / n) \quad \Rightarrow \quad Z=\sqrt{n}(\bar{X}-b) \text { is } N(0,1) \\
& P(\mu \in[\bar{X}-b, \bar{X}+b])=P(-b \leq \bar{X}-\mu \leq b) \\
&=P(-b \sqrt{n} \leq Z \leq b \sqrt{n}) \\
&=0.95
\end{aligned}
$$

$$
b \sqrt{n}=1.96 \approx 2, \quad b=\frac{2}{\sqrt{n}}
$$

The 95% confidence interval is $\left[\bar{X}-\frac{2}{\sqrt{n}}, \bar{X}+\frac{2}{\sqrt{n}}\right]$

What is the meaning of confidence interval?
Suppose in the previous example we simulate 100 samples, and get sample mean $\bar{X}=2.3$. The 95% confidence interval is

$$
[2.3-0.2,2.3+0.2]=[2.1,2.5]
$$

Is it true that THIS interval, namely [2.1, 2.5], covers the true population mean μ with probability 95% ? [NO]

Remark: When we say 95% confidence interval covers the true value with probability 95%, the true value is regarded as FIXED, while the confidence interval is regarded as RANDOM.

For example, if one repeats the experiment 10 times (independently), each times producing a 95% confidence interval. Then the number of intervals that cover the true parameter has a distribution $B(10,0.95)$.

Remark: " 95% " is called confidence level or confidence coefficient. In general, it can be $1-\alpha$ with $\alpha \in(0,1)$.

Remark: If the population distribution is $N\left(\mu, \sigma^{2}\right)$ with σ known, then the $(1-\alpha)$ confidence interval for μ is

$$
\left[\bar{X}-\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}, \bar{X}+\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}\right]
$$

where $z_{\alpha / 2}$ is defined such that

$$
P\left(N(0,1) \geq z_{\alpha / 2}\right)=\frac{\alpha}{2}
$$

Note that we can also rewrite the confidence interval as

$$
\left[\bar{X}-\sigma_{\bar{X}} z_{\alpha / 2}, \bar{X}+\sigma_{\bar{X}} z_{\alpha / 2}\right]
$$

Remark: The tighter the confidence interval, the better the estimate. As n increase, the confidence interval becomes tighter, whence the estimate becomes more accurate.
2. A coin $P(\mathrm{H})=p$. Wishes to estimate p .

Toss the coin n times (assume n big), $X=$ total number of heads. The estimator is

$$
\hat{p}=\frac{X}{n} .
$$

What is the 95% confidence interval?
Solution: \hat{p} is unbiased,

$$
E[\hat{p}]=p, \quad \sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}
$$

The distribution of \hat{p} is approximately (normal approximation)

$$
N\left(p, \sigma_{\hat{p}}^{2}\right)
$$

As before, the 95% confidence interval will be approximately

$$
\left[\hat{p}-2 \sigma_{\hat{p}}, \hat{p}+2 \sigma_{\hat{p}}\right]
$$

But we do not know $\sigma_{\hat{p}}$. In this case, we can approximate

$$
\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}} \approx \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

For example, suppose we toss coin 100 times and get 58 heads. Then $\hat{p}=$ 0.58 , and the 95% confidence interval is

$$
\left[0.58-2 \sqrt{\frac{0.58(1-0.58)}{100}}, 0.58+2 \sqrt{\frac{\hat{0.58(1-0.58)}}{100}}\right]
$$

or

$$
[0.48,0.68]
$$

Generalization: Large-Sample Confidence Interval

Consider a target parameter θ and an unbiased estimator $\hat{\theta}$. When the sample size are large, the distribution of $\hat{\theta}$ can often be approximated by normal distribution. Example include: $\mu, p, \mu_{1}-\mu_{2}, p_{1}-p_{2}$.

More precisely, the distribution of $\hat{\theta}$ is approximately $N\left(\theta, \sigma_{\hat{\theta}}\right)$. And

$$
Z=\frac{\hat{\theta}-\theta}{\sigma_{\hat{\theta}}}
$$

is approximately $N(0,1)$.

The $(1-\alpha)$ confidence interval is just

$$
\left[\hat{\theta}-z_{\alpha / 2} \sigma_{\hat{\theta}}, \quad \hat{\theta}+z_{\alpha / 2} \sigma_{\hat{\theta}}\right]
$$

Remark: Occasionally $\sigma_{\hat{\theta}}$ is known. More often it has to be estimated from the sample.

Examples

1. In order to estimate the average television viewing time per family in a large southern city, a sociologist took a random sample of 500 families. The sample yielded a mean of 28.4 hours per week, and the sample standard deviation is 8.3 hours per week. Find the 95% confidence interval for the population mean.

Remark: Let $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be the iid samples. The sample variance is

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

and the sample standard deviation is

$$
S=\sqrt{S^{2}}
$$

2. Estimate the difference in mean life of nonsmokers and smokers.

	sample-size	sample-mean	sample std
Nonsmokers	$n=36$	$\bar{x}=72$	$s_{1}=9$
Smokers	$m=44$	$\bar{y}=62$	$s_{2}=11$

Find the 95% confidence interval for the difference of population means.

