Simplex Method for Linear Programming

Designed in 1947 by Danizig, the Simplez Algorethm was the method of choice to solve linear
programs for decades. Remarkably fast in practice, it had no contenders for “best practical linear

programming algorithm” until the appearance of Karmarkar's Algorithm in 1984 and the more
recent interior point mothods.

1 The intuitive idea behind Simplex Algorithm

Conceptually, the Simplex Algorithm could hardly be simpler. It is based on the following two
facts:

(1) There always exists a vertex (ie. corner point) of the feasible region that is an optimal
solution to the LP.

(2) A vertex is an optimal solution if there is no better neighboring vertex,

It follows from (1) that LP is a finite problem — a feasible region can only have finitely many
vertices! Therefore, we need only scan these vertices of the feasible region in order to find an
optimal solution.

But not all of them! That would take too long. Now fact (2) comes to the rescue, and defines
the algorithm — the Simplex Algorithin starts from an arbitrary vertex of the feasible region, and
compare it with its neighboring vertices. If no neighboring vertex is better, fact (2) tells us that we
already the optimality. Otherwise, the algorithm moves to a better neighboring vertex, and repeats
until an optimal vertex is reached. In other words, Simplex Algorithm is nothing more than an
orderly way of scanning vertices.

Remark: We should intuitively explain (1) and (2) by graphs. You might want to double-check

these claims for all the previous examples. -
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Remark: Pathological and artificial examples have been constructed to show that it js possible for
the Simplex Algorithm not to end, and get stuck in a vertex infinitely. Such a phenomenon
is called cycling. However, one can slightly modify the algerithm so that the optimal solution
can always be reached in finitely many steps. This only requires very little additional work.

In practice, this cycling problem is not even an issue. One reason is that it is so rare, The
second reason is that even if potential cycling exists i a problem, the computer round-error
usually makes the cycling impossible.

2 From geometry to algebra

It follows from the above discussion that the Simplex Algorithm takes the following steps:
(1) Initialization: Find a starting vertex in the feasible region.

(2) Optimality test: Compare the vertex with its neighboring vertices. If no neighboring vertex
is better, the current vertex is optimal, and the algorithm stops. Otherwise,

(3) Iteration: find a better neighboring vertex and goes back to (2).

All these terminologies of “vertex”, “neighboring vertex” have very clear geometric interpreta-
tions. However, since we want to solve the problem using computers, these words mean nothing
unless we can associate the geometry with the algebra — computer cannot undeorstand geometry,
but can perform algebra operation fast.

We should try to do the translation for an LP problem in its canonical form:
Maximize Z=clz

subject to the constraints
Az —b, z>0.

Here we use notation

T a1 @12 - Qin by cl

T3 az;  aze -+ ag, bo c2
T = , A= , b= , €=

In Aml QAm2 - Omp b Cn

We have n decision variables and m linear equations (assume n > m, otherwise the system is
over-determined). Sometimes we call n — m the degree of freedom.

2.1 Vertex vs. Basic Feasible Solution (BFS)

Arbitrarily choose n — m decision variables (non-basic variables), and set each of these variables
0. The m linear equations now becomes m equations for the remaining m decision variables (basic
variables). Solve for these m basic variables and we obtain a solution to the m linear solutions.
L i8 called the basic solution. This solution is feasible if and only if its components are all non-
negative, in which case it is said to be a basic feasible solution (i.e. BFS). The reason for this
definition is due to the following result:
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Theorem: A solution x is a vertex of the feasible region if and only if it is a BFS.

We should verify this theorem by computing some examples. Note the definition of BFS is
independent of the objective function Z, hence Z is omitted in the following exarmples.

Example: Suppose the constraints are
z1 | 23 = 4, x; >0, xy>0.
Find all the basic feasible solutions {BFS).

Solution: In this case n = 2, m = 1, and the degree of freedom is n — m = 1.

Non-Basic Variables | Basic Variables BFS
T.l:O 1‘2"‘2 A:(O,u)
z0=10 1 =4 B=(4,0)
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Example: Suppose the constraints are
r1+x9 = 3
—To+x3 = —1
and #1 > 0, zz > 0. Find all the basic feagible solutions (BFS).

In this case n = 3, m = 2, and the degree of freedom is n — m = 1.

