Chapters 10. Hypothesis Testing

Some examples of hypothesis testing

1. Toss a coin 100 times and get 62 heads. Is this coin a fair coin?
2. Is the new treatment on blood pressure more effective than the old one?
3. Sex discrimination? A female pharmacist at Lagranze Phar. filed lawsuit against the company, complaining of sex discrimination. The data contains 2 females and 24 males.

Months to Promotion												
F	453	229										
M	47	192	14	12	14	5	37	7	68	483	34	19
	25	125	34	22	25	64	14	23	21	67	47	24

The data is re-organized in terms of ranks, from shortest to longest.

Months to Promotion														
Rank	1	2	3	4	5	6	7	8	9	10	11	12		3
Sex	M	M	M	M	M	M	M	M	M	M	M	M		-
Rank	14	15	16	17	18	19	20	21	22	23	2	2		26
Sex		M	M	M	M	M	M	M	M	M	F	F		M

Basic setup of hypothesis testing

Population parameters of interest θ (unknown). Samples collected from experiment or observation $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$.

Hypothesis Testing.

1. Null Hypothesis and Alternative Hypothesis.

$$
H_{0}: \theta \in \Theta_{0}, \quad H_{a}: \theta \in \Theta_{a}
$$

For example

$$
\begin{aligned}
H_{0}: \theta=0.5, & H_{a}: \theta \neq 0.5 \\
H_{0}: \theta=0.5, & H_{a}: \theta>0.5 \\
H_{0}: \theta<1, & H_{a}: \theta>2
\end{aligned}
$$

2. Test statistics - a function of the samples, say $T=T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$.
3. Rejection region (RR).
(a) When $T \in R R$, reject H_{0} and accept H_{a}.
(b) When $T \notin R R$, accept H_{0}.

Type I error, Type II error and Power of a test

Consider the simple hypotheses

$$
H_{0}: \theta=\theta_{0}, \quad H_{a}: \theta=\theta_{1},
$$

where θ_{0}, θ_{1} are given constants.

1. Type I error.

$$
\alpha \doteq P\left(\text { Reject } H_{0} \mid H_{0} \text { is true }\right)=P\left(T \in R R \mid \theta=\theta_{0}\right)
$$

2. Type II error.

$$
\beta \doteq P\left(\text { Accept } H_{0} \mid H_{a} \text { is true }\right)=P\left(T \notin R R \mid \theta=\theta_{1}\right)
$$

3. Power.

$$
P\left(\text { Reject } H_{0} \mid H_{a} \text { is true }\right)=1-\beta
$$

Example

Consider the following hypothesis testing. $X_{1}, X_{2}, \ldots, X_{n}$ are iid from $N(\mu, 1)$.

$$
H_{0}: \mu=0, \quad H_{a}: \mu=1
$$

Suppose $T=\bar{X}$ and the rejection region is

$$
R R \doteq\{x: x>0.5\}
$$

1. Type I error:

$$
\alpha=P(\bar{X}>0.5 \mid \mu=0)=P(\sqrt{n} \bar{X}>0.5 \sqrt{n})=\Phi(-0.5 \sqrt{n}) .
$$

2. Type II error:

$$
\beta=P(\bar{X} \leq 0.5 \mid \mu=1)=P(\sqrt{n}[\bar{X}-1] \leq-0.5 \sqrt{n})=\Phi(-0.5 \sqrt{n}) .
$$

3. Power:

$$
1-\beta=1-\Phi(-0.5 \sqrt{n})=\Phi(0.5 \sqrt{n})
$$

REmark:

1. The ideal scenario is that both α and β are small. But α and β are in conflict.
2. Increasing the sample size will reduce both α and β, and increase the power the test.
3. Type I error is more often called the significance level of the test.
4. When θ_{0} and θ_{1} are closer, the power of the test will decrease.
5. Usually we are looking for sufficient evidence to reject H_{0}. Thus type I error is more important than the type II error. Consequently, one usually control the type I error below some pre-assigned small threshold, and then, subject to this control, look for a test which maximize the power (or minimize the type II error).

