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a b s t r a c t

As a powerful model to represent the data, graph has been widely applied to many machine learning
tasks. More notably, to address the problems associated with the traditional graph construction methods,
sparse representation has been successfully used for graph construction, and one typical work is L1-
graph. However, since L1-graph often establishes only part of all the valuable connections between

to exploit such important information for the subsequent machine learning. Besides, the high
computational costs of L1-graph prevent it from being applied to large scale high-dimensional datasets.
In this paper, we construct a new graph, called the k-nearest neighbor (k-NN) fused Lasso graph, which is
different from the traditional L1-graph because of its successful incorporation of the structured sparsity
into the graph construction process and its applicability to large complex datasets. More concretely, to
induce the structured sparsity, a novel regularization term is defined and reformulated into a matrix
form to fit in the sparse representation step of L1-graph construction, and the k-NN method and kernel
method are employed to deal with large complex datasets. Experimental results on several complex
image datasets demonstrate the promising performance of our k-NN fused Lasso graph and also its
advantage over the traditional L1-graph in the task of spectral clustering.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Since graph is a powerful model to represent the data, it has
served as foundation for lots of machine learning problems, such
as spectral clustering [1,2], semi-supervised learning [3,4], dimen-
sion reduction [5] and so on. Although many graph-based methods
have been developed for different machine learning tasks, graph
construction still receives relatively little attention as pointed out
in [6,7]. In the literature, there exist two commonly used strategies
for graph construction, namely k-nearest neighbor (k-NN) and
ϵ�ball methods. Although these methods are easy both to under-
stand and to implement, they suffer from inherent limitations, e.g.
data dependency and sensitivity to noise.

Recently, to address these problems, sparse representation [8]
has been successfully used for graph construction, among which
one typical work is L1-graph [9,10]. The success of L1-graph lies in
the sparse representation step, in which it seeks a sparse linear
reconstruction of each data point with the other data points by
exploiting the sparse property of the Lasso penalty [11]. This is, in
fact, a new way that is fundamentally different from the tradi-
tional ones (like Euclidean distance, cosine distance, etc.) to
measure the similarity between different data points. By inducing
sparsity in the linear reconstruction process, it identifies the most
ll rights reserved.
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relevant data points as well as their estimated similarity to the
reconstructed data point, and by doing so gets a graph that proves
effective in the subsequent graph-based machine learning tasks.

However, two interesting comments from previous works on
the Lasso method and the L1-graph attract our attention:
(1)
 As reported in [12], when faced with a group of highly correlated
variables, Lasso method tends to randomly choose one of them.
(2)
 In [10], the authors stated that “for certain extreme cases, e.g. if
we simply duplicate each sample and generate another new
dataset of double size, L1-graph may only connect these
duplicated pairs”.
With some simple mathematical derivations, as shown in Section 2,
we can see the similarity between the sparse representation step of
L1-graph construction and the Lasso method. As a result, if we think
of the data points and the similarity between data points in sparse
representation step as variables and correlation between variables in
Lasso method respectively, the first comment indeed suggests that
the sparse representation does not connect all the data points that
need to be connected. In the situation mentioned in the second
comment, the similarity between the reconstructed data point and
its duplicate (measured by the sparse representation method of
L1-graph) dominates others, which also makes the sparse represen-
tation step ignore many other valuable connections.

In addition, advances in technology have made large scale
high-dimensional datasets common in many scientific disciplines,
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yet the construction process of L1-graph, in which the computa-
tional costs become unbearable because of a huge matrix (details
will be given in Section 2) constructed when dealing with these
datasets, prevents it from being further applied to problems
related to such large complex datasets.