Non-Basic Variables | Basic Variables BFS
=0 (z2,23) =(3,2) | 4=1(0,3,2)
T9 =0 (w1, 23) = (3,-1) | non-feasible
xz3 =0 (:E],mg) = (2,1) B :(2,1,0)
¥z
A=A
{ e
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Remark: Sometimes when we solve for basic solutions, the resulting m linear equations might
have infinitely many solutions, or no solution. Either way, there is no corresponding BFS.
See the following examples:

Example: Suppose the constraints are

w] + 2w +uoy =
221+ 4wy + 623 = &

and z1 > 0, xy > 0. Find all the basic feasible solutions (BFS) when b = 6 and b = 4.
In this case n = 3, m = 2, and the degree of freedom is n — m = 1.

{1) b=6:
Non-Basic Variables Basic Variables BFS
=0 (zg,23) = (é,l) A= (0,%7%)
=0 (w1, 23) — (3, 3) B=(30,%)
x3 =10 (21, z2) has no solution N
(2) b=4
Non-Basic Variables Basic Variables BFS
5 =0 (72, 73) = (1,0) o (0,1,0)
g = 0 (331, I3) = (2,0) BI = (2,0,0)
3 =20 (x),z2) has infinitely many solutions NA
0 . 2) Ny
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2.2 Adjacent Vertices vs. Basic Variables

We know fram the above discussion that a vertex is essentially a BFS, The adjacency of verlices
can be describe by basic variable.

Theorem: Two vertices are adjacent if and only if their corresponding BFS share all but one basic
variables, or equivalently, all but one non-basic variables.




For example, if one BFS uses {21, 3,25} as the basic variables, and another use (z3,x5,zg) as
its basic variables, then these two BFS (or, vertices) arc adjacent. Note in this case, the common
variables (z3,x5) might take different numeric value for these two BFS.

We should give examples later to verify this theorem.

2.3 Why we need simplex algorithm

(From the above discussion, an LP in canonical form with m linear constraints and n decision
variables, may have a basic feasible solution for every choice of n — m non-basic variables {or
eyuivalently, i1 basic variables). Therefore, the number of vertices (or, BFS) of the feasible region
might as well be the same as that of the choices of n — m non-basic variables. How many such
choices? From combinatorics, the number of choices are

(22w )=(0) = s

Even though this is a finite number, it could be really large, even if the n, m are relatively small.
For example, take n = 20, m = 10, we have

7 20 g .
(50)= ()=

Imagine an LP with hundreds of constraints. In principle, we can scan all these BFS and obtain
the optimum. But as we have already seen, for a medium-sized LP, the number of BFS are already
overwhelmingly large so that it would not be efficient to do so.

However, the Simplex Algorithm turns out to be much more efficient. In practice, the Simplex
Algorithu usually finds the optimal solution after scanning some 4m to 6m BFS, and very rarely be-
yond 10rm BFS. As n grows, the number of BFS scanned grows very slowly, perhaps logarithmically
1 n.

Remark: Pathological examples can be constructed such that the Simplex Algorithm will not be
efficient. But it is so artificial and rare, we should not be bothered in practice.
2.4 LP in standard form: slack variables
Suppose that the LP is in standard form:
Maximize Z=c'z

subject to the constraints
Az <b, z>0.

In order to compute the vertices, we just need to add in the slack variables so as to turn the LP into
cannnical form, whose vertices (or, BFS) can be computed as before. Then we can ignore the slack
variables to obtain the vertices for the original problem. See the example below for the illustration.

Example: Suppose the constraints are

2z + o
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and z; > 0, i =1,2,3. Find all the basic feasible solutions (BFS).

This is an LP in standard form, and we should add slack variable s1, sy so as to change the

constraints into canonical form

2z +x0+38; = 8

€T3 i 82 = 10,

in which case, n = 5, m = 2 and the degree of freedom n — m = 3.

Non-Basic Variables | Basic Variables BFS
(z1,29,73) = 0 (s1,82) = (8,10) | A= (0,0,0)
(z1,79,81) = (z3,21) NA
(r1,22,82) = 0 (w3,51) = (10,8) | B = (0,0,10)
(z1,81,23) = 0 (2,82) = (8,10) | € =(0,8,0)
(r1,83,73) =0 (2, s1) NA
(51, T2, T ) 0 (:Cl, Sg) = (4, 10) D= (4, 0, 0)
(82,23, 23) =0 (1, 51) NA
(z1,81,82) = 0 (ma, 73) = (], 10) = {0,8,10)
(s1,22,82) =0 (z1,23) = (4,10) | F = (4,0,10)
(81,82,:1:3) 0 (:L‘l,mg) NA

Below is the graphic verification. c
'707 //‘
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We can also verify the claim that two vertices (BFS) are adjacent: for example, point A
and D) are adjacent since they share the same basic variable s;, and point A and F are not
adjacent since they share no common basic variables.
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3 Simplex algorithm: examples

In this section, we should give two detailed examples of simplex algorithm. Fach step will be
explained in detail.

