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Consider a complete probability space (Ω,F ,P;F) equipped with the Þltration F = {Ft; 0 ≤
t <∞}. A stochastic process is a collection of random variables X = {Xt; 0 ≤ t <∞} where, for
every t, Xt : Ω → Rd is a random variable. We assume the space Rd is equipped with the usual
Borel σ-algebra B(Rd). Every Þxed ω ∈ Ω corresponds to a sample path (or, trajectory), that is,
the function t 7→ Xt(ω) for t ≥ 0.

DeÞnition: The process is said to be continuous if every sample path is continuous on [0,∞). The
processes we discuss here are all continuous, even though almost all the results can be carried
over to the more general RCLL processes (right continuous, with Þnite left-hand limit).

DeÞnition: The stochastic process X is said to be adapted to Þltration F, if Xt is Ft-measurable
for every t ≥ 0.

Unless otherwise speciÞed, the processes are always assumed to be continuous and the Þltration
F is assumed to satisfy the usual conditions, that is,

1. F0 contains all the P-negligible sets (hence so does every Ft).
2. the Þltration F is right-continuous, or, Ft = Ft+ ·

=
T
s>tFs.

1 Continuous Time Martingales

Consider a complete probability space (Ω,F ,P; F) where the Þltration F satisÞes the usual condi-
tions. We can similarly deÞne continuous-time martingales, stopping times, etc.

DeÞnition: An adapted process X = (Xt,Ft) is said to be a martingale (resp. sub-, super-) wrt
to Þltration F if it is integrable, and

E
£
Xt | Fs

¤
= Xs (resp. ≥, ≤)

almost surely, for all 0 ≤ s ≤ t.
Basic convergence theorem: Let X = (Xt,Ft) be a supermartingale such that

sup
t≥0

E(X−
t ) <∞.

Then X∞
·
= limtXt exists almost everywhere.

1



DeÞnition: A stopping time wrt Þltration F = (Ft), is a random variable T : Ω → [0,∞] such
that

{T ≤ t} ∈ Ft, ∀ t ≥ 0.
The Þltration prior to the stopping time T is deÞned as

FT ·
= {A ∈ F ; A ∩ {T ≤ t} ∈ Ft, ∀ t ≥ 0} .

Exercise: Consider a continuous, adapted process X = (Xt,Ft) where the Þltration F satisÞes the
usual conditions. Let Γ be a Borel set in Rd, and deÞne the hitting time

HΓ(ω)
·
= inf {t ≥ 0; Xt(ω) ∈ Γ} , with convention inf{∅} =∞.

Show HΓ is a stopping time if Γ is either open or closed.

Optional sampling theorem: If X = (Xt,Ft) is a martingale (resp. sub-, super-) and T is an
arbitrary stopping time, then the stopped process XT = (Xt∧T ,Ft) is also a martingale (resp.
sub-, super-). In particular,

E[Xt∧T ] = E[X0] (resp. ≥, ≤) for all t ≥ 0.

Proof: Here we give a sketch of the proof. Assume X is a supermartingale. First, for a Þxed n ≥ 1,
let

Dn
·
=

½
k

2n
, k = 0, 1, 2, · · ·

¾
⊆ Dn+1 ⊆ · · ·

be the set of non-negative dyadic rationals of order no greater than n. It follows that

X = (Xt,Ft; t ∈ Dn)
is a supermartingale (discrete time).

Second, we construct a stopping time Tn such that Tn ≥ T and Tn only take values in Dn.
Indeed, let

Tn(ω)
·
= inf {t ∈ Dn; t ≥ T (ω)} .

Then Tn ≥ Tn+1 ≥ · · · and Tn is a stopping time (exercise!).
Fix 0 ≤ s ≤ t, we wish to show that

E[Xt∧T | Fs] ≤ Xs
almost surely. Similarly deÞne

tn
·
= inf {u ∈ Dn; u ≥ t} ≥ tn+1 ≥ · · · and sn

·
= inf {u ∈ Dn; u ≥ s} ≥ sn+1 ≥ · · · .

