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Conditional expectation reflects the change in unconditional probabilities due to some auxiliary
information. The latter is represented by a sub-σ-algebra G of the basic σ-algebra of an underlying
probability space (Ω,F ,P). Note that, the conditional expectation of random variable X, given the
σ-algebra G, denoted by E(X|G), is itself a (G-measurable) random variable.

1 Some preliminary functional analysis

Let X be a vector space. A norm on X is a function ‖ · ‖ : X → [0,∞) such that

1. ‖x‖ = 0 if and only if x = 0.

2. ‖x + y‖ ≤ ‖x‖ + ‖y‖, for all x, y ∈ X.

3. ‖λx‖ = |λ| · ‖x‖, for all x ∈ X.

The space (X, ‖ · ‖) is said to be a normed vector space. The norm naturally defines a metric
on space X.

Definition: A normed vector space (X, ‖ · ‖) is said to be a Banach space if it is complete with
respect to the norm-metric.

Remark: A sequence {xn} ⊆ X is said to be a cauchy sequence if for any ε > 0, there exists N ∈ N
such that ‖xm −xn‖ ≤ ε for all m,n ≥ N . A metric space is complete if any Cauchy sequence
converges.

Lemma: A normed vector space (X, ‖·‖) is complete if and only if for every sequence {xn}n∈N ⊆ X
with property

∞∑
n=1

‖xn‖ < ∞,

the sequence Sn
·=
∑n

j=1 xj converges.

Proof. “⇒”. Suppose X is complete, and
∑∞

n=1 ‖xn‖ < ∞. Then with Sn
·=
∑n

j=1 xj, it is easy to
see that {Sn} is a Caushy sequence since

‖Sn − Sm‖ = ‖
n∑

j=m

xj‖ ≤
n∑

j=m

‖xj‖ → 0, as m,n → ∞.
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Hence {Sn} converges since X is complete.
“⇐”. Let {xn} ⊆ X be a Cauchy sequence. We can find n1 < n2 < · · · such that

‖xn − xm‖ ≤ 1
2j

, ∀ m,n ≥ nj .

Let y1 = xn1 , yj = xnj − xnj−1 (j ≥ 2). It follows that

∞∑
j=1

‖yj‖ ≤ ‖y1‖ +
∞∑

j=2

‖xnj − xnj−1‖ ≤ ‖y1‖ +
∞∑

j=1

1
2j

< ∞.

By assumption, the sequence
{

xnk
=
∑n

j=k yj

}
converges, say to x ∈ X. Since {xn} is a Cauchy

sequence, we have limn xn = x (for every ε > 0, choose k ∈ N such that ‖xnj − x‖ ≤ ε for all j ≥ k,
and l ≥ k such that 2−l ≤ ε. Then ‖xn − x‖ ≤ ‖xn − xnl

‖ + ‖xnl
− x‖ ≤ 2−l + ε ≤ 2ε). 2

Proposition: For any 1 ≤ p < ∞, the space Lp(µ) is a Banach space with the Lp-norm.

Proof. We should use the lemma above. Consider a sequence {fn} ⊆ Lp with
∑

n ‖fn‖p = S being
finite. Let Gn

·=
∑n

j=1 |fj|. It follows that Gn ↑∑∞
j=1 |fj | := G. It follows from MCT that

‖G‖p = lim
n

‖Gn‖p ≤ lim
n

n∑
j=1

‖fj‖p ≤ S < ∞.

Hence G ∈ Lp; in particular, G is finite almost everywhere, or
∑∞

j=1 |fj| converge almost everywhere.
Define F =

∑∞
j=1 fj, which exists almost everywhere. Of course F ∈ Lp since |F | ≤ G. It remaines

to show that

‖F −
n∑

j=1

fj‖p → 0.

However, ∣∣∣∣∣∣F −
n∑

j=1

fj

∣∣∣∣∣∣
p

=≤

|F | +

∞∑
j=1

|fj|



p

≤ (2G)p ∈ L1.

It follows from DCT that

lim
n

‖F −
n∑

j=1

fj‖p
p = ‖F − lim

n

n∑
j=1

fj‖p
p = 0,

this completes the proof. 2

The most import Banach space is the so-called Hilbert space. Suppose X is a vector space. An
inner product is a function (x, y) 7→ 〈x, y〉 from X × X into R, such that

1. 〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉 for all a, b ∈ R, x, y ∈ X.

2. 〈x, y〉 = 〈y, x〉, for all x, y ∈ X.

3. 〈x, x〉 ≥ 0, for all x ∈ X, with equality if and only if x = 0.
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Cauchy-Bunyakowsky-Schwarz Inequality. If 〈·, ·〉 is an inner product on vector space X,
then

〈x, y〉 ≤ 〈x, x〉〈y, y〉
for all x, y ∈ X.