Remark: Note that $\hat{\theta}=\bar{X}-\bar{Y}$, and

$$
\sigma_{\hat{\theta}}=\sqrt{\frac{\sigma_{1}^{2}}{n}+\frac{\sigma_{2}^{2}}{m}} \approx \sqrt{\frac{s_{1}^{2}}{n}+\frac{s_{2}^{2}}{m}}
$$

SELECTING SAMPLE SIZE

Sometimes we have a prescribed length for confidence intervals, and the question is how large the sample size n should be.

In the set up when CLT approximation holds, the length of a ($1-\alpha$) confidence interval is

$$
2 z_{\alpha / 2} \sigma_{\hat{\theta}}
$$

1. The population distribution is $N(\mu, 1)$. Wish to estimate μ. How many samples do we need so that the 95% confidence interval is within ± 0.1 of μ.

Solution: The estimator $\hat{\theta}$ is sample mean and the confidence interval length is

$$
2 z_{\alpha / 2} \sigma_{\hat{\theta}}=2 z_{\alpha / 2} \frac{1}{\sqrt{n}}=4 \frac{1}{\sqrt{n}}
$$

So

$$
4 \frac{1}{\sqrt{n}} \leq 2 \times 0.1=0.2
$$

or

$$
n \geq 400
$$

2. We wish to estimate the population proportion p of voters in favor of Democratic. And we want the 95% confidence interval to be within $\pm 3 \%$ of the true value p. How large should the sample be?

Solution:

$$
\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}
$$

So we need to find n such that

$$
2 z_{\alpha / 2} \sigma_{\hat{\theta}}=4 \sqrt{\frac{p(1-p)}{n}} \leq 0.03 \times 2
$$

or

$$
n \geq\left(\frac{2 \sqrt{p(1-p)}}{0.03}\right)^{2}
$$

(a) If we know p is approximately, say 0.6 , then

$$
n \geq\left(\frac{2 \sqrt{0.6(1-0.6)}}{0.03}\right)^{2}=1067
$$

(b) If we do not know p. We can have a conservation bound using the inequality $p(1-p) \leq 1 / 4$ to obtain

$$
n \geq(1 / 0.03)^{2}=1111 .
$$

General confidence intervals

A general $(1-\alpha)$ two-sided confidence interval is $\left[\hat{\theta}_{L}, \hat{\theta}_{U}\right]$ such that

- $\hat{\theta}_{L}$ and $\hat{\theta}_{U}$ are both functions of samples. So they are RANDOM. - $P\left(\hat{\theta}_{L} \leq \theta \leq \hat{\theta}_{U}\right)=1-\alpha$.

The Pivotal Method

This is a general method to obtain a confidence interval. Let samples be $X_{1}, X_{2}, \ldots, X_{n}$.

1. Find a quantity that is a function of $\left\{X_{i}\right\}$ and θ.
2. The distribution of this quantity is independent of θ.

Examples

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be iid samples from a uniform distribution on $(0, \theta)$. Wish to estimate θ. Our estimate is

$$
\hat{\theta}=X_{(n)}=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}
$$

Consider the function

$$
Y=\frac{X_{(n)}}{\theta}
$$

Then Y has a density

$$
f(y)=\left\{\begin{array}{cl}
n y^{n-1} & , \quad \text { if } 0<y<1 \\
0, & \text { otherwise }
\end{array}\right.
$$

For a $(1-\alpha)$ confidence interval, consider β_{1} and β_{2} such that

$$
P\left(\beta_{1} \leq Y \leq \beta_{2}\right)=1-\alpha
$$

There are infinitely many such choices. For each such choice,

$$
P\left[\frac{X_{(n)}}{\beta_{2}} \leq \theta \leq \frac{X_{(n)}}{\beta_{1}}\right]=1-\alpha
$$

A special choice is that

$$
P\left(Y<\beta_{1}\right)=P\left(Y>\beta_{2}\right)=\alpha / 2
$$

2. Confidence Interval for σ^{2} for normal random variables. Assume $\left\{X_{i}\right\}$ are iid samples from $N\left(\mu, \sigma^{2}\right)$. Both unknown. An unbiased estimate for σ^{2} is

$$
\hat{\sigma}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Then

$$
Y \doteq \frac{(n-1) \hat{\sigma}^{2}}{\sigma^{2}}
$$

has the so called $\chi^{2}(n-1)$ distribution.

Remark: A chi-square distribution with degree of freedom k, or $\chi^{2}(k)$, is the distribution of

$$
Z_{1}^{2}+Z_{2}^{2}+\cdots+Z_{k}^{2}
$$

where $\left\{Z_{1}, Z_{2}, \ldots, Z_{k}\right\}$ are iid $N(0,1)$.