It follows from the discrete time optional sampling theorem that

E[Xtn∧Tn | Fsm ] ≤ Xsm∧Tn
for any integers m ≥ n. Letting m → ∞, we have sm ↓ s and Fsm ↓ Fs. By Lévy�s Downward
theorem and the continuity of process X, we have

E[Xtn∧Tn | Fs] ≤ Xs∧Tn .
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Observe that (Xtn∧Tn ,Ftn∧Tn) is a backward martingale, whence it is uniformly integrable. Letting
n→∞, we arrive at

E[Xt∧T | Fs] ≤ Xs∧T .
This completes the proof. 2

Optional sampling theorem: Assume that X = (Xt,Ft) is a martingale (resp. sub-, super-)
such that {Xt} (resp. {X+

t }, {X−
t }) are uniformly integrable. For any pair of stopping times

S ≤ T , we have
E[XT

¯̄ FS ] = XS (resp. ≥, ≤).
almost surely. In particular,

E[XT ] = E[X0] (resp. ≥, ≤)

for any stopping time T .

Theorem: Assume that X = (Xt,Ft) is a martingale (resp. sub-, super-). Then the following
statements are equivalent

1. {Xt} (resp. {X+
t }, {X−

t }) are uniformly integrable.
2. The martingale (resp. sub-, super-) X = (Xt,Ft) is closed.

Furthermore, if this is the case, X∞ = limtXt exists and serves as a last emelement.

A martingale (resp. sub-, super-) is said to be closed if there exists a F∞-measurable random
variable Y such that

E[Y | Ft] = Xt (resp. ≥, ≤), ∀ t ≥ 0.
We call Y a last element.

Exercise: Assume X = (Xt,Ft) is a martingale (resp. sub-, super-), and S ≤ T are two bounded
stopping times. That is P(S ≤ T ≤ a) = 1 for some constant a. Then E [XT | FS ] ≥ XS.

Exercise: Every uniformly integrable supermatingale martingale X = (Xt,Ft) admits a unique
Riesz decomposition

Xt =Mt + Zt

where M is a uniformly integrable martingale and Z is a non-negative supermatingale with
limt→∞ EZt = 0.

Exercise: Let Z = (Zt,Ft) be a continuous, non-negative martingale with Z∞ = limt Zt = 0 almost
surely. Then for every s ≥ 0, b > 0, we have

P

µ
max
t>s

Zt ≥ b
¯̄Fs¶ = 1

b
Zs, a.s. on {Zs < b}.
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2 Brownian motion

DeÞnition: An adapted process B = (Bt,Ft) is said to be a (standard) Brownian motion in R if,
1. The process B is continuous.

2. B0 ≡ 0 almost surely.
3. The increment Bt −Bs is independent of Fs for all 0 ≤ s ≤ t.
4. The increment Bt −Bs has a normal distribution N(0, t− s) for all 0 ≤ s ≤ t.

Exercise: Suppose that a continuous process X = (Xt) with X0 ≡ 0 in probability space (Ω,F ,P)
has independent, stationary increments with Xt −Xs ∼ N(0, t− s). Then X = (Xt,FXt ) is
a Brownian motion; here (FXt ) is the natural Þltration generated by X. (Hint: Use Dynkin
system theorem to prove that Xt −Xs is independent of FXs .)

2.1 Construction of Brownian Motion

In the following we will discuss the construction of the standard Brownian motion on time interval
[0, 1]. The method can also be generalized to construct Brownian motion on the inÞnite time
horizon. There are several ways to construct a standard Brownian motion. The one we are going
to illustrate is the weak convergence approach.

A naive illustration: Let (ξ1, ξ2, · · · ) be a sequence of iid random variables with distribution

P(ξ = 1) = P(ξ = −1) = 1

2
.

Consider the following symmetric random walk. Let time step be δ and step size h. At time
t, the random walk is roughly at state

St =

[ tδ ]X
i=1

hξi.

Then St deÞne a stochastic process (not strictly continuous). It follows that

E[St] = 0, VarSt = h
2 ·
∙
t

δ

¸
≈ h2

δ
t.

To get a continuous version of this random walk, we let δ → 0, h → 0 and h2

δ = 1. For
example, let h = 1√

n
and δ = 1

n . It follows that

S
(n)
t =

1√
n

[nt]X
i=1

ξi.

By the central limit theorem, we have S
(n)
t

D−→ N(0, t).