Proof. For any t ≥ 0 and x, y ∈ X, we have

0 ≤ 〈x − ty, x − ty〉 = 〈x, x〉 − 2t〈x, y〉 + t2〈y, y〉.

If 〈y, y〉 = 0, then y = 0 and the inequality automaticaly holds. Otherwise, the above quardratic
form (with respect to t) is always non-negative if and only if its discriminant

4〈x, y〉2 − 4〈x, x〉〈y, y〉 ≤ 0.

This completes the proof. 2

Exercise: The mapping X → [0,∞) with x 7→√〈x, x〉 := ‖x‖ defines a norm on vector space X.

Exercise (Paralleogram Law): For any x, y ∈ X, we have

‖x + y‖2 + ‖x − y‖2 = 2
(‖x‖2 + ‖y‖2

)
Definition: If (X, ‖ · ‖) is complete, we say (X, 〈·, ·〉) is a Hilbert space.

Example: The space L2 with inner product

〈f, g〉 ·=
∫

fg dµ, ∀ f, g ∈ L2

is a Hilbert space.

Exercise: Suppose X is a Hilbert space, and T : X → R is a linear functional. The following
statements are equivalent.

1. T is continuous;

2. T is continuous at some point;

3. There exists a constant c such that |T (x)| ≤ c‖x‖ for all x ∈ X.

Proof. It is clear that 1 ⇔ 2 and 3 ⇒ 1. It remains to show that 1 ⇒ 3. The continuity implies
that there exists a δ > 0 such that |T (x)| < 1 whenever ‖x‖ < δ. Now for an arbitrary x ∈ X and
ε > 0, we have ∥∥∥∥ δx

‖x‖ + ε

∥∥∥∥ < δ ⇒ δ

‖x‖ + ε
|T (x)| < 1;

that is
|T (x)| <

‖x‖ + ε

δ
, ∀ x ∈ X, ε > 0.

Lettint ε → 0, we complete the proof. 2
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Definition: Two elements x, y ∈ X are orthogonal if 〈x, y〉 = 0. For any Y ⊆ X, its orthogonal
complement Y ⊥ is defined as

Y ⊥ ·= {x ∈ X; 〈x, y〉 = 0, ∀ y ∈ Y }

Exercise: For an arbitrary Y ⊆ X, Y ⊥ is a closed sub-vector space.

Projection theorem: Suppose Y is a closed sub-vector space of X. Then X = Y ⊕ Y ⊥; i.e.,
for every x ∈ X, there exists y ∈ Y , z ∈ Y ⊥ such that x = y + z, and this “direct sum”
decomposition is unique.

Proof. Fix x ∈ X, define
δ

·= inf
y∈Y

‖x − y‖.

We claim that the infimum is achieved, say at y∗, and x−y∗ ∈ Y ⊥, which implies x = y∗+(x−y∗).
Indeed, consider a minimizing sequence {yn} ⊆ Y . The Paralleogram Law implies that

‖yn − ym‖2 = 2(‖yn − x‖2 + ‖ym − x‖2) − ‖yn + ym − 2x‖2

= 2(‖yn − x‖2 + ‖ym − x‖2) − 4
∥∥∥∥yn + ym

2
− x

∥∥∥∥
2

≤ 2(‖yn − x‖2 + ‖ym − x‖2 − 2δ2) → 0

as m,n → ∞. It follows that {yn} is a Cauchy sequence, whence it converges, say to y∗. It follows
that y∗ ∈ Y (thanks to the closedness of Y ) achieves the infimum with δ = ‖x− y∗‖. It remains to
show that x − y∗ ∈ Y ⊥: for any z ∈ Y , and t ∈ R,

y∗ + tz ∈ Y ⇒ δ2 ≤ ‖x − y∗ − tz‖2 = ‖x − y∗‖2 + t2‖z‖2 − 2t〈x − y∗, z〉 := f(t).

Note that f(t) attaines minimum at t = 0, we have f ′(0) = 0 or 〈x − y∗, z〉 = 0. This yields that
x − y∗ ∈ Y ⊥. The uniqueness is trivial. 2

Riesz Representation Theorem: If T : X → R is a continuous linear functional, then there
exists a unique x0 ∈ X such that T (x) = 〈x, x0〉 for all x ∈ X.

Proof. If T (x) ≡ 0, then we can choose x0 = 0. Otherwise, let Y
·= T−1(0). It follows that Y is a

closed sub-vector space (why?). Since Y 6= X, Y ⊥ 6= {0}. Therefore, there exists a z ∈ Y ⊥ such
that T (z) = 1. Now for any x ∈ X, x − T (x)z ∈ Y . It follows that

〈x − T (x)z, z〉 = 0 ⇒ T (x) =
1

‖z‖2
〈x, z〉 := 〈x, x0〉, where x0 =

z

‖z‖2
.