Our work mainly aims to overcome these shortcomings of
L1-graph. To avoid L1-graph's failure to establish all valuable connec-
tions between different data points, we seek to incorporate structured
sparsity into the L1-graph construction process. The main idea is to
exploit the local structure across the dataset by making the recon-
struction coefficients of every data point and its nearest neighbors also
close to each other in value in the linear reconstruction process of the
sparse representation step. To achieve this, we propose a novel
regularization term, which makes use of the information provided
by traditional ways of measuring similarity between data points, for
the sparse representation step of L1-graph construction to induce
structured sparsity and reformulate it in matrix form to fit in our new
graph (which we call k-NN fused Lasso graph) construction process.
And in order to deal with large scale high-dimensional datasets, we
employ the k-NN method and kernel method in our new graph
construction process. To be more specific, we reconstruct each data
point and construct the corresponding new regularization term, both
with only its k nearest neighbors to handle large scale datasets. And
when solving the linear reconstruction problem, we use the kernel
matrix instead of the original data vectors to handle high-dimensional
datasets. The effectiveness of k-NN fused Lasso graph is verified by the
experimental results on several large complex image datasets in the
task of spectral clustering. Specifically, to gain a first impression of its
effectiveness, the similarity (i.e. weight) matrix of our new graph on
the doubled soybean dataset (the soybean dataset, which contains 47
35-dimensional instances, can be downloaded from the UCI Machine
Learning Repository [20], and the doubled soybean dataset is gener-
ated by making an exact duplicate of each data point in the original
dataset) are illustrated on Fig. 1(b). Comparing it with Fig. 1(a), we
can easily see the tremendous advantage of our new graph over the
L1-graph.

Our main contribution is the development of the new k-NN
fused Lasso graph construction method. To be more specific, our
contributions can be summarized as follows:
(1)
Fig. 1
first
appe
We proposed a novel regularization term to induce structured
sparsity.
(2)
 We designed a reformulation strategy to incorporate the new
regularization term into the graph construction process.
. Comparison between the similarity (i.e. weight) matrices of the L1-graph and our k
and second half of the new dataset are identical copies of the original dataset, and
ar consecutively. More notably, the darker is a pixel, the larger is the similarity. (a
(3)
-NN
each
) L1-g
We successfully employed the k-NN method and kernel
method to make our graph construction method applicable
to large scale high-dimensional datasets.
The idea of linearly reconstructing a given data point by its
neighbors is also used in some other works, e.g. the locally linear
embedding [22] method for dimension reduction. However, unlike
our method, these works did not pay much attention to the
reconstruction process itself. In [23], the authors proposed a
unifying framework for dimension reduction called patch align-
ment. In our graph construction process, by using the k-NN
method, we also construct a patch for each data point, and
conducting the sparse representation step is similar to the part
optimization in [23]. By unlike [23], we do not have a whole
alignment step. We run the sparse representation step for each of
the patches, and unifying them in the end to get the similarity
matrix by symmetrizing the original similarity matrix constructed
by the sparse representation steps. The idea of exploring the
dataset structure in a pairwise manner is also present in some
previous works, e.g. the max-min distance analysis [24]. But in
[24], the authors used the pairwise distance between different
classes, while our method focuses on the pairwise distance of the
reconstruction coefficients of different data points. Also, our
method is unsupervised in nature. We do not need such prior
information as class labels, which makes our method applicable to
many unsupervised or semi-supervised problems, and distin-
guishes our work from previous works like [24,14], as well as
some other works, like the Group Sparse MahNMF in [25]. Like the
elastic net [12], our new regularization term also has certain
grouping effect. But we promote such grouping effect in a pairwise
manner with the L1 norm, which makes our method performs
differently from the elastic net [12] as well as some other elastic
net based works, such as Elastic Net Inducing MahNMF [25] and
Manifold Elastic Net [26]. To the best of our knowledge, we have
made the first attempt to incorporate the structured sparsity into
the L1-graph construction process, and the fact that our new k-NN
fused Lasso graph outperforms the traditional k-NN graph and
L1-graph (see later experimental results in Section 6) when
applied to spectral clustering on large complex image datasets
demonstrates the great value of the structured sparsity informa-
tion we utilize in our new method.

