
Variants of Simplex Method

All the examples we have used in the previous chapter to illustrate simple algorithm have the
following common form of constraints; i.e.

ai1x1 + ai2x2 + · · ·+ ainxn ≤ bi, i = 1, 2, · · · ,m
with all these bi being non-negative. The signiÞcance of bi being non-negative is that the initializa-
tion step of the Simplex algorithm becomes very simple � we just put in the slack variables {si},
and obtain a BFS by setting xj = 0 for all original decision variables and si = bi, for every slack
variable.

Indeed, initialization is the serious problem caused by constraints of other forms. In this chapter,
we will introduce the concept of artiÞcial variable to Þnd a starting BFS, and the Big-M method,
as well as the Two-Phase Method, that solves the expanded LP problem.

1 The Big-M method

We will illustrate the main idea by solving the following simple example.

Example: Solve the LP problem:

Minimize Z = 2x1 + 3x2

under constraints
2x1 + x2 ≥ 4
−x1 + x2 ≤ 1

and x1, x2 ≥ 0.
Solution: This problem can be transformed into canonical form by adding slack variables and

change the minimization to maximization:

Maximize Z̄ = −2x1 − 3x2
such that

2x1 + x2 − s1 = 4
−x1 + x2 + s2 = 1

and xj , si ≥ 0. If we did it the old way, setting xi = 0, we have s1 = −4 and s2 = 1, which is not
feasible since s1 is now negative. To overcome this difficulty, we introduce an artiÞcial variable ā1
and write the constraints as

2x1 + x2 − s1 + ā1 = 4
−x1 + x2 + s2 = 1
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with xj ≥ 0, si ≥ 0 and ā1 ≥ 0.
However, the consequences of the introduction of the artiÞcial variable are two-folds: (1) it is

easy now to determine an initial BFS corresponding to the new constraints, namely,

NBV = (x1, x2, s1) = 0, BV = (s2, ā1) = (1, 4).

(2) there is, however, no guarantee that the optimal solution to the new constraints will be the
same as that to the original constraints; in other words, the artiÞcial variable in the new optimal
solution may take strictly positive value. Indeed, if we solve the LP with new constraints, we will
have an optimal solution

(x∗1, x
∗
2) = (0, 0), (s∗1, s

∗
2) = (0, 0), ā1 = 4,

and the optimal value Z̄∗ = 0, which is wrong because the graphical method will easily show that
the optimal solution is

(x∗1, x
∗
2) = (2, 0), Z̄∗ = −4, Z∗ = −Z̄∗ = 4.

Remark: Why the optimal solution could be different? Indeed, the introduction of artiÞcial vari-
able could change the feasible region � the expanded LP is now equivalent to

Maximize Z̄ = −2x1 − 3x2
such that

2x1 + x2 − s1 ≤ 4
−x1 + x2 ≤ 1,

which is further equivalent to (why?)

Maximize Z̄ = −2x1 − 3x2
such that

−x1 + x2 ≤ 1.

The change of feasible region could very possible change the optimal solution.

Big-M method: One way to guarantee that the new optimal solution is optimal for the original
LP, is to modify the objective function, so that the artiÞcial variable will take value zero in the new
optimal solution. In other words, a �very large� penalization is added to the objective function if
the artiÞcial variable takes positive value.

Consider the following LP:

Maximize Z̄ = −2x1 − 3x2 −Mā1
such that

2x1 + x2 − s1 +ā1 = 4
−x1 + x2 + s2 = 1.

Here M is a symbolic �big� positive number. It is so big that even if ā1 is slightly big than 0, the
penalization −Mā1 will be very severe. In this case, it is reasonable that the optimal solution to
this new LP will take value 0 for the artiÞcial variable ā1, and hence an optimal solution for the
original LP.

Let us perform the simplex algorithm to Þnd the optimal solution to this new LP. We write
down the following table:
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Basic Variable Row Z x1 x2 s1 s2 ā1 RHS Ratios

Z (0) 1 2 3 0 0 M 0
ā1 (1) 0 2 1 -1 0 1 4
s2 (2) 0 -1 1 0 1 0 1

You might want to jump to the conclusion that the current BFS is optimal, since all the
coefficients in Row (0) is non-negative. This is wrong! The validity of this optimality test is
based on the assumption that the objective function Z is written in terms of non-basic variable
only. However, in the above table, Row (0) contains a basic variable ā1 with non-zero coefficient.
Therefore, we need to perform Gaussian elimination Þrst to make the coefficients of all basic
variables be 0. We have

Basic Variable Row Z x1 x2 s1 s2 ā1 RHS Ratios

Z (0) 1 2-2M 3-M M 0 0 -4M
ā1 (1) 0 2∗ 1 -1 0 1 4 4/2 = 2←min
s2 (2) 0 -1 1 0 1 0 1

Basic Variable Row Z x1 x2 s1 s2 ā1 RHS Ratios

Z (0) 1 0 2 1 0 M-1 -4
x1 (1) 0 1 0.5 -0.5 0 0.5 2
s2 (2) 0 0 1.5 -0.5 1 0.5 3

We have the optimal solution

(x∗1, x
∗
2) = (2, 0), (s

∗
1, s

∗
2) = (0, 3), ā∗1 = 0, Z̄∗ = −4, Z∗ = −Z̄∗ = 4.