The uniqueness is trivial since if 〈x, x0〉 ≡ 〈x, x1〉, it is easy to see that ‖x0 − x1‖ = 0 by taking
x = x0 − x1. 2
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2 Relations between measures

Let (Ω,F) be a measurable space, and µ, ν two measures on it. We say that ν is absolutely
continuous with respective to µ (write ν � µ) if A ∈ F , µ(A) = 0 implies that ν(A) = 0. We
say µ and ν are equivalent (write µ ∼ ν) if ν � µ and µ � ν. We say µ and ν are singular if
there exists a set A ∈ F such that µ(A) = ν(Ac) = 0; in which case we write µ ⊥ ν.

Example: Suppose f ≥ 0 is a measurable function. The mapping ν : E 7→ ∫
E f dµ defines a

measure ν. It is not difficult to see that ν � µ. Indeed, this example is not so special.
Later we should see that the reverse is also true under some very mild conditions – the
Radon-Nikodým theorem.

Example: Suppose Ω = [0, 1], C is the Cantor set and f : [0, 1] → [0, 1] is the Cantor function.
Note C is a compact set with λ(C) = 0; here λ denotes the Lebesgue-measure. The Cantor
function f is continuous, non-decreasing and flat on set Ω\C; f(0) = 0, f(1) = 1. Let µf

denote the measure induced by f on [0, 1]. It is not difficult to see that µf (Ω\C) = 0 = λ(C).
In other words, µf and λ are singular.

Lebesgue Decomposition Theorem: Let (Ω,F) be a measurable space and µ, ν two σ-finite
measures on it. Then there exist measure νac and νs such that

ν = νac + νs; νac � µ, νs ⊥ µ.

This decomposition is unique.

Example: For example, let λ
∣∣
E

denote the Lebesgue measure restricted on set E; that is λ
∣∣
E
(A) ·=

λ(A ∩ E) for all A ∈ F . Suppose µ = λ
∣∣
[0,2]

and ν = λ
∣∣
[1,3]

. Then

νac = λ
∣∣
[1,2]

, νs = λ
∣∣
[2,3]

Radon-Nikodým Theorem: Let (Ω,F) be a measurable space and µ, ν two σ-finite measures
on it, with ν � µ. Then there exists a unique (up to a.e. equivalence) measurable function
h : Ω → [0,∞) such that

ν(A) =
∫

A
hdµ, ∀ A ∈ F .

The function h is called Radon-Nikodým derivative of ν with respect to µ, and we write

h =
dν

dµ

∣∣∣∣
F

:=
dν

dµ
.

Exercise: If ν � µ, then ∫
f dν =

∫
f

dν

dµ
dµ

whenever either integral is well-defined.

Exercise (Chain Rule): If ξ � ν � µ, then

dξ

dµ
=

dξ

dν
· dν

dµ
, a.e. (µ).
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Proof. We will first prove the case where both µ and ν are finite. Let X
·= L2(Ω,F , µ + ν), which

is a Hilbert space if we define the inner product by 〈f, g〉 ·=
∫

fg d(µ + ν). Consider the mapping

T : X → R, f 7→
∫

f dν.

It is easy to see that T is a continuous mapping, since

∣∣T (f)
∣∣ ≤ ∫ |f | d(µ + ν) ≤

√
ν(Ω) + µ(Ω)

√
‖f‖2

by Hölder inequality. It follows from Riesz representation that there exists a unique g ∈ X such
that

(∗) T (f) =
∫

f dν =
∫

fg d(µ + ν) ⇒
∫

f dµ =
∫

f(1 − g) d(µ + ν), ∀ f ∈ X.

We claim that 0 ≤ g ≤ 1, (µ + ν)-almost everywhere. Indeed, let f = 1{g<0}, we have

0 ≤ ν{g < 0} =
∫
{g<0}

g d(µ + ν) ⇒ (µ + ν){g < 0} = 0.

Similarly, let f = 1{g>1}, we have

0 ≤ µ{g > 1} =
∫
{g>1}

(1 − g) d(µ + ν) ⇒ (µ + ν){g > 1} = 0.

It is a direct consequence of MCT that the (*) holds for all non-negative measurable function f .
Existence of the decomposition theorem: Let A

·= {ω; g(ω) = 1}. It follows from (*) that
µ(A) = 0. Define

νs(E) ·= ν(E ∩ A), νac(E) ·= ν(E ∩ Ac), ∀ E ∈ F .