The rest of the paper will be organized as follows. In Section 2,
we briefly review the L1-graph construction method. In Section 3,
we describe in detail how we overcome the shortcomings of
fused Lasso graph on the doubled soybean dataset. For illustration purpose, the
copy of the original dataset is rearranged such that data points within a class
raph and (b) our graph.
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L1-graph by the new regularization term, k-NN method and kernel
method, and summarize the L1-graph construction process used in
this paper, which also makes use of the k-NN method and kernel
method to deal with large complex image datasets. In Section 4,
we summarize the construction process of the new k-NN fused
Lasso graph. In Section 5, we compare the computational complex-
ity of the different graph construction methods. Section 6 provides
the experimental results to verify the effectiveness of our new
k-NN fused Lasso graph when applied to spectral clustering, and
Section 7 gives conclusions.
2. L1-graph construction

In this section, we give a brief review of the closely connected
L1-graph construction method [10]. Suppose we have a set of data
points a1; a2;…; an, which are represented in the form of column
vectors (ai∈Rm). Our goal is to construct an L1-graph based on
these data points. Motivated by the limitations of the traditional
graph construction methods as mentioned above, the L1-graph
construction method seeks to determine the neighborhood and
the edge weight simultaneously. The corresponding algorithm [10]
is outlined as follows:
(1)
 Inputs: The set of data points a1; a2;…; an, where ai∈Rm.

(2)
 Sparse representation: For each data point ai, Let

Bi ¼ ½a1;…; ai−1; aiþ1;…; an� ð1Þ
We solve the optimization problem

min
xi

∥xi∥1; s:t: Aixi ¼ ai ð2Þ

where Ai ¼ ½Bi; I�∈Rm�ðnþm−1Þ, xi∈Rnþm−1, and I is an m�m
identity matrix.
(3)
 Graph weight setting: Suppose G¼ ðV ; EÞ is the graph con-
structed, where the vertex set V consists of the data points
a1; a2;…; an and E is the edge set. W is the corresponding
similarity matrix. For the L1-graph, we set Wij ¼ xij if i4 j and
Wij ¼ xij−1 if io j. If the similarity measurement is considered
for graph construction, we can set Wij ¼ jxijj if i4 j and
Wij ¼ jxij−1j if io j.
In fact, the reconstruction error sparsity has also been induced
by the second step “sparse representation”. We can transform the
original optimization problem into

min
xi1 ;x

i
2

∥xi1∥1 þ ∥xi2∥1; s:t: ½Bi; I�
xi1
xi2

" #
¼ ai ð3Þ

where xi1∈R
n−1; xi2∈R

m. From the above equation constraint, we
derive that xi2 ¼ ai−B

ixi1. Hence, the original optimization problem
is actually equivalent to

min
xi1

∥Bixi1−ai∥1 þ ∥xi1∥1 ð4Þ

Recall that, in the Lasso method [11], we aim to solve the
following optimization problem:

min
x

∥Ax−b∥22 þ λ∥x∥1 ð5Þ

where A∈Rm�n, x∈Rn, b∈Rm. Let λ¼ 1, and we can find that the
sparse representation step of the L1-graph construction is very
similar to the Lasso method. Although the reconstruction error is
measured with different norms, it is reasonable to believe that
they have similar properties.

Besides, the L1-graph is not applicable to large scale high-
dimensional datasets because of its high computational costs.
As we can see from the sparse representation step of L1-graph
construction, when faced with a dataset of size n whose compo-
nents are data vectors in Rm, we have to deal with a matrix Ai of
size m� ðnþm−1Þ when solving the optimization problem given
in Eq. (2). When n and m become relatively large (e.g. the PIE face
dataset we used in this paper, which contains 11,554 32�32
grayscale images and gives us a dataset of size 11,554 whose
components are data vectors in R1;024), the time needed for
constructing the entire L1-graph is unbearable.