Remark: The symbol M represents a huge number, and it will only appear in Row (0). The
symbolic quantity aM+b (in case a 6= 0) almost equals aM since M is much larger compared
with the constant b. Therefore, aM + b is positive (resp. negative) as long as a is positive
(resp. negative). We have, for example

0.1M −1000 > 0, −0.1M +100 < 0, 2M −100 > M +1000, −2M +100 < −M −1000.
Remark: It is possible that in the new optimal solution the artiÞcial variable takes a strictly

positive value. If this is the case, the original problem has no feasible solution. Indeed, for
example, say we are to

Maximize Z = c1x1 + c2x2 −Ma
where a is an artiÞcial variable. Suppose in the optimal solution to this LP, the artiÞcial
variable a∗ > 0, then we have

Z∗ = −a∗M + b, for some constant b.

If the original LP has a feasible solution, say (�x1, �x2), then (�x1, �x2, a = 0) is a feasible solution
to the expanded LP.

Z∗ ≥ c1�x1 + c2�x2 −M · 0 = c1�x1 + c2�x2.
Combining these two inequalities, we have

−a∗M + b ≥ c1�x1 + c2�x2,
which is impossible sinceM is a really big constant, and a∗ is strictly positive. A contradiction.
Hence the original LP has no feasible solution.
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Equality constraints: Suppose one of the constraints is, say,

ai1x1 + ai2x2 + · · ·+ ainxn = bi.

in a maximization LP. Without loss of generality, assume bi ≥ 0 (otherwise, just multiply
−1 on both sides). One can write this equality constraint as two inequality constraints (i.e.
�≥� and �≤�) and then use the Big-M method. However, more conveniently, we can directly
introduce the artiÞcial variable ā and rewrite the LP as

Maximize Z = · · ·−Mā

while change the constraint to

ai1x1 + ai2x2 + · · ·+ ainxn + ā = bi

Example: Solve the following LP:

Maximize Z = −x1 + x2
under constraints

x1 + x2 ≥ 1
3x1 + 2x2 = 6.

Solution: The new LP will be

Maximize Z = −x1 + x2 −Mā1 −Mā2
under constraints

x1 + x2 − s1 + ā1 = 1
3x1 + 2x2 + ā2 = 6.

We have the following table:

Basic Variable Row Z x1 x2 s1 ā1 ā2 RHS Ratios

Z (0) 1 1 -1 0 M M 0
ā1 (1) 0 1 1 -1 1 0 1
ā2 (2) 0 3 2 0 0 1 6

To start the simplex algorithm, we need to write the value function Z as a function of NBV
variables.

Basic Variable Row Z x1 x2 s1 ā1 ā2 RHS Ratios

Z (0) 1 1-4M -1-3M M 0 0 -7M
ā1 (1) 0 1∗ 1 -1 1 0 1 1/1 = 1←min
ā2 (2) 0 3 2 0 0 1 6 6/3 = 2

Basic Variable Row Z x1 x2 s1 ā1 ā2 RHS Ratios

Z (0) 1 0 M-2 -3M+1 4M-1 0 -3M-1
x1 (1) 0 1 1 -1 1 0 1
ā2 (2) 0 0 -1 3∗ -3 1 3 3/3 = 1←min
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Basic Variable Row Z x1 x2 s1 ā1 ā2 RHS Ratios

Z (0) 1 0 - 53 0 M M-13 -2
x1 (1) 0 1 2

3∗ 0 0 1
3 2 2/2 · 3 = 3←min

s1 (2) 0 0 - 13 1 -1 1
3 1

Basic Variable Row Z x1 x2 s1 ā1 ā2 RHS Ratios

Z (0) 1 2.5 0 0 M M + 0.5 3
x2 (1) 0 1.5 1 0 0 0.5 3
s1 (2) 0 0.5 0 1 -1 0.5 2

Therefore, the optimal solution is

(x∗1, x
∗
2) = (0, 3), s∗1 = 2, (ā∗1, ā

∗
2) = (0, 0), Z∗ = 3.

2 Two-Phase method

The two-phase method and big-M method are equivalent. In practice, however, most computer
codes utilizes the two-phased method. The reasons are that the inclusion of the big number M
may cause round-off error and other computational difficulties. The two-phase method, on the
other hand, does not involve the big number M and hence all the problems are avoided.