Clearly νs and νac are two measures with ν = νac + νs. Furthermore, νs ⊥ µ since νs(Ac) =
µ(A) = 0. It remains to show that νac � µ: for all E ∈ F such that µ(E) = 0, we have, by letting
f = 1E ,

0 = µ(E) =
∫

E
(1 − g) d(µ + ν) ⇒ (µ + ν)(E ∩ Ac) = 0 ⇒ νac(E) = ν(E ∩ Ac) = 0.

Uniqueness of the decomposition theorem: Suppose ν = ρ + σ is another decomposition with
ρ � µ and σ ⊥ µ. We first show that νs ≤ µ. Indeed, since µ(A) = 0, we have ρ(E ∩ A) = 0 for
all E ∈ F . Hence,

νs = ν(E ∩ A) = ρ(E ∩ A) + σ(E ∩ A) = σ(E ∩ A) ≤ σ(E), ∀ E ∈ F .

It follows that
σ − νs = νac − ρ

is a measure which is both absolutely continous and singular with respect to µ, which implies that
σ − νs = νac − ρ = 0.
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Existence of the R-N theorem: Assumem that ν � µ. Define

h
·=
{ g

1−g ; on Ac = {g < 1}
0 ; on A = {g = 1}

}
.

Since µ(A) = 0, we have∫
E

hdµ =
∫

E∩Ac

hdµ =
∫

h1E∩Ac(1 − g) d(µ + ν) =
∫

g1E∩Ac d(µ + ν) =
∫

1E∩Ac dν

= ν(E ∩ Ac) = νac(E) = ν(E).

Uniqueness of the R-N theorem: This is trivial.
Extension to the σ-finiteness measures: It is not difficult to find a sequence of disjoint sub-spaces

{Ωn} ⊆ F such that (µ + ν)(Ωn) < ∞ and ∪nΩn = Ω. For any measure ρ, let ρn be the measure
restricted on Ωn, or ρn(E) = ρ(E ∩ Ωn) for all E ∈ F . It follows that ρ =

∑
n ρn, and ρ(E) = 0 if

and only if ρn(E) = 0 for all n ∈ N. It is not difficult to establish that

ν � µ ⇔ νn � µn, ∀ n; ν ⊥ µ ⇔ νn ⊥ µn, ∀ n.

Therefore, we can find two measures on Ωn, ρ(n) � µn and σ(n) ⊥ µn, such that νn = ρ(n) + σ(n).
It is not difficult to see that νac(E) =

∑
n ρ(n)(E ∩ Ωn) and νs(E) =

∑
n σ(n)(E ∩ Ωn) are the

decomposition. The uniqueness follows readily, since another decomposition will have to coincide
with ρ(n) and σ(n) on each Ω.

As for the R-N theorem, we can find hn : Ωn → [0,∞) on each Ωn. Define h(ω) = hn(ω),
∀ω ∈ Ωn. It follows that h is non-negative and measurable, such that∫

E
hdµ =

∑
n

∫
E∩Ωn

hn dµ =
∑
n

ν(E ∩ Ωn) = ν(E).

The uniqueness is also trivial. 2

Exercise: The relative entropy of a probability measure ν with respect to another probability
measure µ is defined as

H (ν‖µ) ·=
{ ∫

dν
dµ log dν

dµ dµ ; if ν � µ

∞ ; otherwise

}
.

The total variation distance (on F) between two probability measures µ, ν are defined as

‖µ − ν‖ ·= sup
A∈F

|µ(A) − ν(A)|.

Show that
‖µ − ν‖2 ≤ 1

2
H (ν‖µ) .
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3 Conditional Expectation

The general condition expectation is itself a random variable. Consider a probability space (Ω,F ,P),
and a random variable X defined on it. Let G ⊆ F be a sub-σ-algebra (intuitively, G is the additional
knowledge you acquire).

Definition: Suppose EX is well defined. We say Y is the conditional expectation of X given
G if the following two conditions hold:

1. Y : Ω → R̄ is G-measurable.

2.
∫
E Y dP =

∫
E X dP, for all E ∈ G.

We should denote the conditional expectation Y by E(X | G). In particular, when X = 1A for
some A ∈ F , we sometimes write P(A | G) = E(X | G).

Remark: There can be many versions of E(X | G), which differ on P-null sets.

Before discussing the general existence and uniquesness (up to a.e. equivalence), and properties of
conditional expectation, we would like to know the connection of conditional expection to the more
conventional conditional probability.

Example: Given A,B ∈ F , the conventional conditional probability is given by

P(A |B) ·=
P(A ∩ B)

P(B)
;

here we assume P(B) > 0. This definition can be understood as the probability of A when
event B occurs.