Example: Solve the LP in standard form:
Maximize Z = 311 + 22

subject. to constraints

2r1+1x3 < 10
ri4+rg = 8
1 S 4

and x1 2 0,20 2 0.
Solution: We should first write the problem in its canonical form by introducing slack variables.

2¢1+ 29+ s = 10
T+ T2+ 38y =

v sy = 4
In this case, n = 5 and m = 3 and degree of freedom n — m = 2.
Initialization (finding a starting BFS or a starting vertex): It is easy in this case — just set
NBV = (z1,22) = (0,0), BV = (s1,s2,53) = (10,8, 4).

Optimality test (is the current BFS or vertex optimal): The current BFS will be optimal if and only
if it is better than every neighboring vertex (or every BFS share all but one basic variables). To
do this, we try to determine whether there is any way Z can be increased by increasing one of
the non-basic variables from its current value zero while all other non-basic variables remain zero
{while the values of the basic variables are adjusted to continue satisfying the system of equations).

In this case, the objective function is Z = 32| + 223, and Z take value 0 at (0,0). It is easy to
see that no matter we increase z; (while holding z2 = 0) or increase z (while holding z; = 0), we
are going to increase Z since all the coefficients are positive. We conclude that the current BFS is
not optimal.

Moving to a neighboring BFS {or vertex): Two neighboring BFS share all but one basic variables.
In other words, one of the variable (x1,z2) is going to become a basic variable (entering basic
variable), and one of (s;, $3, 53) is going to become a non-basic variable (leaving basic variable)

(a) Determining the entering basic variable: Choosing an entering basic variable amounts to
choosing a non-basic variable 10 lucrease from zero. Note Z = 3z; + 2z9. Z is increased by
3 if we increase z1 by 1, and by 2 if we increase 2, by 1. Therefore, we choose x; as the
entering basic variable.




(b) Determining how large the entering basic variable can be: We cannot increase the entering
variable z; arbitrarily, since it may cause some variables to become negative. What is the
largest possible value that x) can attain? Note z4 is held at zero. Hence

§51=10—2x; >0 = x cannot exceed ¥ — 5
s2=8-n>0 = 1 cannot exceed § =8
s3=4~x1 20 = x) cannot exceed % =4,

It follows that the largest x; can be is the 4.

(¢) Determining the leaving basic variable: When z; takes value 4, s3 become 0. Therefore s3 is
the leaving basic variable.

Therefore, the neighboring vertex we select is

NBV = {s3,23), BY = (s1,82,11).

Pivoting {solving for the new BFS): Recall that we have

Z k3.’131 —2272 0 (0)
21 4x2 +s5 = 10 (1)

T taxa +89 = 8 (2)

z +s3 = 4 (3)

The goal is Lo solve for the BFS, and it is going to be achieved by Gaussian eliminaetion. We end
up with

zZ —2x9 +3s3 = 12 (0)
Ty +51 —253 = 2 {1)

T9 +s3 —s3 = 4 (2)

] +83 = 4 (3)

In other words, each basic variable has been eliminated from all but one row (its row)
and has coefficient {1 in that row. The Gaussian elimination always starts with the row of
the leaving basic variable (or the row that achieve the minimal ratio in the preceding step), or the
entering basic variable’s row is always the row of the leaving basic variable, or the entering basic
variable’s row is always the row that achieves the minimal ratio in the preceding step.
What we have is that the BFS is
NBV = (s3,22) = (0,0), BV = (s1,82,71) = (2,4,4),

and

Z =12+ 2x9 — 333,
while taking value 12 at this BFS.

Iteration: The above BFS is not optimal, since we can increase zy, which increases Z. We do not
want to increase s3, which decreases the value of Z. So the entering basic variable is z4. How large
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can zz be? Note s3 = 0, we have

T2 +81 = 2 = z2 < % =2
To +s2 = 4 = z2 < 3= 4
1 = 4 = no upperbound for s

The maximum of &y is therefore 2 achieved at row (1), and the leaving basic variable is the {original)
basic variable in row (1), i.e. s1. In other words

RV:(31,93), NB‘/"'(Szﬂl}l,mz).

