Chapter 2: 2, 6, 9, 14, 21, 25, 44, 50

3. Suppose A and B are events...
 a) Both events occur: \(A \cap B \)
 b) At least one event occurs: \(A \cup B \)
 c) Neither occurs: \((\overline{A} \cap \overline{B})\) or \(A \cap \overline{B}\)
 d) Exactly one occurs: \((A \cup B) - (A \cap B) \) or \(A \cap B \cap (A^c \cup B) \)

4. 160 students... 9 living off campus, 36 undergraduates
 3 undergraduates living off campus

 \[A = \text{Undergrads} \]
 \[B = \text{Live off Campus} \]
 a) \(A \cup B = 42 \)
 b) \(A^c \cap B^c = 33 \)
 c) \(A \cap B^c = 18 \)

5. \(\Omega = \{ E_1, E_2, E_3, E_4, E_5 \} \)
 a) \(P(E_1) = .15 \), \(P(E_2) = .4 \), \(P(E_3) = 2 \) \(P(E_5) = 1 \)
 \[\Rightarrow \quad 1.7 + 3 \times P(E_5) = 1 \]
 \[\Rightarrow P(E_5) = .1 \]
 b) \(P(E_1) = 3 \) \(P(E_2) = .3 \) \(\text{Rest equiprobable} \)
 \[\Rightarrow P(E_3) = P(E_4) = P(E_5) = .2 \]

6. Volunteers in Blood Center
 \[\frac{1}{3} O^+ \quad \frac{1}{15} O^- \quad \frac{1}{3} A^+ \quad \frac{1}{12} A^- \]
 a) \(P(O^+) = \frac{1}{3} \)
 b) \(P(O) = P(O^+) + P(O^-) = \frac{2}{5} \)
 c) \(P(A) = P(A^+) + P(A^-) = \frac{19}{48} \)
 d) \(P(\text{Neither } A \text{ nor } O) = 1 - P(O) - P(A) = 1 - \frac{2}{5} - \frac{19}{48} = \frac{49}{120} \)
21. Two jurors needed, 4 men, 2 women to choose from
a. The experiment randomly selects two applicants out of 6 (4 men, 2 women)
 Denote the selection of 1 male and 1 female juror as \(M_1 F_2 \)
 Order of selection is unimportant
 {12} = \{ MMM, MMF, MFM, FFM \}
 \[P(FFF) = \frac{1}{15} \]
 \[\text{Notes: } \quad P(FFF) = \frac{(4)(3)}{(6)(5)} = \frac{12}{30} = \frac{1}{15} \]

23. Median Family Income \$35,353, 4 families surveyed
a. \(S = \{ 0, 1, 2, 3, 4 \} \) (The \# of families whose income exceeded the median)
 b. i. At least two had incomes exceeding median \(\Rightarrow 2 \text{ or } 3 \text{ or } 4 \)
 \(\Rightarrow \{ 2, 3, 4 \} = A \)
 ii. Exactly 2 \(\Rightarrow \{ 2 \} = B \)
 iii. Exactly 1 had income less than median \(\Rightarrow 3 \text{ had income } > \text{ median} \) \(\Rightarrow \{ 3 \} = C \)
 c. Assign probabilities to the sample events
 \(\text{Note: } P(\text{less than median}) = \frac{1}{2} \)

<table>
<thead>
<tr>
<th>Event</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability</td>
<td>(\frac{1}{6})</td>
<td>(\frac{1}{6})</td>
<td>(\frac{3}{8})</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1}{6})</td>
</tr>
<tr>
<td>(P(A))</td>
<td>(11/48 = \frac{1}{6} + \frac{4}{10} + \frac{3}{10})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P(B))</td>
<td>(3/8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P(C))</td>
<td>(1/4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

26. Study 10 problems, solve \(6, 5 \) on Exam (Random)
 \(P(\text{Student can solve all 5 exam questions}) = \left(\frac{6}{6} \right)^4 = \frac{1}{324} \)

50. Balanced die tossed 6 times
 \[P(1, 2, 3, 4, 5, 6 \text{ in any order}) = \frac{\text{"good" outcomes}}{\text{total # outcomes}} = \frac{\frac{1}{6} \cdot \frac{1}{6}}{6} = \frac{5}{324} = .0154 \]