
Game Theory

We will focus mainly on two-person, zero-sum games in this chapter. Game of this type involves
two players, and one player wins whatever the other player loses (so the sum of their net winning
is always zero). In the now classical book Theory of Games and Economic Behavior, John von
Neumann proved an important theorem, i.e. every two-person zero-sum game has a value. His
proof uses the Brouwer Þxed-point theorem. We will present a proof using linear programming
dual theory. The latter is superior because it is constructive � it shows you how to construct an
optimal strategy for each player.

1 The formulation of two-person games

There are two players in this type of games, each has several strategies (or, actions) in disposal.
Each player will pick a strategy and obtain the corresponding payoff, which is recorded in the
payoff matrix (or payoff table). We will always assume that the game is non-cooperative, that is,
each player has no sympathy for the opponent and chooses strategies solely to promote his own
welfare.

Example (Non-zero-sum game): One of the most famous games is called the Prisoner�s dilemma.
Two prisoners who escaped and participated in a robbery have been captured and are wait-
ing for the trial for their new crime. Although they are both guilty, the district attorney
is not sure he has enough evidence to convict them. To entice them to testify against each
other, the D.A. tells each prisoner separately that: �If only one of you confesses and testiÞes
against your partner, the person who confesses will go free while the person who does not
confess will be convicted and given 20 years in jail. If you both confess, you will both be
convicted and sent to prison for 5 year. If none of you confess, I can convict you both of
misdemeanor and you will each get 1 year in prison.� What should the prisoners do, if they
cannot communicate?

Solution: Each prisoner has two (pure) strategies to take: confess or not. We have the
following payoff matrix.

Prisoner B
Confess Don�t Confess

Confess (5,5) (0,20)
Prisoner A

Don�t Confess (20,0) (1,1)
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Terminologies: Prisoner A is called the row player and prisoner B is called the column
player.

For the reward in each cell, the Þrst number is the years prisoner A (row player) will receive,
and the second number is the years prisoner B (column player) will receive. It is important
to note that the summation of the reward in each cell ranges from 2 to 20. The game is
therefore a non-zero-sum game. Note that a zero-sum game requires the summation in each
cell to be zero.

We will introduce some terminologies for future reference. To each prisoner, the strategy
�don�t confess� is always dominated by the �confess� strategy, regardless of what the opponent
(the other prisoner) will do. For example, no matter what prisoner B does, it is bettor off for
prisoner A to confess (5 < 20 and 0 < 1). More generally,

DeÞnition: we say a strategy is dominated by a second strategy if the second strategy is
always at least as good regardless of what the opponent does. A strategy is undomi-
nated if it is not dominated by any other strategy. A strategy is said to be dominant
if it dominates any other strategies.

If each prisoner follows its dominant strategy �confess�, the outcome will be that each prisoner
receives 5 years. On the other hand, if each prisoner follows its dominated strategy �don�t
confess�, each will only receive 1 year.

This example illustrates an important aspect of Prisoner�s Dilemma type of game: If the
prisoners are cooperating (if each prisoner chooses �don�t confess�), each prisoner can gain
by double-crossing his opponent (assume his opponent�s strategy remains unchanged). If both
prisoners double-cross each other, however, they will both be worse off than if they had both
chosen their cooperative strategy.

Later we will show that (�confess�, �confess�) is the Nash equilibrium.

Example (zero-sum game): One of the simplest two-person zero-sum game is as follows. Two
players (called Odd and Even) simultaneously stick out 1 or 2 Þngers. If the sum of the Þngers
put out by the two players is odd, Odd wins one dollar from Even. Otherwise, Even wins one
dollar from Odd. If we consider Odd as the row player and Even as the column player, the
payoff matrix for this game is

Even
1 Þnger 2 Þngers

1 Þnger (−1, 1) (1,−1)
Odd

2 Þngers (1,−1) (−1, 1)

Note that in each cell the reward to Odd and the reward to Even always add up to zero (i.e.
zero sum).