Gaussian elimination yields, starting from row (1) yields,

A +251 —-53 = 16 (0)
Ty +85 -2s5 = 2 (1)

—81 +83 +83 = 2 (2)

T +83 = 4 (3)

or the new BFS is
BV = (s1,83) =(0,0), NBV = (sy, 21, %2) = (2,4,2).
The value of Z is
Z =16 — 251 + s3,

and it attains value 16 at this BFS.
This BFS is still not optimal, and clearly s5 will be the entering basic variable. Note s3 —= 0,
we have

T3 —283 = 2 = no upper bound for s5
89 +s83 = 2 = s3<2=9
T +s53 = 4 = s3< =4

The maximurm of s3 is therefore 2 achieved at row {2), and the leaving basic variable is the (original)
basic variable in row (1), i.e. sg. In other words

BV = (81,32), NBV:(:Cl,.Z'Q,Sg).

Gaussian elimination yields, starting from row (1) yields,

Z +81 +52 = 18 )
Ty —81 +259 = 6 (1)

—81  +82 +s83 = 2 (2)

] +81 —389 = 2 (3)

or the new BFS is

BV = (s1,82) = (0,0), NBV = (z1,22,83) = (2,6,2).

The value of Z is
Z =18 — 51 — 53




A —

and it attains value 18 at this BFS,

This BFS turns out to be optimal; indeed, any increment in the non-basic variable will decrease
the value of Z. Hence

max Z =18,  achieved at (27,23} = (2,6).

Below is the graphical description of solution.

Example: Solve the LP in standard form:

Maximize Z = 60x1 4 30x0 + 2024

subject to constraints

8¢ + 6z + ry < 48
4z, + 2z + Llbxy < 20
221 + 15x0 + 05z3 < 8

p) < 5

and z; > 0,i=1,2,3.

Solution: We should first introduce slack variables and convert the LP into canonical form.

Z — 60z — 30xz — 2023 = 0 (O)
8z +  Bxzo + x3 + 8 = 48 (1)

dr1 + 2y + 1.5zs + 352 = 20 (2)

2z + 15zy + 0.5x3 + 83 = 8 (3)

3 + 8 = b {4)

and w; 2> 0, ; > 0. Here n — 7,m — 4 and degree of {reedom n — m = 3.

Iteration 1: The starting BFS is

NBV = (Il,wg,r3) —= (0,0,U), BV = (81,52,53,84) = (48,20,8, 5)

and Z attain value 0 is not optimal.
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¢ [Entering basic variable: x1, the variable with the largest negative coefficient in Row (0).
s Leaving basic variable: Computing ratios

48 20 8
5= 6; Row (2): = 5 Row (3): 3= 4;

Row (4): no upper bound, since the coefficient of z1 is 0.

Row (1):

So Row (3) has the minimal ratio, the basic variable of Row (3), which is s3, is the leaving
basic variable,

After Gaussian elimination (starting with Row (3), and eliminate all the entering basic variable x;
in other rows), we obtain

VA + 15z0 — Sx3 +  30s3 = 240 (0}
— r3 + 81 —  dsg = 16 (1}

— re +  0.5as + s2 —  2s3 = 4 (2)

;1 + 0.75z9 + 0.25z4 + 0.5s3 = 4 (3)

bl + 84 = 5 (4)

Iteration 2: We obtain a new BFS
NBV = (z3,23,83) = (0,0,0), BV = (s1,82,84,21) = (16,4, 5,4).
and Z attain value 240, which is not optimal (why?)
¢ Entering basic variable: x3, the variable with the largest negative coefficient in Row (0).
® Leaving basic variable: Computing ratios

Row (1): no upper bound, since the coefficient of 3 is negative

4
GE=% Row(3): 5o

Row (4): no upper bound, since the coefficient of z7 is 0.

Row (2): = 16;

So Row (2) has the minimal ratio, and s, is the leaving basic variable.

After Gaussian elimination (starting with Row (2), and eliminate all 3 in other rows), we obtain

VA + 5z +  10ss 4+ 10s3 = 280 (0)
— 2x3 + 51 + 289 — 8s3 = 24 (1)

- 29 + @3 + 259 — 45 = 8 (2)

Ty + 1.25z4 + — 05859 + 1.5 = 2 (3)

T + s = 5 (4)

lteration 3: We obtain a new BFS
NBV = (z2,83,82) = (0,0,0), BV = (s7,54,21,23) = (24,5,2,8).
and Z attains value 280, which is optimal since
Z = 280 — 5xg — 108y — 10s3,

all the coefficients are negative (or all the coefficients in Row (0) are positive).
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~ 4 Simplex algorithm: the tabular form

The simplex algorithm can be better presented in the tabular form. Recall all the steps in the
preceding two examples — they are all concerned with the coefficients of the variables. We first
revisit the following example

Example: Solve the LP in standard form:

subject to constraints

and 1 > 0,23 > 0.

