## AM 165: Homework \# 7 Solution part 2

- Suppose that $X$ and $Y$ has joint density

$$
f(x, y)= \begin{cases}2 & \text { if } x \geq 0, y \geq 0, x+y \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Determine the conditional expectation $E[Y \mid X]$.

Solution: First we need to compute $E[Y \mid X=x]$. To this end, we need to calculate $f(y \mid x)$. Note that the marginal density of $X$ is, for an arbitrarily fixed $0 \leq x \leq 1$,

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{0}^{1-x} 2 d y=2(1-x)
$$

The conditional density is

$$
f(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\frac{2}{2(1-x)}=\frac{1}{1-x}
$$

for all $0 \leq y \leq 1-x$, and $f(y \mid x)=0$ otherwise. Therefore, for every $0 \leq x \leq 1$,

$$
E[Y \mid X=x]=\int_{-\infty}^{\infty} y f(y \mid x) d y=\int_{0}^{1-x} y \frac{1}{1-x} d y=\frac{1}{1-x} \int_{0}^{1-x} y d y=\frac{1-x}{2} .
$$

Thus, replace $x$ by $X$ we arrive at

$$
E[Y \mid X]=\frac{1-X}{2}
$$