However, the symmetric simple random walk has stationary, independent increment. We
would expect that the limiting process still keep this property. It follows that the limiting
process is a Brownian motion.
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Space C[0, 1]: We will give the space C[0, 1] the usual uniform topology. For every pair of f, g ∈
C[0, 1], we deÞne distance

ρ(f, g)
·
= max
0≤t≤1

|f(t)− g(t)|.

� ρ deÞne a metric on space C[0, 1].
� The metric space (C[0, 1], ρ) is a Polish space (i.e. complete and seperable).

We will associate with the space the Borel σ-algebra, denoted by B¡C[0, 1]¢ or sometimes
simply B when no confusion is incurred. The coordinate mapping process, say W = (Wt) is
deÞned as follows:

Wt(ω)
·
= ω(t), ∀ ω ∈ C[0, 1].

Clearly this is a continuous process. Now that we have a measurable space (Ω,B), under
which the coordinate mapping process W = (Wt,FWt ) is a continuous, adapted process, it
remains to Þnd a suitable probability measure so as to make W a Brownian motion.

Weak Convergence: We will consider a generic Polish space (S, ρ) (complete and seperable)
equipped with the Borel σ-algebra, denoted by B. A sequence of probability measures (Pn)
on the space (S,B) is said to converges weakly to a probability measure P on (S,B) (write
Pn ⇒ P), if for every continuous, bounded function f : S → R

lim
n→∞

Z
S
f(s)dPn(s) =

Z
S
f(s)dP (s).

Similarly, consider a sequence of random variables (X0,X1, · · · ) and random variable X (could
be deÞned on different probability space) that all take value in space (S, ρ). We say Xn

converges to X in distribution, denoted by Xn
D−→X , if for any bounded continuous function

f : S → R,
lim
n→∞Ef(Xn) = Ef(X).

DeÞnition: A family of probability measures on space (S, ρ), say Π, is said to be tight, if for every
² > 0, there exists a compact set K such that P(K) > 1− ² for every P ∈ Π.
The following theorem is the key result toward the construction of Brownian motion.

Prohorov Theorem: A family of probability measures on Polish space (S, ρ), say Π, is tight if
and only if every sequence in Π contains a weak convegent subsequence (relative compactness).

We will refer the reader to the book by Billingsley �Convergence of Probability Measures�
for a proof of this theorem. The proof of the special case with S = R can be found in Chow
and Teicher �Probability Theory�.

Construction of Brownian motion: The main result here is the Invariance Principle of Donsker.
A rough thread of the proof is the following:

1. Start with the general random walk to get a sequence of probability measures (Pn) on
C[0, 1].

2. Show that (Pn) is tight.
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3. By Prohorov theorem, there exists a subsequence of (Pn) that converges weakly to a
probability measure P∗. Show that, under P∗, the coordinate mapping is a Brownian
motion.

4. Prove the whole sequence Pn converges weakly to P
∗.

Suppose that ξ1, ξ2, · · · is a sequence of iid random variables with mean zero and variance σ2.
Let Sn = ξ1 + ξ2 + · · ·+ ξn with convention S0 ≡ 0. DeÞne the following continuous process

X
(n)
t

·
=

1

σ
√
n
S[[nt]] + (nt− [[nt]])

1

σ
√
n
ξ[[nt]]+1 :=

1

σ
√
n
S[[nt]] +R

(n)
t , ∀ 0 ≤ t ≤ 1.

This is just the linear interpolation of a radom walk with time size 1
n and step size

1
σ
√
n
ξ. We

will let Pn denote the probability measure induced on C[0, 1] by X
(n).

Invariance Principle of Donsker: The probability measure Pn converges weakly to a probail-
ity measure P∗ under which the coordinate mapping process W = (Wt,FWt ) is a standard
Brownian motion.

Remark: The standard Brownian motion starts at B0 ≡ 0. It is not difficult to see that one can also
construct a Brownian with B0 has arbitrary distribution, say µ. In this case, we will say B is
a Brownian motion with initial distribution µ. Sometimes, to specify the initial distribution,
we will use notation Pµ or Eµ. If the initial distribution is just a Dirac distribution δx, we
will use Px or Ex.

2.2 Strong Markov property of Brownian motion and reßection principle

Let us start with an easy exercise, which shows that the Brownian motion starts afresh at time t.