Maximize Z = 3xr1 + 219
2v1+ 139 < 10
T+ <
rp <

Solutien: The first table is the result after initialization:

12

Basic Variable | Row | Z | z; 29 s sy s3 | RHS | Ratios
Z 0 |11-3 =2 0 0 0 0
3] L [{o| 2 1 1 0 0] 10
—_ &9 2) (0|1 1 0 1 o0 8
83 (3) {01 0 0 0 1 4
The next step is finding the entering and leaving basic variables — get the variable with the
largest negative coefficient in row (0) and perform the ratio test.
Basic Variable { Row { Z | 21 zp s, 49 33 | RHS | Ratios
Z 0 |1 [-3 -2 0 0 0 0
s1 B lol2 1 1 0 of 10 |102=
89 (2) (0] 1 1 0 1 0 8 |8/1=8
53 3 [0]1x 0 0 0 1| 4 |4/1=4 « min
The next step is the Gaussian elimination — eliminate all the entering basic variable in other
rows and make the coefficient of the entering basic variable 1 in its own row. Do not forget to
change the basic variables.
Basic Variable | Row | Z | z; x5 s sz sz | RHS | Ratios
z ©@|11/0 -2 0 0o 3| 12
51 1) jofo 1 1 0 -2| 2
89 2)|10]0 1 0 1 -1 4
A 3)|ol1 0 0 0 1 4 o
Repeat.
o —




Basic Variable | Row | Z | 21 22 s1 s2 83 | RHS | Ratios
Z (0 110 -2 0 0 3 12
s1 (1 010 1x 1 0 -2 2 2/1 =2 « min
s2 2|00 1 0 1 -1| 4 |4/1=4
1 (3 g1 0 0 0 1 4
Basic Variable | Row | Z | 21 23 81 s2 s3 | RHS | Ratios
Z @ (1({0 0o 2 0 -1 16
b (L jofo 1 1 0 -2 2
89 @) {00 0 -1 1 1x| 2 |2/1=2+min
1 3J1o0{1 0 0 0 1 4 4/1=4
Basic Variable | Row | Z [ 21 %2 s sz s3 | RHS | Ratios
VA 0y 1[0 0 1 1 0 18
Ty (y (oo 1 -1 2 0 6
s3 (2)]0]10 0 -1 1 1x| 2
1 Hlol1 0 1 -1 0 2
Example: Solve the LP in standard form:
Maximize Z=2x1 — 29+ 3
subject to constraints
314wz +xg < 60
T —2p+2x3 < 10
Ti+re—-x3 < 20
and z; > 0.
Solution: We will just present the tables.
Basic Variable | Row | Z | #; xy 3 81 s 83| RHS | Ratios
Z © [1[=2 1 1 0 0 0] 0
51 M |ol 3 1 1 0 0] 60 |60/3=20
59 2) [0 1+ -1 2 0 1 0 10 | 10/1 = 10 « min
83 3 [0 1 1 -1 0 0 1 20 | 20/1=20
Basic Variable | Row | Z |y 23 23 1 sz o3 | RHS | Ratios
A Mm|1]0 -1 3 0 2 0 20
s1 (Lfojo 4 -5 1 -3 ¢ 30 1 30/4=75
Did you forget — 7y )y 101 -1 2 0 1 0 10
&3 3010 2« -3 0 -1 1 10 10/2=15 + min
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Basic Variable [ Row | Z |21 z» x3 s s32 s3 | RHS | Ratios
z @ J(1{0 0 15 O 15 05| 25
51 (LW (ol0O 0 1 1 -1 -2 10
] (2 (o1 0 05 0 05 05} 15
Ty AHl1ofo 1 -15 0 -05 05 5

So the maximum is Z = 25 attained at (z1,z2,z3) = (15,5,0).

Remark: In each table, the coefficient of the basic variables in Row (0) are all zero. In the final
table (or, the optimal tableau), all the coefficients in Row () are non-negative.

Remark: If there are multiple variables tie with the largest negative coeflicient in row (0), when
selecting the entering basic variable, the choice may be made arbitrarily among them.

Remark: If there are multiple variables tie with the minimal ratio, when selecting the leaving
basic variable, the choice may be made arbitrarily among them in practice.

5 Potential break-down of the simplex algorithm

5.1 Multiple optimal solutions
Consider the following example.
Example: Consider the LP in standard form:

Maximize 7 = —3x1 + 6xa

subject to constraints

Zry +r2 <
—z1+2x <

D O

and x; > 0.

Solution: By introducing the slack variables and simplex algorithm, we have the following two
tables.