� By convention, for a zero-sum game, we only write down the payoff matrix for the row
player, i.e.

2



Even
1 Þnger 2 Þngers

1 Þnger −1 1
Odd

2 Þngers 1 −1

In this game, there is no dominant strategy for either player (why?). What should each player
do?

Example (zero-sum game): In this example, we illustrate the possibility that one player has a
dominant strategy while the other does not, using a famous game actually played in a naval
engagement in 1943, during World War II. The game in question, the battle of the Bismarck
Sea is named for the body of water in southwestern PaciÞc Ocean separating the Bismarck
Archipelago from Papua-New Guinea.

In 1943, a Japanese admiral was ordered to transport troops and lead a convoy to New Guinea.
The Japanese had two choices: a rainy northern route or a sunnier southern route. The U.S.
airforces knew that the convoy would sail and wanted to send bombers after it. But they did
not know which route the Japanese would take. The Americans had to send reconnaissance
aircraft to scout for the Japanese, but they had only enough planes to explore one route at a
time.

The sailing time was three days for both route. If the Japanese convoy was on the route that
the Americans explored Þrst, the U.S. could send its bombers straightaway; if not, a day of
bombing was lost by the Americans. In addition, the poor weather on the northern route
made it likely that visibility would be too limited for bombing on one day in three. Thus the
Americans could anticipate two days of active bombing if they explored the northern route
and found the Japanese immediately, and two days of bombing if they explored the northern
route but discovered that the Japanese had gone south. If the Americans explore the southern
route Þrst and found the Japanese there, they could get in three days of bombing, but if they
found the Japanese had gone north, they would only get one day of active bombing.

The can be looked upon as a zero-sum game. The payoff table for this game is as follows.

Japanese Navy
North South

U.S. North 2 2
Airforces South 1 3

The U.S. does better by choosing North if the Japanese has chosen North (two days of bombing
rather than one), but it does better choosing South if the Japanese has chosen South (three
days of bombing rather than two). The Americans, therefore, have no dominant strategy. But
the Japaneses do. No matter what Americans do, the Japanese navy is better off choosing
the northern route. So North is the dominant strategy for the Japanese.

The choice for Japan is clear now � they will choose the northern route. The Americans can
now take this into account when making their own decision. The U.S. airforces should choose
the best strategy with the expectation that the Japanese will play North. That means that
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the U.S. will send their reconnaissance to the north. Each side goes north, and the Americans
get two days of active bombing. Indeed, (North, North) is the Nash-equilibrium for this game.

It is not known whether the commanders on the two sides in 1943 thought thing this way. It
is known, however, the outcome was just as the game theory predicts. The Japanese convoy
took the northern route and American planes also searched there, and two days of bombing
inßicted serious damage on the Japanese ships.

Example (zero-sum game): The game hide and seek was considered by von Neumann: Given a
matrix

B =

∙
1 2 3
4 5 6

¸
.

Player A picks a row or a column, while player B picks a single component. Suppose player
B picks Bij, then player B must pay player A the amount of Bij if player A picks either row i
or column j (B hides, A seeks). But the payoff is zero when player A picks a row or a column
not containing Bij.

This is a zero-sum game and the payoff matrix is 5 by 6.

Player B
B11 B12 B13 B21 B22 B23

Row 1 1 2 3 0 0 0
Row 2 0 0 0 4 5 6

Player A Column 1 1 0 0 4 0 0
Column 2 0 2 0 0 5 0
Column 3 0 0 3 0 0 6

What should each player do? Is there any dominant strategy?

2 Solving simple games, pure strategies, saddle point

A pure strategy speciÞes a non-random courses of action for a player; that is, the move to be made
is speciÞed without any uncertainty. For the Battle of the Bismarck Sea game, it turns out that
the best strategy for the American is to explore the northern route. We will study pure strategies
in zero-sum games and the important concept of saddle point.

