Chapters 10. Hypothesis Testing

Some examples of hypothesis testing

- 1. Toss a coin 100 times and get 62 heads. Is this coin a fair coin?
- 2. Is the new treatment on blood pressure more effective than the old one?
- 3. Sex discrimination? A female pharmacist at Lagranze Phar. filed lawsuit against the company, complaining of sex discrimination. The data contains 2 females and 24 males.

Months to Promotion

Г	152	<u> </u>
F	453	229

Г	453	229										
М	47	192	14	12	14	5	37	7	68	483	34	19
	25	125	34	22	25	64	14	23	21	67	47	24

The data is re-organized in terms of ranks, from shortest to longest.

Months to Promotion													
Rank	1	2	3	4	5	6	7	8	9	10	11	12	13
Sex	М	М	М	М	М	М	М	М	М	М	М	М	М
Sex Rank	14	15	16	17	18	19	20	21	22	23	24	25	26
Sex	М	М	М	М	М	М	М	М	М	М	F	F	М

BASIC SETUP OF HYPOTHESIS TESTING

Population parameters of interest θ (unknown). Samples collected from experiment or observation $\{X_1, X_2, \ldots, X_n\}$.

HYPOTHESIS TESTING.

1. Null Hypothesis and Alternative Hypothesis.

 $H_0: \ \theta \in \Theta_0, \qquad H_a: \ \theta \in \Theta_a.$

For example

$$H_0: \theta = 0.5, \quad H_a: \theta \neq 0.5$$
$$H_0: \theta = 0.5, \quad H_a: \theta > 0.5$$
$$H_0: \theta < 1, \quad H_a: \theta > 2$$

2. Test statistics — a function of the samples, say $T = T(X_1, X_2, \ldots, X_n)$.

- 3. Rejection region (RR).
 - (a) When $T \in RR$, reject H_0 and accept H_a .
 - (b) When $T \notin RR$, accept H_0 .

Type I error, Type II error and Power of a test

Consider the simple hypotheses

$$H_0: \theta = \theta_0, \quad H_a: \theta = \theta_1,$$

where θ_0 , θ_1 are given constants.

1. Type I error.

$$\alpha \doteq P(\text{Reject } H_0 | H_0 \text{ is true}) = P(T \in RR | \theta = \theta_0)$$

2. Type II error.

$$\beta \doteq P(\text{Accept } H_0 | H_a \text{ is true}) = P(T \notin RR | \theta = \theta_1)$$

3. Power.

$$P(\text{Reject } H_0 | H_a \text{ is true}) = 1 - \beta.$$

EXAMPLE

Consider the following hypothesis testing. X_1, X_2, \ldots, X_n are iid from $N(\mu, 1)$.

$$H_0: \mu = 0, \quad H_a: \mu = 1.$$

Suppose $T = \overline{X}$ and the rejection region is

$$RR \doteq \{x : x > 0.5\}.$$

1. Type I error:

$$\alpha = P(\bar{X} > 0.5 | \mu = 0) = P(\sqrt{n\bar{X}} > 0.5\sqrt{n}) = \Phi(-0.5\sqrt{n}).$$

2. Type II error:

$$\beta = P(\bar{X} \le 0.5 | \mu = 1) = P(\sqrt{n}[\bar{X} - 1] \le -0.5\sqrt{n}) = \Phi(-0.5\sqrt{n}).$$

3. Power:

$$1 - \beta = 1 - \Phi(-0.5\sqrt{n}) = \Phi(0.5\sqrt{n}).$$

Remark:

- 1. The ideal scenario is that both α and β are small. But α and β are in conflict.
- 2. Increasing the sample size will reduce both α and $\beta,$ and increase the power the test.
- 3. Type I error is more often called the significance level of the test.
- 4. When θ_0 and θ_1 are closer, the power of the test will decrease.
- 5. Usually we are looking for sufficient evidence to reject H_0 . Thus type I error is more important than the type II error. Consequently, one usually control the type I error below some pre-assigned small threshold, and then, subject to this control, look for a test which maximize the power (or minimize the type II error).

REMARK: All the previous definitions and discussions extend to composite hypotheses

$$H_0: \theta \in \Theta_0, \quad H_a: \theta \in \Theta_a,$$

where

1. Type I error: for $\theta_0 \in \Theta_0$, $\alpha(\theta_0) = P(T \in RR | \theta = \theta_0)$ 2. Type II error: for $\theta_a \in \Theta_a$, $\beta(\theta_a) = P(T \notin RR | \theta = \theta_a)$

3.

Power =
$$1 - \beta(\theta_a)$$
.

TESTING THE MEAN OF NORMAL DISTRIBUTION

Suppose X_1, X_2, \ldots, X_n are iid from $N(\mu, \sigma^2)$ with σ^2 known but μ unknown. Consider the following types of one-sided tests and two-sided test.