Now define a sub-σ-algebra G ·= {∅, B,Bc,Ω} ⊆ F . We want to compute the conditional
expectation Y = P(A | G). By definition, Y is G-measurable, hence we can write Y = a1B +
b1Bc for some constant a, b ∈ R̄. However, for any E ∈ G = {∅, B,Bc,Ω}, we have∫

E
Y dP =

∫
E

1A dP ⇒ aP(E ∩ B) + bP(E ∩ Bc) = P(A ∩ E).

Let E = B and E = Bc, we have

a =
P(A ∩ B)

P(B)
, b =

P(A ∩ Bc)
P(Bc)

.

Moreover, when a, b are chosen as above, it is not difficult to see that

aP(E ∩ B) + bP(E ∩ Bc) = P(A ∩ E), ∀ E ∈ G.

It follows that

P(A | G)(ω) = (the conventional)
{

P(A |B) ; if ω ∈ B;
P(A |Bc) ; if ω ∈ Bc;

}

Therefore, the definition of P(A | G) coincides with the conventional conditional probability
well. 2
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Example: Suppose X,Y are two independent, integrable random variables on space (Ω,F ,P). The
σ-algebra generated by random variable Z is defined as

σ(Z) ·=
{
Z−1(B); B ∈ B(R)

}
.

Let G ·= σ(Y ). What will be E(X + Y | G)? Intuitively, knowing Y does not provide any
additional information of X due to the independence. Hence, a candidate for this conditional
expectation is E(X) + Y . This claim is easily verified. Indeed, E(X) + Y is obviously G-
measurable. Secondly, for any E = Y −1(B) ∈ G, we have∫

E
(X + Y ) dP = E(X1E + Y 1E) = E(X) · P(E) + E(Y 1E);

here the last equality follows from independence. Also,∫
E

[E(X) + Y ] dP = E(X) · P(E) + E(Y 1E).

Therefore, the definition of conditional expectation fits the intuition. 2

Now we return to the existence and uniqueness of the conditional expectation.

Theorem: Consider a probability space (Ω,F ,P), a random variable X on it and a sub-σ-algebra
G ⊆ F . If EX is well-defined, then there exists a G-measurable function E(X | G) : Ω → R̄,
unique to P-null sets, such that∫

E
E(X | G) dP =

∫
E

X dP, ∀ E ∈ G.

We call E(X | G) the conditional expectation of X given G. In particular,

E
(
E(X | G)

)
= EX.

Remark: When X is integrable; i.e. E|X| < ∞, the conditional expectation E(X | G) is finite almost
surely. This is implied in the proof of the theorem.

Proof. We give here a proof for the case where X ∈ L1. Suppose X ∈ L1, then X± ∈ L1. The
measures defined by

ν±(E) ·=
∫

E
X± dP, ∀ E ∈ G,

are two finite measures absolutely continuous to P. By Radon-Nikodým theorem, there exist G-
measurable functions h± : Ω → [0,∞) such that

ν±(E) ·=
∫

E
h± dP, ∀ E ∈ G.

Define E(X | G) = h+ − h−. The uniqueness is trivial. 2

9



Exercise: Complete the proof for the case where EX is well-defined.

Proof. It suffice to consider the case EX = ∞, or equivalently, EX+ = ∞ and EX− < ∞.
Similarly, we can define two measures ν± on G, and ν− can be taken care of as in the above
proof. It remains to show that there exists a G-measurable function h+ : Ω → [0,∞] such
that

ν+(E) =
∫

E
X+ dP =

∫
E

h+ dP, ∀ E ∈ G.

Note in this case, we still have ν+ � P, but the σ-finiteness of ν+ is not guaranteed. We
define

D ·=
{
D ∈ G; ν+ is σ-finite on G ∩ D.

}
Define α

·= supD∈D P(D). Select a sequence of {Dn} ∈ D such that P(Dn) ↑ α, and define
F

·= ∪nDn. We have P(F ) = α and F ∈ D; in other words, µ
·= ν+

∣∣
G∩F

is σ-finite. We
claim that for any A ∈ G ∩ F c, either P(A) = ν+(A) = 0, or P(A) > 0 and ν+(A) = ∞.
Indeed, if P(A) > 0 and ν+(A) < ∞, we have A ∪ F ∈ D, and P(A ∪ F ) = P(A) + α > α, a
contradiction. Now define

h+ ·=
{

dµ
dP′ ; on F
∞ ; on F c

}
; here P′ = P

∣∣
G∩F

.

It remains to show that

ν+(E) =
∫

E∩F
h+ dP +

∫
E∩F c

h+ dP =
∫

E
hdP, ∀ E ∈ G,

which is trivial. 2

Below is a collection of exercises (we assume all the conditional expectations are well-defined in
these exercises).

Exercise: Suppose X,Y ∈ L1. If Y is a G-measurable random variable such that

EX = EY,

∫
E

X dP =
∫

E
Y dP, ∀ E ∈ D,

for some π-class D. Then

Y = E(X | G), where G = σ(D).