Example (zero-sum game, saddle point): During the 8 to 9 P.M. time slot, two networks are
vying for audience of 100 million viewers. The network must simultaneously announce the
type of show they will air in that time slot. The possible choices for each network and the
number of viewer for each choice is shown in the following table.

Network 2
Western Soap Opera Comedy

Western (35, 65) (15, 85) (60, 40)
Network 1 Soap Opera (45, 55) (58, 42) (50, 50)

Comedy (38, 62) (14, 86) (70, 30)
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Even though the summation of rewards in each cell is 100 million, the game can be regarded
as a zero-sum game, since the audience one network gains is the audience the other network
loses. We can simplify the payoff table as

Network 2
Western Soap Opera Comedy

Western 35 15 60
Network 1 Soap Opera 45 58 50

Comedy 38 14 70

with the convention that each cell is the reward the row player gets. It is easy to see in this
case there is no dominant or dominated strategy.

How should the row player, network 1, play this game? It has three pure strategies:

1. Suppose network 1 selects the pure strategy �Western�. The column player, network
1, should choose �Soap Opera� to minimize the row player�s reward. In other words,
network 1 should expect to receive (in the worst case) a reward of equal the minimal
reward in the row of �Western�, which is 15.

2. Suppose network 1 selects the pure strategy �Soap Opera�. Similarly, network 1 should
expect to receive (in the worst case) a reward of equal the minimal reward in the row of
�Soap Opera�, which is 45.

3. Suppose network 1 selects the pure strategy �Comedy�. Similarly, network 1 should
expect to receive (in the worst case) a reward of equal the minimal reward in the row of
�Comedy�, which is 14.

4. Since network 1 tries to maximize the reward, it will choose the pure strategy �Soap
Opera�, so that no matter what network 2 does, network 1 will receives at least a reward
as 45. In other words, the row player chooses a strategy so as to receive a reward at
least

max {row minimum : all rows}
How should the column player, network 2, play this game? It has three pure strategies:

1. Suppose network 2 selects the pure strategy �Western�. The row player, network 1,
should choose �Soap Opera� to maximize its own reward. In other words, network 2
should expect to lose (in the worst case) audience of size equal the maximum in the
column of �Western�, which is 45.

2. Suppose network 2 selects the pure strategy �Soap Opera�. Similarly, network 2 should
expect to lose (in the worst case) audience of size equal the maximum in the column of
�Soap Opera�, which is 58.

3. Suppose network 2 selects the pure strategy �Comedy�. Similarly, network 2 should
expect to lose (in the worst case) audience of size equal the maximum in the column of
�Comedy�, which is 70.
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4. Since network 2 tries to maximize the reward or minimize the loss, it will choose the
pure strategy �Western�, so that no matter what network 1 does, network 2 will at most
lose audience of size 45. In other words, the column player chooses a strategy so as to
only lose by

min {column maximum : all columns}

Conclusion: For this example, the game satisÞes

(∗) max {row minimum : all rows} = min {column maximum : all columns} ,
which are both equal to 45. Condition (*) is called the minimax criterion. The strat-
egy for network 1 is �Soap Opera� and the strategy for network 2 is �Western�. The
pair of strategy (�Soap Opera�, �Western�) is called a saddle point (or, equilibrium
point). Note this point simultaneously achieves the minimum of the row and the maxi-
mum of the column. The saddle point has a very important property that neither player
can beneÞt from a unilateral change in strategy (why?). 2

2.1 General discussion

Consider a zero-sum game with a general payoff matrix

B = [bij ]m×n =


b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bm1 bm2 · · · bmn

 ,
with the understanding that the row player has m strategies, the column player has n strategies,
and the payoff to the row player is bij and the payoff to the column player is −bij when the row
player chooses the i-th strategy and the column chooses the j-th strategy.

DeÞnition: We say that the game with payoff matrix B satisÞes the minimax condition if

max
i

µ
min
j
bij

¶
= min

j

µ
max
i
bij

¶
:= v.