[1].
$$H_0: \mu = \mu_0, \quad H_a: \mu > \mu_0$$

[2]. $H_0: \mu = \mu_0, \quad H_a: \mu < \mu_0$
[3]. $H_0: \mu = \mu_0, \quad H_a: \mu \neq \mu_0$

In all three cases, the test statistics is

$$T = \bar{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n).$$

We also assume that the type I error (significance level) is fixed to be a preassigned small number α (usually $\alpha = 0.05$).

[1].
$$H_0: \mu = \mu_0, \quad H_a: \mu > \mu_0$$

The rejection region is of the form

$$RR = \{\bar{X} > k\}$$

for some k.

Determine k.

$$\alpha$$
 = Type I error = $P(\bar{X} > k | \mu = \mu_0)$.

But \bar{X} is $N(\mu, \sigma^2/n)$. Therefore

$$k = \mu_0 + \frac{\sigma}{\sqrt{n}} z_\alpha = \mu_0 + \sigma_{\bar{X}} z_\alpha.$$

[2].
$$H_0: \mu = \mu_0, \quad H_a: \mu < \mu_0$$

The rejection region is of the form

$$RR = \{\bar{X} < k\}$$

for some k.

Determine k.

$$\alpha = \text{Type I error} = P(\bar{X} < k | \mu = \mu_0).$$

$$k = \mu_0 - \frac{\sigma}{\sqrt{n}} z_\alpha = \mu_0 - \sigma_{\bar{X}} z_\alpha..$$

[3].
$$H_0: \mu = \mu_0, \quad H_a: \mu \neq \mu_0$$

The rejection region is of the form

$$RR = \{\bar{X} < k_1\} \cup \{\bar{X} > k_2\}$$

for some k.

Determine k.

$$\alpha = \text{Type I error} = P(\bar{X} < k_1 | \mu = \mu_0) + P(\bar{X} > k_2 | \mu = \mu_0).$$

Symmetry.

$$k_{1} = \mu_{0} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} = \mu_{0} - \sigma_{\bar{X}} z_{\alpha/2}$$
$$k_{2} = \mu_{0} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2} = \mu_{0} + \sigma_{\bar{X}} z_{\alpha/2}.$$

EXAMPLE

1. National student exam scores are distributed as $N(500, 100^2)$. In a classroom of 25 freshmen, the mean score was 472. Is the freshmen of below average performance? (Consider different cases with the significance level $\alpha = 0.1, 0.05, 0.01$)

Reject H_0 at level $\alpha = 0.1$, Accept H_0 at level $\alpha = 0.05, 0.01$. 2. In a two-sided test of $H_0: \mu = 80$ in a normal population with $\sigma = 15$, an investigator reported that "since $\bar{X} = 71.9$, the null hypothesis is rejected at 1% level." What can we say about the sample sized used?

$n \ge 23$

EXTENSION TO LARGE SAMPLE TESTS

The test for normal distributions easily extend to large sample tests where the test statistics

 $\hat{\theta}$ is approximately $N(\theta, \sigma_{\hat{\theta}})$.

and the hypotheses are

$$H_0: \theta = \theta_0, \quad H_a: \theta > \theta_0$$
$$H_0: \theta = \theta_0, \quad H_a: \theta < \theta_0$$
$$H_0: \theta = \theta_0, \quad H_a: \theta \neq \theta_0$$

EXAMPLES

In all these examples, the significance level is assumed to be $\alpha = 0.05$.

1. Toss coin 100 times, and get 33 heads. Is this a fair coin?

2. Do indoor cats live longer than wild cats?

	Cats	Sample size	Mean age	Sample Std
-	Indoor	64	14	4
	Wild	36	10	5

3. In order to test if there is any significant difference between opinions of males and females on abortion, independent random samples of 100 males and 150 females were taken.

Sex	Sample size	Favor	Oppose
Male	100	52	48
Female	150	95	55

$\mathbf{P}\text{-}\mathrm{VALUE}$

P-value: The probability of getting an outcome as extreme or more extreme than the actually observed data (under the assumption that the null hypothesis is true).

Remark: Given a significance level α ,

- 1. If P-value $\leq \alpha$, reject the null hypothesis.
- 2. If P-value > α , accept the null hypothesis.

Redo all the previous examples to find P-value.

SAMPLE SIZE

Suppose the population distribution is $N(\mu,\sigma^2)$ with σ^2 known. Consider the test

$$H_0: \mu = \mu_0, \quad H_a: \mu > \mu_0.$$

Pick a sample size so that the type I error is bounded by α and the type II error is bounded by β when $\mu = \mu_a$.

$$n \ge \left[\frac{(z_{\alpha} + z_{\beta})\sigma}{\mu_a - \mu_0}\right]^2$$

Remark: The same argument extends to large sample testing. In particular, the binomial setting.