Exercise: Suppose B is a Brownian motion with arbitrary intial distribution µ. For any t ≥ 0,
show that the process (Ws

·
= Bt+s −Bt; s ≥ 0) is a standard Brownian motion (wrt to FW ).

Theorem: Brownian motion is a Markov process. That is, for any A ∈ B(R),

P
£
Bt+h ∈ A

¯̄Ft¤ = P £Bt+h ∈ A ¯̄Bt¤ .
Proof: It follows from that the Brownian motion has independent increment. 2

Exercise: For every bounded, measurable function f : R→ R, show that

E
£
f(Bt+h)

¯̄Ft¤ = E £f(Bt+h) ¯̄Bt¤ .
A discrete-time Markov chain always has the strong Markov property. The question is whether

the Brownian motion has the strong Markov property. The answer is affirmative.

Strong markov property: Suppose B = (Bt,Ft) is a Brownian motion and T is an arbitrary
Þnite stopping time. Then

� for any A ∈ B(R), we have P £BT+t ∈ A ¯̄FT ¤ = P £BT+t ∈ A ¯̄BT ¤.
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� the Brownian motion starts afresh at stopping time T , that is, Wt
·
= BT+t − BT is a

standard Brownian motion and independent of FT .
Proof: All we need to show is that, for every s, t ≥ 0, conditional on FT+s, the increment
Wt+s −Ws = BT+t+s − BT+s always has distribution N(0, t). Hence Wt+s −Ws ∼ N(0, t)
is independent of FT+s. It is well known that the characteristic function uniquely determines
the distribution. Similar result is also true for conditional probabilities. Roughly speaking,
conditional distribution is uniquely determined by the conditional characeristic function.

Let us consider the following complex-valued process

Xt
·
= eiθBt+

1
2
θ2t; t ≥ 0, θ ∈ R.

It is easy to show that X = (Xt,Ft) is a martingale. Let S = T + s, which is still a stopping
time. By optional sampling theorem, we know that

E
£
XS∧n+t

¯̄FS∧n¤ = XS∧n, ∀ n ≥ 0,

which implies that, by rearranging terms,

E
h
eiθ(BS∧n+t−BS∧n)

¯̄FS∧ni = e− 1
2
θ2t.

Letting n→∞, by Lévy upward theorem,

E
h
eiθ(BS+t−BS)

¯̄FT+si = E heiθ(BT+s+t−BT+s) ¯̄FT+si = E heiθ(Wt+s−Ws)
¯̄FT+si = e−1

2
θ2t

This completes the proof. 2

Remark: The restriction to Þnite-valued stopping time is not essential. It is included to avoid
worrying about the deÞnition at inÞnity.

Reßection Principle: Let B = (Bt,Ft) be a standard Brownian motion. For b ∈ R, deÞne the
hitting time Tb as

Tb
·
= inf{t ≥ 0; Bt = b}.

Then the following reßected process

Wt
·
=

½
Bt ; t ≤ Tb

2b−Bt ; t ≥ Tb
is still a standard Brownian motion.

Proof: This is an immediate result of strong Markov property and the fact that −B is a
Broanian motion for any Brownian motion B. 2
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Corollary (Density of hitting time Tb): It suffices to consider the case where b > 0. Let W be the
reßected process deÞned above. We have

P(Tb ≤ t) = P (Tb ≤ t, Bt ≥ b) + P (Tb ≤ t, Bt ≤ b) = P (Bt ≥ b) + P (Tb ≤ t, Bt ≤ b)
However, by reßction principle,

P (Tb ≤ t, Bt ≤ b) = P(Bt ≤ b
¯̄
Tb ≤ t) · P(Tb ≤ t) = 1

2
P(Tb ≤ t).

It follows that

P(Tb ≤ t) = 2P(Bt ≥ b) = 2Φ
µ
− b√

t

¶
.

The density of Tb is then

P(Tb ∈ dt) = b√
2πt3

e−
b2

2t dt.

In particular, P(Tb <∞) = 1. 2

Exercise: Show that the joint distribution between Brownian motion B and its running maximum
Mt

·
= max0≤s≤tBs is given by the following:

P(Bt ≤ a,Mt ≥ b) = Φ
µ
a− 2b√

t

¶
for all b ≥ 0 and a ≤ b.