Exercise: Let {An}n∈N ⊆ F be a partition of Ω; that is, {An}n∈N is a disjoint sequence with
∪An = Ω. Let G ·= σ(An; n ∈ N) be the sub-σ-algebra generated by {An}. Suppose X is a
random variable with EX well-defined. Show that

E(X | G) =

∫
An

X dP

P(An)
, on An.

Note when P(An) = 0, the above fraction is defined as any real number.
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Exercise: For arbitrary constants α, β ∈ R, we have

E(αX + βY | G) = αE(X |G) + βE(Y |G).

Exercise: If X is G-measurable, then E(X | G) = X.

Exercise: Suppose X ≥ Y almost surely. Show that E(X | G) ≥ E(Y |G) almost surely. In particular,
if X ≥ 0 almost surely, we have E(X | G) ≥ 0 almost surely.

Exercise: Show that |E(X | G)| ≤ E(|X| ∣∣ G) almost surely. (Hint: let Y = ±X, and use the above
exercise).

Exercise: (Conditional Monotone Convergence Theorem) If 0 ≤ Xn ↑ X, then E(Xn | G) ↑
E(X | G) almost surely.

Proof. Let Yn = E(Xn | G). It follows that {Yn} is an increasing sequence, and hence Y
·=

limn Yn exists and is G-measurable. It follows from MCT and the definition, that for any
E ∈ G, ∫

E
Y dP = lim

n

∫
E

Yn dP = lim
n

∫
E

Xn dP =
∫

E
X dP =

∫
E

E(X | G) dP.

This completes the proof. 2

Exercise: (Conditional Fatou Lemma) If 0 ≤ Xn, then E (lim infn Xn | G) ≤ lim infn E(Xn | G)
almost surely.

Proof. Let Yn
·= infm≥n Xm, we have Yn ↑ lim infn X. It follows from CMCT that

E
(
lim inf

n
Xn | G

)
= lim

n
E(Yn | G) = lim inf

n
E(Yn | G) ≤ lim inf

n
E(Xn | G)

Exercise: (Conditional Dominated Convergence Theorem) If |Xn| ≤ Y ∈ L1 and Xn → X
almost surely, then E(Xn | G) → E(X | G) and E(|Xn − X| ∣∣G) → 0 almost surely. (Hint:
Mimic the proof of DCT.)

3.1 A special case

Suppose X,Y are two random variables. The σ-algebra generate by X is

σ(X) ·=
{
X−1(B); B ∈ B(R)

}
.

We define
E(Y |X) ·= E

(
Y |σ(X)

)
, if EY is well-defined.

More generally, if {Xn} is a sequence of random variables,

E(Y |X1,X2, · · · ) ·= E
(
Y |σ(X1,X2, · · · )

)
, if EY is well-defined

Lemma: Any σ(X)-measurable random variable Z can be written as Z = φ(X) for some Borel-
measurable φ : R → R.

The proof of the lemma is left as an exercise. An immediate consequence of the lemma is

11



Theorem: There exists a Borel-measurable funciton φ such that E(Y |X) = φ(X) almost surely.

Remark on notation: The Borel function φ is sometimes denoted by

φ(x) = E(Y |X = x);

Exercise: Suppose X and Y are independent random variables and f : R2 → R is a Borel-measurable
function. If Ef(X,Y ) is well-defined, then

E
[
f(X,Y )

∣∣X] = φ(X)

where φ(x) = Ef(x, Y ) for all x ∈ R if the expectation Ef(x, Y ) is well-defined, and φ(x) = 0
otherwise.

Exercise: Suppose (X,Y ) has a joint density f(x, y). Its marginal densities are

fX(x) =
∫

R
f(x, y) dy, fY (y) =

∫
R

f(x, y) dx.

Define the conditional density

fY |X(y|x) ·=

{
f(x,y)
fX(x) ; if fX(x) > 0

0 ; if fX(x) = 0

}
.

Show that for Borel-measurable function φ where h(Y ) ∈ L1,

E
(
h(Y ) |X) = φ(X)

where
φ(x) ·=

∫
R

h(y)fY |X(y|x) dy.

4 The interpretation of conditional expectation as a projection

We first introduce the following result.

Theorem: Suppose random variable Y is G-measurable, and EX, E(XY ) are both well-defined.
We have

E(XY | G) = Y · E(X | G).

In particular, E(XY ) = E
{
Y · E(X | G)

}
.

Proof. Without loss of generality we assume X ≥ 0. It suffices to show that∫
E

XY dP =
∫

E
Y · E(X | G) dP, ∀ E ∈ G.