Suppose the minimax condition holds. The value v is then said to be the value of the game.
If we further denote by i∗ (resp. j∗) the row (resp. column) achieving the maximum (resp.
minimum) in the left-hand-side (resp. right-hand-side), the pair of strategies (i∗, j∗) is said
to be a pure-strategy saddle point or simply a saddle point.

Theorem: Assume the minimax condition holds. Then bi∗j∗ = v and

bij∗ ≤ bi∗j∗ ≤ bi∗j , ∀ 1 ≤ i ≤ m, 1 ≤ j ≤ n.(1)

The reverse is also true; i.e. if (1) holds for some pair (i∗, j∗), then the game satisÞes the
minimax condition, (i∗, j∗) is a saddle point and the value of the game v equals bi∗j∗ .

Remark: The inequality (1) says that the saddle point can be thought of as an equilibrium point
in the sense that neither player can beneÞt from a unilateral change in strategy.
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Proof: Assume the minimax condition holds. It follows that

v =

µ
min
j
bi∗j

¶
=

µ
max
i
bij∗

¶
.

In particular, we have

bi∗j∗ ≤
µ
max
i
bij∗

¶
= v =

µ
min
j
bi∗j

¶
≤ bi∗j∗ ,

from which we conclude bi∗j∗ = v, which in turn implies that

bi∗j∗ =

µ
max
i
bij∗

¶
≥ bij∗ , for all i, and bi∗j∗ =

µ
min
j
bi∗j

¶
≤ bi∗j , for all j.

For the reverse direction, assume that (1) holds. We haveµ
max
i
bij∗

¶
= bi∗j∗ =

µ
min
j
bi∗j

¶
,

which further implies

max
i

µ
min
j
bij

¶
≥
µ
min
j
bi∗j

¶
= bi∗j∗ =

µ
max
i
bij∗

¶
≥ min

j

µ
max
i
bij

¶
.

It follows from the lemma below that

min
j

µ
max
i
bij

¶
= max

i

µ
min
j
bij

¶
,

and thus

max
i

µ
min
j
bij

¶
=

µ
min
j
bi∗j

¶
= bi∗j∗ =

µ
max
i
bij∗

¶
= min

j

µ
max
i
bij

¶
or the minimax condition holds. Clearly i∗ achieves the maximum of the left-hand-side and j∗

achieves the minimum of the right-hand-side; i.e., (i∗, j∗) is a saddle point. 2

Lemma: For any payoff matrix B, we have

max
i

µ
min
j
bij

¶
≤ min

j

µ
max
i
bij

¶
Proof: It suffices to prove that

min
j
bij ≤ min

j

µ
max
i
bij

¶
, for all i.

However, this is trivial since
bij ≤ max

i
bij, for all j.

We complete the proof. 2

Example: Check that the Battle of the Bismarck Sea game satisÞes the minimax condition, and
(�North�,�North�) is a saddle point.
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Example: Check that the game of Odd-Even does not satisfy the minimax condition, hence the
game has no pure-strategy saddle point.

Example: Check that the game of hide and seek does not satisfy the minimax condition, and
hence has no pure-strategy saddle point.

Example: Two competing Þrms are deciding whether to locate a new store in village A, B, or
C. There are 52 perspective customers for the two stores. 20 customers live in village A, 20
customers live in village B, and 12 customers live in village C. Each customer will shop at
the nearer store. If the customer is equidistant from both stores, it is assumed that there
is a 50% chance that he or she will shop at either store. Each Þrm want to maximize the
expected number of customers that will shop at its store. Where should each Þrm locate its
store? (AB = BC = 10 miles)

s20 customers

A
s20 customers

B

12 customerss
C

Solution: This game can be viewed as a zero sum game as in the network game. The following
payoff matrix is the expected number of customers for Firm 1.

Firm 2
A B C

Row min

A 26 20 30 20
Firm 1 B 32 26∗ 40 26

C 22 12 26 12
Column max 32 26 40 v = 26

That is, both Þrms should build the store at village B. 2

3 Mixed strategies

As we have seen, a two-player zero-sum game may not have a pure-strategy saddle point. If this is
the case, it seems impossible to determine what is the best strategy for either player. To overcome
this difficulty, we now introduce the concept of mixed strategies.