2.3 Martingales associated with Brownian motion

There are several very useful martingales associated with the Brownian motion.

Lemma: Suppose W = (Wt,Ft) is a standard Brownian motion.
1. For every θ ∈ R, the process (Xt,Ft) where

Xt
·
= eθWt− 1

2
θ2t

is a martingale.

2. The Brownian motion it self is a martingale.

3. The process (W 2
t − t,Ft) is a martingale.

The proof is left as an exercise.

Example: Another way to determine the distribution of the Þrst passage time Tb is to Þnd its
Laplace transform E

£
e−αTb

¤
. Now suppose θ > 0 and consider the exponential martingale

Xt
·
= eθWt− 1

2
θ2t

It follows from optional sampling theorem that

E[Xt∧Tb ] = E[X0] = 1, ∀ t ≥ 0.
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However, 0 ≤ Xt∧Tb ≤ eθb is bounded. It follows from DCT that

E[XTb ] = lim
t→∞E[Xt∧Tb ] = 1 ⇒ eθb−

1
2
θ2Tb = 1.

Letting θ =
√
2α, we have

E
£
e−αTb

¤
= e−

√
2αb.

We can inverse the Laplace transform to get the density of Tb. 2

Example: Let a < 0 < b and T
·
= inf {t ≥ 0; Bt 6∈ (a, b)}. Show that

P(BT = a) =
b

b− a, P(BT = b) =
−a
b− a, ET = −ab

Proof: By optional sampling theorem E[Be∧T ] = 0 for all t ≥ 0. However, a ≤ Bt∧T ≤ b for
all t. It follows from DCT that

0 = lim
t→∞E[Xt∧T ] = E[BT ] = aP(BT = a) + bP(BT = b).

We can solve it with P(BT = a) + P(BT = b) = 1. In order to calculate ET , consider the
following martingale (exercise!)

Xt
·
= (Bt − a)(b−Bt) + t, t ≥ 0.

It follows from optional sampling theorem again that

−ab = E[X0] = E [Xt∧T ] = E[t ∧ T ] + E [(Bt∧T − a)(b−Bt∧T )] .

Letting t→∞, by MCT and DCT, we have

−ab = ET + E [(BT − a)(b−BT )] = ET.

This completes the proof. 2

3 Some basic properties of Brownian motion

Here we list some elementary properties of Brownian motion without proof. Throughout the section,
we assume B = (Bt,Ft) be a standard Brownian motion.

� (SLLN:) With probability one,
lim
t→∞

Bt
t
= 0.

� (Scaling:) The process X = (Xt,Fct) is a standard Brownian motion, where

Xt =
1√
c
Bct; t ≥ 0
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� (Time-inversion:) The process Y = (Yt,FYt ) is a standard Brownian motion, where

Yt
·
=

(
tB 1

t
; t > 0

0 ; t = 0

� (Time-reversal:) The process Z = (Zt,FZt ; 0 ≤ t ≤ T ) is a standard Brownian motion, where

Zt = BT −BT−t; 0 ≤ t ≤ T

� (Law of Iterated Algorithm:) With probability one,

lim sup
t→0

Btq
2t log log(1t )

= 1, lim inf
t→0

Btq
2t log log(1t )

= −1;

lim sup
t→∞

Btp
2t log log(t)

= 1, lim inf
t→∞

Btp
2t log log(t)

= −1.

The Brownian sample paths exhibit some interesting features.

� (Brownian sample path:) With probability one, the Brownian motion
� is monotone in NO interval.

� the set of local maxima is countable, dense in [0,∞), and all local maxima are strict.
� is NO-where differentable.

� (Zero crossings:) For every sample path ω, deÞne the zero set Zω ·
= {t ≥ 0; ω(t) = 0}. With

probability one, the zero set Zω
� has lebesgue measure zero.

� is closed and unbounded.

� has NO isolated points.

Proof. �Monotone in no interval�: Denote by F the set of ω ∈ Ω such that W·(ω) is monotone on
some interval. It is not difficult to see that

F = ∪s,t∈Q+ {ω ∈ Ω; W·(ω) is monotone on interval [s, t]} .

It is sufficient to show that

p
·
= P {ω ∈ Ω; W·(ω) is monotone on interval [s, t]} = 0, ∀ s, t ∈ Q+, s < t.