If Y = 1A for some A ∈ G, we have∫
E

XY dP =
∫

A∩E
X dP =

∫
A∩E

E(X | G) dP =
∫

E
Y · E(X | G) dP, ∀ E ∈ G.

12



Hence the equality holds for all non-negative simple G-measurable random variable Y . It follows
from approximation and MCT that the equality holds for all non-negative G-measurable random
variable Y . In general, Y = Y + − Y −. We complete the proof. 2

Suppose X ∈ L2(Ω,F ,P) := L2(F). Since G ⊆ F is a sub-σ-algebra, L2(G) ⊆ L2(F). Consider
the following optimization problem:

inf
Y ∈L2(G)

E(X − Y )2 = inf
Y ∈L2(G)

‖X − Y ‖2
L2 .

The answer to this problem is that the infimum is achieved at Y ∗ = E(X | G). Indeed, note that

〈X − Y ∗, Z〉 = 〈X − E(X | G), Z〉 = 0, ∀ Z ∈ L2(G),

thanks to the preceding theorem. It follows that for all Y ∈ L2(G),

E(X − Y )2 = ‖X − Y ∗ + Y ∗ − Y ‖2 = ‖X − Y ∗‖2 + ‖Y ∗ − Y ‖2 + 2〈X − Y ∗, Y ∗ − Y 〉
= ‖X − Y ∗‖2 + ‖Y ∗ − Y ‖2 ≥ ‖X − Y ∗‖2 = E(X − Y ∗)2.

We can write
X = E(X | G) + [X − E(X | G)] := Y ∗ + Z,

then Y ∗ is the “projection of X on G”, and Z ⊥ L2(G) is the “orthogonal complement”.

5 Other properties of conditional expectation

Consider a probability space (Ω,F ,P) and a sub-σ-algebra G ⊆ F .

Proposition: (Tower property) Suppose G1 ⊆ G2 ⊆ F . We have

E
(
E(X | G2)

∣∣G1

)
= E(X | G1) = E

(
E(X | G1)

∣∣G2

)
.

Proof. The second equality is trivial, since E(X | G1) is G2-measurable. As for the first equality,
note that E

(
E(X | G2)

∣∣G1

)
is a G1-measurable with∫

E
E
(
E(X | G2)

∣∣G1

)
dP =

∫
E

E(X | G2) dP ==
∫

E
X dP =

∫
E

E(X | G1) dP, ∀ E ∈ G1.

The equality follows. 2

Proposition: If G = {∅,Ω} or X is independent of G, then

E(X | G) = EX.

Proof. This is left as an exercise. 2

Proposition: Suppose G,H ⊆ F are two sub-σ-algebra and X ∈ L1. If G is independent of X and
H, then

E(X | G ∨ H) = E(X |H).

Here G ∨ H is the smallest σ-algebra containing both G and H; i.e.

G ∨ H = σ(G,H) ·= σ({A ∩ B; A ∈ G, B ∈ H}) := σ(D).

13



Remark: We say to σ-algebra F and G are independent, if A and B are independent whenever
A ∈ F , B ∈ G. We say X is independent of a G if σ(X) and G are independent. In particular,
X and Y are independent if and only if σ(X) and σ(Y ) are independent.

Proof. Without loss of generality, we assume X ≥ 0. Note D is a π-class. Since X is integrable, it
suffices to show that ∫

A∩B
X dP =

∫
A∩B

E(X |H) dP, ∀ A ∈ G, B ∈ H.

Indeed, if this equality holds, we have

E(X | G ∨ H) = E
(
E(X |H) | G ∨ H) = E(X |H),

thanks to the fact that E(X) = E
(
E(X |H)

)
, and the exercise in page 10.

However, since E(X |H) is H-measurable, it is independent of G. Therefore,∫
A∩B

E(X |H) dP = E
(
E(X |H)1A1B

)
= E

(
E(X |H)1B

) · E(1A)

= E
(
E(1BX |H)

) · E(1A) = E(X1B) · E(1A) = E(X1B · 1A)

=
∫

A∩B
X dP.

This completes the proof. 2

Proposition (conditional Hölder inequality): Suppose 1 < p < ∞ and 1
p + 1

q = 1. We have

E
(|XY | ∣∣G) ≤ {E(|X|p | G)} 1

p · {E(|Y |q | G)} 1
q

for any random variables X,Y .