Remark: All the previous definitions and discussions extend to composite hypotheses

$$
H_{0}: \theta \in \Theta_{0}, \quad H_{a}: \theta \in \Theta_{a}
$$

where

1. Type I error: for $\theta_{0} \in \Theta_{0}$,

$$
\alpha\left(\theta_{0}\right)=P\left(T \in R R \mid \theta=\theta_{0}\right)
$$

2. Type II error: for $\theta_{a} \in \Theta_{a}$,

$$
\beta\left(\theta_{a}\right)=P\left(T \notin R R \mid \theta=\theta_{a}\right)
$$

3.

$$
\text { Power }=1-\beta\left(\theta_{a}\right)
$$

Testing the mean of normal distribution

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are iid from $N\left(\mu, \sigma^{2}\right)$ with σ^{2} known but μ unknown.
Consider the following types of one-sided tests and two-sided test.

$$
\begin{array}{lll}
\text { [1]. } & H_{0}: \mu=\mu_{0}, & H_{a}: \mu>\mu_{0} \\
\text { [2]. } & H_{0}: \mu=\mu_{0}, \quad H_{a}: \mu<\mu_{0} \\
\text { [3]. } & H_{0}: \mu=\mu_{0}, \quad H_{a}: \mu \neq \mu_{0}
\end{array}
$$

In all three cases, the test statistics is

$$
T=\bar{X}=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right) .
$$

We also assume that the type I error (significance level) is fixed to be a preassigned small number α (usually $\alpha=0.05$).

$$
\text { [1]. } \quad H_{0}: \mu=\mu_{0}, \quad H_{a}: \mu>\mu_{0}
$$

The rejection region is of the form

$$
R R=\{\bar{X}>k\}
$$

for some k.
Determine k.

$$
\alpha=\text { Type I error }=P\left(\bar{X}>k \mid \mu=\mu_{0}\right) .
$$

But \bar{X} is $N\left(\mu, \sigma^{2} / n\right)$. Therefore

$$
k=\mu_{0}+\frac{\sigma}{\sqrt{n}} z_{\alpha}=\mu_{0}+\sigma_{\bar{X}} z_{\alpha} .
$$

$$
\text { [2]. } \quad H_{0}: \mu=\mu_{0}, \quad H_{a}: \mu<\mu_{0}
$$

The rejection region is of the form

$$
R R=\{\bar{X}<k\}
$$

for some k.
Determine k.

$$
\begin{gathered}
\alpha=\text { Type I error }=P\left(\bar{X}<k \mid \mu=\mu_{0}\right) . \\
k=\mu_{0}-\frac{\sigma}{\sqrt{n}} z_{\alpha}=\mu_{0}-\sigma_{\bar{X}} z_{\alpha} .
\end{gathered}
$$

$$
\text { [3]. } \quad H_{0}: \mu=\mu_{0}, \quad H_{a}: \mu \neq \mu_{0}
$$

The rejection region is of the form

$$
R R=\left\{\bar{X}<k_{1}\right\} \cup\left\{\bar{X}>k_{2}\right\}
$$

for some k.
Determine k.

$$
\alpha=\text { Type I error }=P\left(\bar{X}<k_{1} \mid \mu=\mu_{0}\right)+P\left(\bar{X}>k_{2} \mid \mu=\mu_{0}\right) .
$$

Symmetry.

$$
\begin{aligned}
& k_{1}=\mu_{0}-\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}=\mu_{0}-\sigma_{\bar{X}} z_{\alpha / 2} \\
& k_{2}=\mu_{0}+\frac{\sigma}{\sqrt{n}} z_{\alpha / 2}=\mu_{0}+\sigma_{\bar{X}} z_{\alpha / 2} .
\end{aligned}
$$