DeÞnition: A mixed strategy speciÞes that the actual move be chosen randomly from the set
of pure strategies with some speciÞc probabilities. For example, suppose a player has n pure
strategies. Then for any vector (x1, x2, · · · , xn) such that xi ≥ 0 and x1 + x2 + · · ·+ xn = 1
deÞnes a mixed strategy by

xi = the probability that the player chooses i-th strategy; ∀ i = 1, 2, · · · , n

A pure strategy, say the i-th strategy, can be viewed as a special mixed strategy with xi = 1
and xj = 0 for all j 6= i.
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The importance of mixed strategies is that any two-person zero-sum game has a value and a Nash
equilibrium point in mixed strategies.

Example: Consider the Odd-Even game. Suppose that now player Odd chooses a mixed strategy
(x1, x2) with x1, x2 ≥ 0, and x1+x2 = 1. What is the worst case for him? Since the expected
payoff for Odd is x2− x1 = 1− 2x1 if Even chooses strategy �1 Þnger� and x1−x2 = 2x1− 1
if Even chooses strategy �2 Þngers�, the expected payoff for player Odd would be

y1(1− 2x1) + y2(2x1 − 1).

if player Even chooses a mixed strategy (y1, y2) with y1, y2 ≥ 0, and y1+ y2 = 1. Player Even
will try to minimize the payoff for player Odd. Therefore the worst case for Odd is

min{1− 2x1, 2x1 − 1}.

Therefore, player Odd should choose a strategy (x1, x2) so as to maximize the above quantity.
This can easily done by graph, and

max
0≤x1≤1

min{1− 2x1, 2x1 − 1} = 0, achieved at x∗1 =
1

2
.

Therefore, the expected payoff for player Odd is at least 0 if he chooses a mixed strategy
(0.5, 0.5).

What about player Even? Suppose Even chooses a mixed strategy (y1, y2) with y1, y2 ≥ 0,
and y1 + y2 = 1. What is the worst case for him? Since the expected loss for Even is
−y1 + y2 = 1− 2y1 if Odd chooses strategy �1 Þnger� and y1 − y2 = 2y1 − 1 if Odd chooses
strategy �2 Þngers�, the expected loss for player Even is

x1(1− 2y1) + x2(2y1 − 1).

if player Odd chooses a mixed strategy (x1, x2) with x1, x2 ≥ 0, and x1+x2 = 1. Player Odd
will try to maximize its own payoff. Therefore the worst case for Even is to lose

max{1− 2y1, 2y1 − 1}.

Therefore, player Even should choose a strategy (y1, y2) so as to minimize the above quantity.
This can easily done by graph, and

min
0≤y1≤1

max{1− 2y1, 2y1 − 1} = 0, achieved at y∗1 =
1

2
.

Therefore, the expected loss for player Even is at most 0 if he chooses a mixed strategy
(0.5, 0.5).

The game of Odd-Even, hence, has a value 0, and the saddle point for the game is that
both player chooses a mixed strategy (0.5, 0.5). Neither player can beneÞt from a unilateral
change in strategy and will face the risk of getting an expected reward less than the value of
the game 0. For example, if player Odd chooses a strategy (x1, x2) with x1 > 0.5, he will get
an expected reward −x1 + x2 = 1− 2x1 < 0 if Even chooses a pure strategy of �1 Þnger�.
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3.1 General discussion on mixed strategies

We will assume the payoff for the row player is matrix B = [bij ]m×n as before.
Suppose the row player chooses a mixed strategy x = (x1, x2, · · · , xm) such that x ≥ 0 andPm
i=1 xi = 1. The column player should choose a mixed strategy y = (y1, y2, · · · , yn) such that

y ≥ 0 and Pn
j=1 yj = 1, so as to minimize the expected payoff for the row player. In other words,

the column player will try to

Minimize
mX
i=1

nX
j=1

xiyjbij =
nX
j=1

yj

Ã
mX
i=1

xibij

!
.