Suppose X_1, X_2, \ldots, X_n are iid Bernoulli with $P(X_i = 1) = p = 1 - P(X_i = 0)$. Consider the test

$$H_0: p = p_0, \quad H_a: p > p_0.$$

Pick a sample size so that the type I error is bounded by α and the type II error is bounded by β when $p = p_a$.

$$n \ge \left[\frac{z_{\alpha}\sqrt{p_0(1-p_0)} + z_{\beta}\sqrt{p_a(1-p_a)}}{p_a - p_0}\right]^2$$

EXAMPLES

1. Suppose it is required to test population mean

$$H_0: \mu = 5, \ H_a: \mu > 5$$

at level $\alpha = 0.05$ such that type II error is at most 0.05 when true $\mu = 6$. How large should the sample be when $\sigma = 4$. 2. How many tosses of a coin should be made in order to test

$$H_0: p = 0.5, \quad H_a: p > 0.5$$

at level $\alpha = 0.5$ and when true p = 0.6 type II error is 0.1?

NEYMAN-PEARSON LEMMA

Suppose $\{X_1, X_2, \ldots, X_n\}$ are iid samples with common density $f(x; \theta)$. Consider the following simple hypotheses.

$$H_0: \theta = \theta_0, \quad H_a: \theta = \theta_a.$$

Question: Among all the possible rejection regions RR such that the type I error satisfies

$$P(RR|\theta = \theta_0) \le \alpha$$

with α pre-specified, which RR gives the maximal power (or minimal type II error)?

NEYMAN-PEARSON LEMMA.

Define for each k

$$RR_k \doteq \left\{ (x_1, x_2, \dots, x_n) : \frac{f(x_1, \theta_0) f(x_2, \theta_0) \cdots f(x_n, \theta_0)}{f(x_1, \theta_a) f(x_2, \theta_a) \cdots f(x_n, \theta_a)} \le k \right\}.$$

Suppose there is a k^* such that

$$P(RR_{k^*}|\theta=\theta_0)=\alpha,$$

then RR_{k^*} attains the maximal power among all tests whose type I error are bounded by α .

EXAMPLES

1. Consider the following test for density f.

$$H_0: f(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & \text{elsewhere} \end{cases}, \quad H_a: f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{elsewhere} \end{cases}$$

٠

Find the most powerful test at significance level α based on a single observation.

2. Suppose X_1, X_2, \ldots, X_n are iid $N(\mu, \sigma^2)$ with σ^2 known. We wish to test $H_0: \mu = 0, \quad H_a: \mu = \theta \quad (\theta < 0)$

Find the most powerful test at significance level α .

Remark: What can we say about the test

$$H_0: \mu = 0, \quad H_a: \mu < 0.$$

Remark: What can we say about the test

$$H_0: \mu = 0, \quad H_a: \mu \neq 0.$$

3. Let X has density

$$f(x,\theta) = \begin{cases} 2\theta x + 2(1-\theta)(1-x), & 0 < x < 1, \\ 0 & , & \text{elsewhere} \end{cases}$$

Consider test

$$H_0: \theta = 0, \quad H_a: \theta = 1$$

with significance level α .

LIKELIHOOD RATIO TEST

The general form of likelihood ratio test

 $H_0: \theta \in \Theta_0, \quad H_a: \theta \in \Theta_a$

• The test statistics

$$\lambda \doteq \frac{\max_{\theta \in \Theta_0} L(x_1, x_2, \dots, x_n; \theta)}{\max_{\theta \in \Theta} L(x_1, x_2, \dots, x_n; \theta)}$$

where $\Theta = \Theta_0 \cup \Theta_a$.

• Rejection region
$$\{\lambda \leq k\}$$
 for some k.

REMARK: Θ_0 and Θ_a may contain nuisance parameters. And $0 \leq \lambda \leq 1$.

EXAMPLE

1. Suppose Y_1, Y_2, \ldots, Y_n are iid samples from Bernoulli with parameter p.

$$H_0: p = p_0, \quad H_a: p > p_0.$$

2. Suppose Y_1, Y_2, \ldots, Y_n are iid samples from $N(\mu, \sigma^2)$. μ and σ^2 are both unknown. We want to test

$$H_0: \mu = \mu_0, \quad H_a: \mu > \mu_0.$$

Find the appropriate likelihood ratio test.

Large sample distribution of λ

Theorem: When n is large, the distribution $-2\ln(\lambda)$ under H_0 is approximately χ^2 with degree of freedom equal

number of free parameters in Θ – number of free parameters in Θ_0 .

The Rejection region with significance level α is just

 $\{-2\ln(\lambda) \ge \chi_{\alpha}^2\}.$