Without loss generality, assume [s, t] = [0, 1]. It follows from symmetry that, ∀ n ≥ 1,

p ≤ 2P
³
∩n−1j=0

©
ω ∈ Ω; W(i+1)/n(ω)−Wi/n(ω) ≥ 0

ª´
= 2 · 2−n → 0.

This completes the proof. 2
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4 Connection with PDEs

The Brownian motion (or more precisely, general SDE driven by Brownian motion) can be used to
represent the solution of general elliptical PDEs with Dirichlet or Neumman boundary conditions.
A comprehensive treatment requires the theory of It�o integral and SDE. Below we only give some
elementary examples.

Example: Suppose f ∈ C20(R) (twice continuously differentiable with compact support). Show that

lim
t→0

Exf(Bt)− f(x)
t

=
1

2
f 00(x), ∀ x ∈ R.

Argue from here that the process (Mt,Ft)

Mt
·
= f(Bt)−

Z t

0

1

2
f 00(Bs) ds, t ≥ 0

is a martingale. Here B = (Bt,Ft) is a Brownian motion.

Proof: It is easy to see that

Exf(Bt)− f(x)
t

=

Z
R

f(x+ y)− f(x)
t

· 1√
2πt

e−
y2

2t dy =

Z
R

f(x+ y
√
t)− f(x)
t

· 1√
2π
e−

y2

2 dy

However, Taylor expansion yields

f(x+ y
√
t)− f(x) = f 0(x)y√t+ 1

2
f 00(x+ θy

√
t)y2t, for some θ ∈ [0, 1].

It follows from DCT that

lim
t→0

Exf(Bt)− f(x)
t

= lim
t→0

1

2

Z
R
f 00(x+θy

√
t)y2· 1√

2π
e−

y2

2 dy =
1

2
f 00(x)

Z
R
y2

1√
2π
e−

y2

2 dy =
1

2
f 00(x).

It remains to show that M is a martingale, or

E

∙
f(Bt)− f(Bs)−

Z t

s

1

2
f 00(Bu) du

¯̄̄̄
Fs
¸
= 0, ∀ t ≥ s.

which is equivalent to

Ex
∙
f(Bt)− f(x)−

Z t

0

1

2
f 00(Bs) ds

¸
= 0, ∀ x ∈ R, t ≥ 0.

Fix an arbitrary x ∈ R, deÞne g(t) ·
= Exf(Bt). We have

D+g(t)
·
= lim

h↓0
Exf(Bt+h)− Exf(Bt)

h
= lim

h↓0
Ex
∙
Ex
µ
f(Bt+h)− f(Bt)

h

¯̄̄̄
Bt

¶¸
.

It is not difficult to see that the random variable¯̄̄̄
Ex
µ
f(Bt+h)− f(Bt)

h

¯̄̄̄
Bs

¶¯̄̄̄
≤ 1

2
kf 00k∞.
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We can then apply the DCT to obtain that

D+g(t) =
1

2
Ef 00(Bt).

Similarly, we can approve D−g(t) = D+g(t) = 1
2Ef

00(Bt) = g0(t). Therefore,

Ex
∙
f(Bt)− f(x)−

Z t

0

1

2
f 00(Bs) ds

¸
= g(t)− g(0)−

Z t

0
g0(t) dt = 0.

We complete the proof. 2

Representation to the solution of ODE: Consider the following 1-dim Dirichlet problem

u00(x) = g(x), ∀ x ∈ [a, b], u(a) = A, u(b) = B, a < b;

here g(x) is some continuous function. The solution of the equation can be represented via a
Brownian motion. Suppose u is the solution. Clearly, we can assume u ∈ C20(R) by extension.
Let W = (Wt,Ft) be a standard Brownian motion with W0 = x ∈ [a, b]. Also deÞne the exit
time

τ
·
= inf {t ≥ 0; Wt 6∈ [a, b]} ,

which has Þnite expectation. Note that the process M = (Mt,Ft) is a martingale, where

Mt
·
= u(Wt)−

Z t

0

1

2
u00(Ws) ds = u(Wt)−

Z t

0

1

2
g(Ws) ds.

It follows from optional sampling theorem that

Mt∧τ = EM0 = u(x) ⇒ EMτ = u(x) by DCT.