This minimization problem is trivial � since
Pn
j=1 yj = 1 and yj ≥ 0, the minimum is indeed

min
1≤j≤n

Ã
mX
i=1

xibij

!
.

Or the row player will receive the above amount of expected payoff in the worst possible case.
Therefore, the row player will try to pick a mixed strategy x so as to maximize the above minimum,
or equivalently

v
.
= max

x
min
y

 mX
i=1

nX
j=1

xiyjbij

 = max
x

min
1≤j≤n

Ã
mX
i=1

xibij

!
.

The value v is said to the lower value of the game.
Similarly, suppose the column player choose a mixed strategy y. The row player should choose

a mixed strategy x so as to maximize its expected reward

Maximize

mX
i=1

nX
j=1

xiyjbij.

The column player will chooses a mixed strategy y to minimize the expected loss in the worst case
(i.e., the above maximum). DeÞne

v̄
.
= min

y
max
x

 mX
i=1

nX
j=1

xiyjbij

 = min
y

max
1≤i≤m

 nX
j=1

yjbij

 .
The value v̄ is said to be the upper value of the game.

We have the following important result.

Theorem 1: The lower value of the game coincides with the upper value of the game. We call
v = v̄

.
= v the value of the game. Furthermore, suppose x∗ achieves the maximum in the

deÞnition of v and y∗ achieves the minimum in the deÞnition of v̄. Then we have

mX
i=1

nX
j=1

xiy
∗
j bij ≤

mX
i=1

nX
j=1

x∗i y
∗
j bij = v ≤

mX
i=1

nX
j=1

x∗i yjbij

10



for any mixed strategy x for row player and any mixed strategy y for column player. In
particular,

nX
j=1

x∗i bij ≥ v for all j = 1, 2, · · · , n.

and
nX
j=1

y∗j bij ≤ v for all i = 1, 2, · · · , m

The pair of strategies (x∗, y∗) is called an saddle point,

Remark: If the row player adopts the saddle point strategy x∗, its expect reward is at least v,
regardless of the strategy its opponent picks. Similarly, if the column player chooses the
saddle point strategy y∗, its expect loss is at most v, regardless of the strategy its opponent
picks. Neither player beneÞt from a unilateral change in strategy. For this reason, the saddle
point is also called the equilibrium, and x∗ (resp. y∗) is called the optimal strategy for the
row (resp. column) player.

Theorem 2: Suppose there is a real number �v, a mixed strategy �x for the row player, and a mixed
strategy �y for the column player, such that

mX
i=1

�xibij ≥ �v for all j = 1, 2, · · · , n.

and
nX
j=1

�yjbij ≤ �v for all i = 1, 2, · · · , m

Then �v = v is the value of the game, and (�x, �y) is a saddle point.

The proof used the dual theory for linear programming, and is constructive � it also tells us
how to Þnd the saddle point.

Proof of Theorem 1: Let us Þrst consider the lower value of the game v, which is a maximization
problem

max
x

min
1≤j≤n

Ã
mX
i=1

xibij

!
.

This can be written as a LP problem: write xm+1 = min1≤j≤n (
Pm
i=1 xibij). The LP is

Maximize Z = xm+1

under constraints

−x1b11 − x2b21 − · · · − xmbm1 + xm+1 ≤ 0
−x1b12 − x2b22 − · · · − xmbm2 + xm+1 ≤ 0

...
−x1b1n − x2b2n − · · · − xmbmn + xm+1 ≤ 0

x1 + x2 + · · · + xm = 1

and x1, · · · , xm ≥ 0, while xm+1 has no sign constraints.
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Its dual LP is

Minnimize W = yn+1

under constraints

−b11y1 − b12y2 − · · · − b1nyn + yn+1 ≥ 0
−b21y1 − b22y2 − · · · − b2nyn + yn+1 ≥ 0

...
−bm1y1 − bm2y2 − · · · − bmnyn + yn+1 ≥ 0

y1 + y2 + · · · + yn = 1

and y1, · · · , yn ≥ 0, while yn+1 has no sign constraints.
This is indeed the LP corresponding to the minimization problem for v̄:

min
y

max
1≤i≤m

 nX
j=1

yjbij

 .
Clearly, the primal LP and dual LP are both feasible. Therefore, we have

v̄ = v
.
= v.