Basic Variable | Row | Z | z1 22 s sz { RHS | Ratios

zZ (0 |13 6 0 0 0

81 (Ljofz 1 1 0 6 6/1=26

89 (2) |O0]-1 2« 0 1 2 |2/2=1+min

Basic Variable | Row | Z | 7 z2 s sy | RHS | Ratios

VA (0 |1 0 0 0 3 6
81 (Hlofl2s+ 0 1 -05 5}
Ty 2y 10|05 1 0 05 1

14




Since the coefficients in Row (0) are all non-negative, we arrive at an optimal solution:
maxZ =6, at (z7,z8) = (0,1).

However, in this optimal tableau, one of the non-basic variable, z1, has 0 coefficient in Row (0). If
we choose 3 as the entering basic variable, we obtain another optimal tableau;

Basic Variable | Row | Z | z1 22 & s2 | RHS | Ratios
Z |10 0 0 3 6
) 1y {01 © 02 -01| 2
T 2y fofo 1 02 04 2

Note, Row (0} will remain the same, since the coefficient of the entering basic variable in Row
(0) is zero. We have another optimal solution:

maxZ =6, at (z},z%) = (2,2).

Ezercise: Graphically solve this LP and explain why the non-uniqueness happens. From the graph,
identify all the optimal solutions.

Ezercise (no leaving basic variable): This exercise shows that even though one non-basic variable
has zero coeflicient in the optimal tableau, the optimal solution could still be unique. Also
verify this graphically.

Maximize Z = =3z + 6xp

subject to constraints

=21 + 219
—x1 + 229

IAIA

and z; > 0.

Conclusion: In the optimal tableau, if all the coefficient of the non-basic variable are strictly
positive in Row (0}, then the optimal soluticn is unique. If in the optimal tableau, there is a non-
basic variable has O coefficient in Row (0), then another iteration (if possible) with this non-basic
variable serving as the entering basic variable, will also lead to an optimal solution.

Digression to convex sct
Definition: A sct A C R? is said to be a convex set, f V XY € A, we have

AX+(1-ANYe4d, Yieloi]

Sometimes AX + (1 — A)Y is called the convex combination of X and Y.
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Geometric interpretation of convexity: A set A € R? is a convex set if and only if for any
X,Y € A, the line segment connecting X and Y also belong to the sel A. Indeed, any point
of the line segment connecting X and Y is a convex combination of them, and vice versa: see
the following graph for illustration.

g o= ax+ (5A7

Ezample: Any interval [a,b] on the real line is convex. The set {(z,y); #2+y? < 1} is convex. The
set {(z,y); ¢ + 4% > 1} is not convex.

-

¥
aonve pon - con ve€ X

Proposition: Suppose A4 is a convex set and X1, Xy,--+ , X, € A. Then for any A, Ag, -+, Az >0
such that A} + As + -+ + X, = 1, we have

A X1+ AaXg + A A X € Al

Sometimes A X1+ A Xy -+ + A, X, is said to be the convex combination of {X1,-, Xn}.
Proof: We will prove by induction. The claim is true for n = 2, and assume it is true for
n — 1. Without loss of generality, assume that ), < 1. Let

A A An
X b R Xy e ]

Y:lf)\n 11—, 1— A,

Kon—1i=mX1 +paXo+ o+ pin 1 Xn_1.
Clearly p1; are all non-negative and g1+ -+, = 1. We have Y € A, which in turn implies
MX 4+ X+ X, = (1=An)Y + 2, X, € A,

We complete the proof. 0

Proposition: Suppose A and B are both convex sets. Then AN B is also a convex set.

Proof: The proof is trivial, and left as an exercise. G

Corollary: The feasible region for any LP is a convex set.
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Proof: Each constraint of an LP takes from
a1r1 + -+ Gpin > (Si :)b
All the vectors X = (x}, 25, ; 2y, that satisfy this constraint is convex gwhy?). The feasible

region, which is the intersection of such convex sets, is convex from the preceding proposition.
[}

Corollary: Suppose X and Y are both optimal sclhutions to an T.,P. Then any convex combination
of X and Y is also an optimal solution to the LP,

Proof: Suppose X* = (z},--,z}) and Y™ = (y},--- ,u2) are both optimal solution to the
LP problem. In other words, X, ¥ arc both in the feasible region, aud

' =maxZ = c1z] 4+ + oy = 1yl + - oyl
Any convex combination of X* and Y*, say
WE=2AX"+ (1 -NY* =z + (1= Nyl Azh +(1— ),
is also in the feasible region. Furthermore, we have
er(Ax] + (1= Ngl) + -+ enQQapy + (1= Ngh) — A* + (1 — Azt = 2% = max Z.
This completes the proof. g

5.2 Unbounded LP

For some LPs, there exist points in the feasible region for which Z assumes arbitrarily large values.
When this situation occurs, we say that the LP is unbounded.