The two-phase method, as it is called, divides the process into two phases. Phase 1: The goal
is to Þnd a BFS for the original LP. Indeed, we will ignore the original objective for a while, and
instead try to minimize the sum of all artiÞcial variable. At the end of phase 1, a BFS is obtained
if the minimal value of this LP is zero (why?). Phase 2: Drop all the artiÞcial variables, change
the objective function back to the original one. Use just the regular simplex algorithm, with the
starting BFS obtained in Phase 1.

We will illustrate the idea re-doing the last example in the preceding section.

Example (revisited): Solve the following LP:

Maximize Z = −x1 + x2
under constraints

x1 + x2 ≥ 1
3x1 + 2x2 = 6.

Solution: Phase 1: The LP for this phase is

Minimize Z = ā1 + ā2 or Maximize Z = −ā1 − ā2
under constraints

x1 + x2 − s1 + ā1 = 1
3x1 + 2x2 + ā2 = 6.

We have the following table.

Basic Variable Row Z x1 x2 s1 ā1 ā2 RHS Ratios

Z (0) 1 0 0 0 1 1 0
ā1 (1) 0 1 1 -1 1 0 1
ā2 (2) 0 3 2 0 0 1 6
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Note in this Þrst table, the objective function Z = −ā1− ā2 is written in term of the basic variables,
so Þrst we need to express it in terms of the non-basic variable. This leads to the following table,
from which the simplex algorithm starts.

Basic Variable Row Z x1 x2 s1 ā1 ā2 RHS Ratios

Z (0) 1 -4 -3 1 0 0 -7
ā1 (1) 0 1∗ 1 -1 1 0 1 1/1 = 1←min
ā2 (2) 0 3 2 0 0 1 6 6/3 = 2

Basic Variable Row Z x1 x2 s1 ā1 ā2 RHS Ratios

Z (0) 1 0 1 -3 4 0 -3
x1 (1) 0 1 1 -1 1 0 1
ā2 (2) 0 0 -1 3∗ -3 1 3 3/3 = 1←min

Basic Variable Row Z x1 x2 s1 ā1 ā2 RHS Ratios

Z (0) 1 0 0 0 1 1 0
x1 (1) 0 1 2

3 0 0 1
3 2

s1 (2) 0 0 -13 1 -1 1
3 1

This is the end of phase 1, and we indeed obtain an BFS with

NBV = (x2, ā1, ā2) = (0, 0, 0), BV = (x1, s1) = (2, 1).

Phase 2: We will just drop all the columns of artiÞcial variables in the Þnal tableau of Phase 1,
and rewrite the objective function back to the original one.

Basic Variable Row Z x1 x2 s1 RHS Ratios

Z (0) 1 1 -1 0 0
x1 (1) 0 1 2

3 0 2
s1 (2) 0 0 -13 1 1

However, again, the objective function Z is not expressed in terms of non-basic variables x2, we
will do Gaussian elimination to make it so.

Basic Variable Row Z x1 x2 s1 RHS Ratios

Z (0) 1 0 −5
3 0 -2

x1 (1) 0 1 2
3∗ 0 2 2/2 · 3 = 2←min

s1 (2) 0 0 -13 1 1

Basic Variable Row Z x1 x2 s1 RHS Ratios

Z (0) 1 2.5 0 0 3
x2 (1) 0 1.5 3 0 3
s1 (2) 0 0.5 0 1 2

The optimal solution is
(x∗1, x

∗
2) = (0, 3), s∗1 = 2, Z∗ = 3.
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Remark: If in Phase 1, the optimal value for ā1 + ā2 is strictly positive (or −ā1 − ā2 is strictly
negative), then the original Lp has no feasible solution. Because otherwise, there must exist
a feasible solution with (ā1, ā2) = 0, which is a contradiction.

Remark: In the example given, in the Þnal tableau of the LP in Phase 1, the artiÞcial variables
are both non-basic variables. It is possible that in the Þnal tableau of Phase 1, some artiÞcial
variables are basic variable, while the value of Z already reaches 0. In this case, the problem
is degenerate, and we will not go into details about this. But keep in mind, even in this case,
it is also very easy to move to Phase 2, and Þnd the optimal solution for the original LP.

Remark: When a variable, say x1, has no sign constraint, we just write

x1 = u1 − v1, u1 ≥ 0, v1 ≥ 0,

and then perform the simplex algorithm. It is easy to see that, in all the tables, the column
for u1 is always the negative of that of v1. Therefore, it will never be the case that u1 and
v1 are basic variables simultaneously (why?). In other words, it will never be the case that
u1, v1 are both taking strictly positive values.
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