Hence we have

u(x) = Ex
∙Z τ

0

1

2
g00(Ws) ds+A1{Wτ=a} +B1{Wτ=b}

¸
.

This representation implies the uniqueness of the solution. 2

Example: (harmonic function) Suppose u ∈ C20(R2). Show that

Mt
·
= u

³
W
(1)
t ,W

(2)
t

´
−
Z t

0

1

2
4u

³
W (1)
s ,W (2)

s

´
ds

is a martingale wrt Þltration (Ft); here W = (W (1),W (2)) are two independent F-standard
Brownian motions, and

4u ·
=
∂2u

∂x21
+
∂2u

∂x22
:= u11 + u22.

Proof. The proof is almost the same as the preceding example. We only need to observe the
expansion

u(x1 + z1
√
t, x2 + z2

√
t) = u(x1, x2) + (u1z1 + u2z2) (x1, x2)

√
t

+
1

2

¡
u11z

2
1 + u22z

2
2 + 2u12z1z2

¢
(x1 + θz1

√
t, x2 + θz2

√
t)t, for some 0 ≤ θ ≤ 1;
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and that
E(Z21) = E(Z

2
2) = 1, E(Z1Z2) = 0,

where Z1, Z2 are independent N(0, 1) random variables. Fill in the details (exercise!) 2

Remark: Suppose u ∈ C20(Rd), and W = (Wt,Ft) is a d-dim standard Brownian motion (i.e., W
consists of d independent 1-dim standard Brownian motion). Then the process

Mt
·
= u(Wt)−

Z t

0

1

2
4u(Ws) ds; ∀ t ≥ 0

is a martingale wrt (Ft).
Representation of solution to PDE: Suppose D is a bounded open region in space Rd, and

u ∈∈ (D̄) is a solution to the Dirichlet problem

4u = −g; in D, u = f ; on ∂D.

Here g : D → R, f : ∂D → R are bounded, continuous functions. Then the solution u has the
representation

u(x) = Ex
∙
f(Wτ ) +

Z τ

0

1

2
g(Wt) dt

¸
, ∀ x ∈ D̄;

here τ is the exit time
τ

·
= inf {t ≥ 0; Wt 6∈ D} .

The proof of this result is exactly like the 1-dim case. We only need to observe that

Ex(τ) <∞. (why?)

Remark: In case when D = Br = {x; kxk < r} and f = 0, g = 2, we have

u(x) = Exτ.

It is not hard to verify that

u(x)
·
=
r2 − kxk2

d
, ∀ x ∈ B̄r,

is a solution to the corresponding PDE. Hence

Exτ =
r2 − kxk2

d
, where τ

·
= inf {t ≥ 0; Wt 6∈ Br} .

5 A collection of Exercises

Exercise: Xn
D−→X if and only if the induced probability measure on (S, ρ) by Xn converges weakly

to the probability measure induced by X.

Exercise: Suppose Xn → X in probability. Show that Xn
D−→X.
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Exercise: Suppose Xn
D−→X and φ : (S, ρ)→ (S1, ρ1) is a continuous mapping. Show that

φ(Xn)
D−→φ(X).

Exercise: Suppose (Xn, Yn) and X are random variables taking values in (S, ρ). If Xn
D−→X and

ρ(Xn, Yn)→ 0 in probability, show that Yn
D−→X.

Exercise (continuous mapping theorem): Suppose Pn ⇒ P on space (S, ρ). If π : (S, ρ)→ (S1, ρ1)
is a continuous mapping, then

Pnπ
−1 ⇒ Pπ−1.

Exercise: Suppose W = (Wt,Ft) is a standard 1-dim Brownian motion with W0 = 0. Let

Mt
·
= max
0≤s≤t

Ws, ∀ t ≥ 0

be the running maxima. Show that
n
Yt

·
=Mt −Wt; t ≥ 0

o
is a Markov process, and has the

same law as the process {|Wt|; t ≥ 0}.
Exercise: Suppose W = (Wt,Ft) is a standard 1-dim Brownian motion with W0 = 0. Let

Y
·
=

Z T

0
Wt dt;

here T > 0 is a Þxed terminal time. Compute the joint distribution of (Y,WT ) and the
conditional probability of Y given WT .
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