Example

1. National student exam scores are distributed as $N\left(500,100^{2}\right)$. In a classroom of 25 freshmen, the mean score was 472. Is the freshmen of below average performance? (Consider different cases with the significance level $\alpha=0.1,0.05,0.01)$

Reject H_{0} at level $\alpha=0.1$,
Accept H_{0} at level $\alpha=0.05,0.01$.
2. In a two-sided test of $H_{0}: \mu=80$ in a normal population with $\sigma=15$, an investigator reported that "since $\bar{X}=71.9$, the null hypothesis is rejected at 1% level." What can we say about the sample sized used?

$$
n \geq 23
$$

Extension to Large Sample Tests

The test for normal distributions easily extend to large sample tests where the test statistics

$$
\hat{\theta} \text { is approximately } N\left(\theta, \sigma_{\hat{\theta}}\right)
$$

and the hypotheses are

$$
\begin{array}{ll}
H_{0}: \theta=\theta_{0}, & H_{a}: \theta>\theta_{0} \\
H_{0}: \theta=\theta_{0}, & H_{a}: \theta<\theta_{0} \\
H_{0}: \theta=\theta_{0}, & H_{a}: \theta \neq \theta_{0}
\end{array}
$$

Examples

In all these examples, the significance level is assumed to be $\alpha=0.05$.

1. Toss coin 100 times, and get 33 heads. Is this a fair coin?
2. Do indoor cats live longer than wild cats?

Cats	Sample size	Mean age	Sample Std
Indoor	64	14	4
Wild	36	10	5

3. In order to test if there is any significant difference between opinions of males and females on abortion, independent random samples of 100 males and 150 females were taken.

Sex	Sample size	Favor	Oppose
Male	100	52	48
Female	150	95	55

P-value

P-value: The probability of getting an outcome as extreme or more extreme than the actually observed data (under the assumption that the null hypothesis is true).

Remark: Given a significance level α,

1. If P -value $\leq \alpha$, reject the null hypothesis.
2. If P -value $>\alpha$, accept the null hypothesis.

Redo all the previous examples to find P -value.

SAMPLE SizE

Suppose the population distribution is $N\left(\mu, \sigma^{2}\right)$ with σ^{2} known. Consider the test

$$
H_{0}: \mu=\mu_{0}, \quad H_{a}: \mu>\mu_{0}
$$

Pick a sample size so that the type I error is bounded by α and the type II error is bounded by β when $\mu=\mu_{a}$.

$$
n \geq\left[\frac{\left(z_{\alpha}+z_{\beta}\right) \sigma}{\mu_{a}-\mu_{0}}\right]^{2}
$$

Remark: The same argument extends to large sample testing. In particular, the binomial setting.

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are iid Bernoulli with $P\left(X_{i}=1\right)=p=1-P\left(X_{i}=\right.$ $0)$. Consider the test

$$
H_{0}: p=p_{0}, \quad H_{a}: p>p_{0}
$$

Pick a sample size so that the type I error is bounded by α and the type II error is bounded by β when $p=p_{a}$.

$$
n \geq\left[\frac{z_{\alpha} \sqrt{p_{0}\left(1-p_{0}\right)}+z_{\beta} \sqrt{p_{a}\left(1-p_{a}\right)}}{p_{a}-p_{0}}\right]^{2}
$$

Examples

1. Suppose it is required to test population mean

$$
H_{0}: \mu=5, \quad H_{a}: \mu>5
$$

at level $\alpha=0.05$ such that type II error is at most 0.05 when true $\mu=6$. How large should the sample be when $\sigma=4$.
2. How many tosses of a coin should be made in order to test

$$
H_{0}: p=0.5, \quad H_{a}: p>0.5
$$

at level $\alpha=0.5$ and when true $p=0.6$ type II error is 0.1 ?