Example: Consider the LP in standard form:

Maximize Z =3z + 2x9

subject to constraints

1 — T3 S 3
1 S 2
and z; > 0.
Solution: The siplex algorithm will yield
Basic Variable | Row | Z [ 21 292 s1 & | RHS | Ratios
Z  [1[3 » 0 o] o
51 mjofj1 -1 1 0 3 3/1=3
s9 2y |of1« 0 0 1 2 |2/1=2<+min
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Basic Variable | Row | Z | 23 79 s s | RHS | Ratios
Z |10 -2 0 3 6
51 () (ojo -1 1 1 1
1 (o1 0 0 1 2

In this last tableau, the entering basic variable should be 5. However, since the coefficients of
T2 in row (1) and (2) are either negative or zero, the ratio test fails to indicate which variable should
be the leaving basic variable. In this case, Z can take arbitrarily large values. Indeed, holding the
other non-basic variablc s2 zero, we have

Z = 642z
—x9+s8 = 1
r, = 2

If we increase z), s; will increase accordingly. However, there is no limit how big x; can be. For
example, can we {iud a [easible Z > 10007 Just choosc T3 = (1000 =6)/2 — 497 and 5, =29 + 1 =
498 (while holding 1 = 2, s = 0). In this fashion, we can find feasible solution so that Z is as

large as we want it to be. Thus the LP is unbounded.
L 8

2 e

Conclusion: An LP is unbounded if all the coefficients for the entering basic variable are either
negative or zero in all the rows (whence no leaving basic variable).

Ezercise: Show that the following LP is unbounded.
Maximize Z = 361 + 30z — 33 — dzy
subject to constraints

Ty+az—23 < 5
6r; +56x2 — x4 < 10

and x; > ). Find a feasible solution for which Z takes value 1000. How about 100007

5.3 Cycling: degeneracy

Theoretically, the simplex algorithm could fail to terminate, and thus fail to find an optimal solution
to an LP. To investigate this phenomenon, let us take a closer look of the simplex algorithm. Assume
that in some iteration the table is as follows,
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Basic Variable | Row | Z g RHS | Ratios
: 0 :
z; 0 i b;
0

and the entering basic variable and the leaving basic variable are z; and x; respectively. The next
table will therefore take form

Basic Variable | Row | Z Ti e RHS Ratios
Z (0} 1 0 - | Zpew = ZOld — Cibj,/aij
: : 0 : : :
0 L 1

In other words, the entering basic variable z; will take value b; /aij in the new BFS, and the
improvement for the value of Z is

AZ — —cibjfuy; = —¢; - (Lhe value of entering basic variable in the new BFS).

Since ¢; < 0,a4; > 0,b; > 0, the increment AZ > 0. We have the following important observation

Proposition: In each iteration of the simplex algorithm, the value of % is always non-decreasing.

It is strictly increasing if and ouly if the value of the entering hasic variable in the new BFS
is strictly positive.

This result inspires the following definition.

Definition: If in each of the LP’s BFS, all the basic variables are strictly positive, then we say
the LI’ 05 non-degenerate.

Corollary: For a non-degenerate LP, the simplex always terminate in finitely many steps.

Proof: Since in each iteration the value Z is strictly increasing, the simplex algorithm will
not scan the same vertex twice. But there are only finitely many vertices. The claim follows
readily. 0

It is now clear how could a simplex algorithm fail to terminate. If the LP is degenerate, i.e.
some basic variables take value zero in a BFS, then it is possible that the simplex algorithm could
scan the same BFS twice (whence infinitely many times). This occurence is called cycling.

Example (degeneracy does not lead to cycling): Solve the following LP

Maximize Z =511 + 2x9
subject to constraints
itz < 6
r1—12 < 0

and z; > 0,
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Solution: After adding the slack variables, we obtain the initial table. In this BFS, the basic
variable sy = 0, hence the LP is degenerate.