Proof. Without loss of generality we can assume that X ≥ 0, Y ≥ 0. We can also assume X,Y
are bounded from above (otherwise, let Xn = X ∧ n, Yn = Y ∨ n and use CMCT). We can further
assume that X,Y are bounded from below by some ε > 0 (otherwise, we can assume Xn = X ∨ 1

n ,

Yn = Y ∨ 1
n and use CDCT). Note {E(Xp | G)} 1

p and {E(Y q | G)} 1
q are both positive and finite. It

follows that

X

{E(Xp | G)} 1
p

· Y

{E(Y q | G)} 1
q

≤ 1
p

(
X

{E(Xp | G)} 1
p

)p

+
1
q

(
Y

{E(Y q | G)} 1
q

)q

;

see the proof of Hölder inequality. Taking expectation conditional on G for both sides, we have

E(XY | G)

{E(Xp | G)} 1
p · {E(Y q | G)} 1

q

≤ 1
p

+
1
q

= 1.

This completes the proof. 2

Proposition (Conditional Jensen inequality): Suppose φ is a convex function, and X,φ(X) ∈
L1. Then we have

φ
(
E(X | G)

) ≤ E
(
φ(X) | G)
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Proof. The convex function φ can be written as

φ(x) = sup
n

(an + bnx), ∀ x ∈ R

for a suitably chosen sequence of constants {(an, bn)}n∈N (exercise). Therefore,

E
(
φ(X) | G) ≥ E

(
an + bnX | G) = an + bnE(X | G), a.s., ∀ n.

In other words, the above inequality holds on a set Ω\Bn with P(Bn) = 0. Taking supremum over
n, it is easy to see that

E
(
φ(X) | G) ≥ φ

(
E(X | G)

)
,

holds on Ω\B where B = ∪nBn has probability zero; that is, the inequality hold almost surely. 2

Exercise: Show that the convex function φ can be written as φ(x) = supn(an + bnx), ∀ x ∈ R for a
suitable choice of {(an, bn)}n∈N.

Proof. As we pointed before, the following inequality holds:

f(x) ≥ f(y) + (x − y)D+f(y), ∀ x, y ∈ R;

here D+f is the right-derivative of f . It follows easily that

f(x) = sup
y∈R

[
f(y) + (x − y)D+f(y)

]
:= sup

y∈R
[Ay + Byx] ; ∀ x ∈ R

Indeed, Ay + Byx is called a line of support. The point of this exercise is that f can be
expressed as the supremum of a countable collection of line of support. Let Q be the set of
rational numbers. We claim

f(x) = sup
y∈Q

[Ay + Byx] , ∀ x ∈ R.

The direction “≥” is obvious. For x ∈ R, let {yn} ⊆ {Q} with yn → x. It follows that

Ayn + Bynx = f(yn) + (x − yn)D+f(yn) → f(x)

since f is continuous and {D+f(yn)} is clearly bounded. We conclude the “≤” direction. 2

Here is a collection of exercises.

Exercise: Let {X1,X2, · · · } be a sequence of iid random variables with E|X1| < ∞. Define Gn
·=

σ(Sn, Sn+1, · · · ), where Sn
·=
∑n

j=1 Xj . Show that

E
[
X1

∣∣Gn

]
=

Sn

n
, a.s., ∀ n ≥ 1.

Exercise: Give an example to show that E(Y |X) = EY almost surely does not necessarily imply
that X and Y are independent.
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6 Regular conditional distribution

Regular conditional probability directly address the issue of conditional distribution and thus pro-
vides a very nice way of describing conditional expectation.

Definition: Let X : Ω → R be a random variable on a probability space (Ω,F ,P). Let G ⊆ F
be a sub-σ-algebra. A regular conditional distribution of X given G is a function
µ : Ω × B(R) → [0, 1] with notation Pω ·= µ(ω, ·) : B(R) → [0, 1], such that

1. For each ω ∈ Ω, Pω defines a probability measure on (R,B(R)).

2. For each A ∈ B(R), the mapping ω 7→ Pω(A) is G-measurable.

3. For each A ∈ B(R), P(X ∈ A | G)(ω) = E(1A | G)(ω) = Pω(A) for almost every ω ∈ Ω.

Remark: When X : Ω → Rn is a random vector or, more generally, a random variable taking value
is a metric space (S,B(S)), one can similarly define the regular conditional distribution.

Theorem: Regular conditional distribution always exists. This result holds for the general case
when X : Ω → (S,B(S)) is a general random variable, if S is a complete, seperable metric
space (i.e. Polish space).

One advantage of the regular conditional distribution is that the conditional expectation can be
expressed as the ordinary expectation relative the conditional distribution.

Theorem: Suppose X is a random variable, and let µ : Ω × B(R) → [0, 1] denote the regular
conditional distribution of X given G, with notation Pω ·= µ(ω, ·) : B(R) → [0, 1]. Let
h : R → R be a Borel-measurable function such that Eh(X) is well-defined. We have

E
(
h(X) | G)(ω) =

∫
R

h(x) dPω(x), a.s.

The proof of this theorem is left as an exercise (Hint: assume h ≥ 0; show that it holds for simple
functions; then use approximation...)
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