Neyman-Pearson Lemma

Suppose $\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ are iid samples with common density $f(x ; \theta)$. Consider the following simple hypotheses.

$$
H_{0}: \theta=\theta_{0}, \quad H_{a}: \theta=\theta_{a}
$$

Question: Among all the possible rejection regions $R R$ such that the type I error satisfies

$$
P\left(R R \mid \theta=\theta_{0}\right) \leq \alpha
$$

with α pre-specified, which $R R$ gives the maximal power (or minimal type II error)?

Neyman-Pearson Lemma.

Define for each k

$$
R R_{k} \doteq\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): \frac{f\left(x_{1}, \theta_{0}\right) f\left(x_{2}, \theta_{0}\right) \cdots f\left(x_{n}, \theta_{0}\right)}{f\left(x_{1}, \theta_{a}\right) f\left(x_{2}, \theta_{a}\right) \cdots f\left(x_{n}, \theta_{a}\right)} \leq k\right\}
$$

Suppose there is a k^{*} such that

$$
P\left(R R_{k^{*}} \mid \theta=\theta_{0}\right)=\alpha
$$

then $R R_{k^{*}}$ attains the maximal power among all tests whose type I error are bounded by α.

Examples

1. Consider the following test for density f.

$$
H_{0}: f(x)=\left\{\begin{array}{ll}
1, & 0<x<1, \\
0, & \text { elsewhere }
\end{array}, \quad H_{a}: f(x)=\left\{\begin{array}{cl}
2 x, & 0<x<1 \\
0, & \text { elsewhere }
\end{array}\right.\right.
$$

Find the most powerful test at significance level α based on a single observation.
2. Suppose $X_{1}, X_{2}, \ldots, X_{n}$ are iid $N\left(\mu, \sigma^{2}\right)$ with σ^{2} known. We wish to test

$$
H_{0}: \mu=0, \quad H_{a}: \mu=\theta \quad(\theta<0)
$$

Find the most powerful test at significance level α.

Remark: What can we say about the test

$$
H_{0}: \mu=0, \quad H_{a}: \mu<0
$$

Remark: What can we say about the test

$$
H_{0}: \mu=0, \quad H_{a}: \mu \neq 0
$$

3. Let X has density

$$
f(x, \theta)=\left\{\begin{array}{cl}
2 \theta x+2(1-\theta)(1-x), & 0<x<1 \\
0, & \text { elsewhere }
\end{array}\right.
$$

Consider test

$$
H_{0}: \theta=0, \quad H_{a}: \theta=1
$$

with significance level α.

Likelihood ratio test

The general form of likelihood ratio test

$$
H_{0}: \theta \in \Theta_{0}, \quad H_{a}: \theta \in \Theta_{a}
$$

- The test statistics

$$
\lambda \doteq \frac{\max _{\theta \in \Theta_{0}} L\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)}{\max _{\theta \in \Theta} L\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)}
$$

where $\Theta=\Theta_{0} \cup \Theta_{a}$.

- Rejection region $\{\lambda \leq k\}$ for some k.

REmARK: Θ_{0} and Θ_{a} may contain nuisance parameters. And $0 \leq \lambda \leq 1$.

Example

1. Suppose $Y_{1}, Y_{2}, \ldots, Y_{n}$ are iid samples from Bernoulli with parameter p.

$$
H_{0}: p=p_{0}, \quad H_{a}: p>p_{0}
$$

2. Suppose $Y_{1}, Y_{2}, \ldots, Y_{n}$ are iid samples from $N\left(\mu, \sigma^{2}\right) . \mu$ and σ^{2} are both unknown. We want to test

$$
H_{0}: \mu=\mu_{0}, \quad H_{a}: \mu>\mu_{0}
$$

Find the appropriate likelihood ratio test.

LARGE SAMPLE DISTRIBUTION OF λ

Theorem: When n is large, the distribution $-2 \ln (\lambda)$ under H_{0} is approximately χ^{2} with degree of freedom equal
number of free parameters in Θ - number of free parameters in Θ_{0}.

The Rejection region with significance level α is just

$$
\left\{-2 \ln (\lambda) \geq \chi_{\alpha}^{2}\right\}
$$