Furthermore, we have for every strategy y,

v = v = max
1≤j≤n

Ã
mX
i=1

x∗i bij

!
≥

nX
j=1

yj

Ã
mX
i=1

x∗i bij

!
=

mX
i=1

nX
j=1

x∗i yjbij .

and for every strategy x,

v = v̄ = min
1≤i≤n

 nX
j=1

y∗j bij

 ≤
mX
i=1

xi

 nX
j=1

y∗j bij

 =
mX
i=1

nX
j=1

xiy
∗
j bij .

In particular, we have
mX
i=1

nX
j=1

x∗i y
∗
j bij ≤ v ≤

mX
i=1

nX
j=1

x∗i y
∗
j bij.

This completes the proof. 2

Remark: The proof of Theorem 1 also indicates that Þnding the optimal strategy for the players
is equivalent to solving the two LPs.

Proof of Theorem 2: By assumption, we have

v = v̄ = min
y

max
1≤i≤m

 nX
j=1

�yjbij

 ≤ max
1≤i≤m

 nX
j=1

�yjbij


≤ �v

≤ min
1≤j≤n

Ã
mX
i=1

�xibij

!
≤ max

x
min
1≤j≤n

Ã
mX
i=1

�xibij

!
= v = v.

Therefore, all the inequalities are indeed equalities. We complete the proof. 2
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Connection with pure strategies: Previously, we consider pure strategies and deÞne the value
of a game when the game satisÞes the minimax condition

max
i

µ
min
j
bij

¶
= min

j

µ
max
i
bij

¶
:= value of game,

and also deÞnes the pure-strategy saddle point, say (i∗, j∗). A question naturally arise: if the
minimax condition holds, is there any contradiction to the value of game and saddle point
obtained from mixed strategy approach?

The answer is �No�. Indeed, when the minimax condition holds, the value of game and saddle
point from pure strategies are equivalent to those from mixed-strategies.

Proposition: Suppose the minimax condition holds. Then

max
i

µ
min
j
bij

¶
= min

j

µ
max
i
bij

¶
= value of game from mixed strategy.

DeÞne �x such that �xi∗ = 1, �xi = 0 if i 6= i∗, and �y such that �yj∗ = 1, �yj = 0 if j 6= j∗. Then
(�x, �y) is a saddle point from mixed strategy.

Proof: Let �v = maxi (minj bij) = minj (maxi bij). For every j = 1, · · · , n, we have
mX
i=1

�xibij = bi∗j ≥ bi∗j∗ = �v.

Similarly,
nX
j=1

�yjbij = bij∗ ≤ bi∗j∗ = �v.

We complete the proof, thanks to Theorem 2. 2

Symmetric games: A two-person zero-sum game is said to be symmetric if the payoff matrix B
satisÞes

B = −BT .
In particular, this implies m = n.

Proposition:We will show here that every symmetric zero-sum game has value 0, and there
exists a saddle point (x∗, y∗) such that x∗ = y∗.

Proof: Suppose the value of the game is v, then we have

v = max
x

min
1≤j≤n

Ã
nX
i=1

xibij

!
= max

x
min
1≤j≤n

Ã
−

nX
i=1

xibji

!
= −min

x
max
1≤j≤n

Ã
nX
i=1

xibji

!
= −v̄.

Hence v = v̄ = v = 0. Furthermore, suppose x∗ achieves the maximum (0) in the deÞnition
of v, it clearly achieves the minimum in the deÞnition of v̄. This completes the proof. 2
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