Basic Variable | Row | Z [ 7 x2 87 s | RHS | Ratios
Z 0y {1[(-5 -2 0 0 0
51 M loj1 1 1 0 6 6/1=6
53 2) [0l -1 0 1 0 [0/1=0+min
Basic Variable | Row | Z |y x2 s; s» | RHS [ Ratios
Z © (1|5 7 0 5] 0
51 (1) |00 2« 1 -1| 6 |6/2=23<«min
1 2y/of1 -1 0 1 0
Basic Variable [ Row | Z | 21 29 s sa | RHS | Ratios
Z M ]1]0 0 35 15 21
T2 (1) 010 1 5 08 3
T 2y |01 0 05 05 3
The optimal solution is therefore
max Z =21, at {(z7,z3) = (3,3).

Example (degeneracy does lead to cyclingy: This is a very artificial example.

Maximize

subject Lo cousiraints

and z; > 0.

Solution: We have the following tables.

2

leaving basic variable as indicated.

1

3 1
Z = Zrl — 20z, + 2%3 = 69

Z.L"]_ - 8.’1:2 —x3+ 9.’1,'4

1
x1 — 1229 — 5273 + 34

3

IA

IA A

Note when we have a tie in the ratio test, we pick the

Basic Variable | Row | Z [ 21 ®2 x3 x4 s1 s s3 | RHS | Ratios

Z © |1]-4 2 -3 6 0 0 0] 0

51 @ (0] 8 -1 9 1 0 0| 0 }0-4=0+leaving

32 2) |03 12 -2 3 0 1 0| 0 [0-2=0

52 3 o]0 o 1 0o o0 0 1 1

Basic Variable | Row | Z | z1 z2 23 x4 s sz s3 | RHS | Ratios

Z O |1{0 -4 -I 3 3 0 0] 0
1 MHjoj1 -32 4 36 4 0 o] o
$3 (2) 0[O0 4 35 15 2 1 0| 0 |0/4=0+¢min
53 B3 J0ojJo 0 1 0 0 0 1] 1
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~ Basic Variable | Row | Z 21 29y 23 =4 351 83 s3 | RHS | Ratios
VA (11|10 0o -2 18 1 1 @ 0
) (1) (o] 1 0 8 -84 -12 8 0 0 0/8 = 0 +leaving
o 2) fojo 1 & LB 1 1 o} 0 |0.8/3=0
1 B 10y0 0 1 0 0 0 1 1
Basic Variable | Row | Z | o1 o2 z3 x4 8 s s3 | RHS | Ratios
Z j1]l s 0 0 3 -2 3 0 0
Za () {0 i 0 1 - 1% 1 0| 0
T3 210 -23—4 1 0 1—‘}-* I -% 0 0 |0-16/3 = 0 «+leaving
53 3 |0l 0 0o 2 2 9 1| 1 [1.2/21=2/21
Basic Variable | Row | Z [ 21 2o x3 24 s1 sz s3 | RHS | Ratios
A 0 [1]-2 168 0 0 -1 1 0] 0
3 (1 {0 -5 5 1 0 2 -6 0 0 0/2 +leaving
T4 (2) |0 5% ¥ 0o 1 1 2 0| 0o |0-3=0
83 3) ]0|3 56 0 0 -2 6 1 1
Basic Variable | Row | Z | @1 29 =3 x4 s $2 s3 | RHS | Ratios
Z © [1]-£ 4 5 0 0 -2 0] 0
51 (h | 0 % 28 g 0 1 -3 0 0
24 2) 0] 4 -5 1 0 % 0f 0 |0:3=0¢min
- 53 3 10fo 0o 1 0o 0o 0 1 1
Basic Variable | Row | Z |11 =9 x3 24 s1 s3 83 | RHS | Ratios
zZ 0 [1|-§ 20 -3 6 0 0 0 0
51 nmijol: 8 -1 9 1 0 0] 0
59 (2) |0 % -12 -% 3 0 1 o0 0
83 BJjofo0 0 1 0 0 0 1 1

Observe that the last table here is exactly the initial table.
The solution to this probelm is indeed,

max 2 = T at (27,23, 2%, 27) = (1,0,1,0), (s}, 85, %) = (%,0, 0);
here BV = (x1,23,51), NBV = (x2, 24, 52,53), and
5 21 3 5
Z=Z—2$2—?$4-—552—183

O

Remark: The cycling can occur in simplex algorithm in theory. However, no cycling has ever been

found for any practical problems.
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Remark: If some additional rule is given for the selection of the leaving basic variable whenever
there is a tie between ratios, we can eliminatc cycling even in theory. For example, the
so-called lexico-minimum ratio test (not easy to implement) or the Bland’s rule (not com-
putationally efficient) can both serve the purpose. Most computer programs in existence for
solving LP, however, do not include these rules to guard against cycling. The reason is that
the occurance is so rare — even if we have one, the computer round-off error will usually
change it to a non-degenerate one.
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