In Section 5, we will analyze the computational complexity of
the original L1-graph construction method, and compare it with
the other graph construction methods. But to get an intuitive idea
of its heavy computational burden, we first conduct an experiment
on the PIE face dataset, in which we use the original L1-graph
construction method. To make this problem computationally
tractable, we first reduce the dimension of the original dataset
with principal component analysis, in which only those features
that contribute to 0.5% or greater of the total variance is kept. The
resulting dataset consists of 11,554 13-dimensional data point
vectors. To construct the L1-graph with the original L1-graph
construction method, we need to run the sparse representation
step 11,554 times. Since our goal is to demonstrate the high
computational costs of the original L1-graph construction method,
we only run the first 500 sparse representation steps and record
the time needed for each of these steps. The specifications of the
computer we used are: Intel Xeon CPU E5450 @3.00 GHz, 16 GB
RAM. Experimental results show that the average time needed for
one sparse representation step is 118 s, and the standard deviation
for these 500 samples is 6.5. This means that we need approxi-
mately 2 min for each sparse representation step. If we want to
complete the entire graph construction process, we will need
about 23,108 min, which is more than 2 weeks. And this is only the
time needed after dimension reduction. It is quite clear that the
computational costs for the original L1-graph construction method
are unbearable.
3. Overcoming the shortcomings of L1-graph

3.1. New regularization term

Following the discussion in Section 2, we can see that, in
nature, the sparse representation step of the L1-graph construction
process is solving the optimization problem given by Eq. (4). As we
have discussed in Section 1, when the data point ai is linearly
reconstructed with other data points, it is reasonable to assume
that the reconstruction coefficients of every data point and its
nearest neighbors should be similar in value. Since in most cases,
we do not have prior knowledge about the structure of the data
set, we can induce such structured sparsity in a pairwise manner.
Yet the advantage of k-NN graph over the full graph shows to us
that not all pairwise relations between data points should be used.
By considering only the most important edges, the k-NN graph
excludes possible disturbance from irrelevant edges. At the same
time, by reducing the number of edges considered, the k-NN graph
also simplifies the problem.

Hence, we construct our regularization term as follows. Note
that the construction of this regularization term also employs the
k-NN method, which we will give a more detailed discussion in
Section 3.2. Before we start the construction process, we choose a
global parameter k, just the same as in the traditional k-NN graph.
Then in the sparse representation step, for each reconstructed data
point ai, we determine its k nearest neighbors, say ai1 ; ai2 ;…; aik .
Consider the following regularization term for the sparse
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representation step:

∥xi∥1 þ γ ∑
1≤ jo l ≤k

wjljxiij−xiil j ð6Þ

where wjl is the weight for term jxiij−x
i
il
j. We call ∥xi∥1 the Lasso

part, and ∑1 ≤ jo l ≤kwjljxiij−x
i
il
j the k-NN fused Lasso part (which we

will denote as KFL part for the rest of the paper). γ is a parameter
introduced for the purpose of trade-off between these two parts,
but is not actually used because of our reformulation strategy
described in Section 3.3. This regularization term can harness the
information provided by traditional measurement of similarity and
exploit the local structure across the dataset to induce structured
sparsity in the sparse representation step. Note that this new
regularization term is indeed an extension of the fused Lasso
method [13], which is one of the many extensions to the tradi-
tional Lasso method [12–14]. This is also the reason for the name of
our new graph.

3.2. k-NN method and kernel method

In this section, we describe in detail why and how we employ
the k-NN method and the kernel method in the graph construction
process to handle large scale high-dimensional datasets. As we
have mentioned in Section 3.1, the k-NN graph simplifies the
problem and achieves great advantage over the full graph by
excluding irrelevant information with the k-NN method. The L1-
graph seeks to determine the neighbors of each data point
automatically by the sparse representation step, yet as the follow-
ing experiments shows (see results in Table 1), in most cases, a
large proportion of the neighbors selected this way are also among
the k-nearest neighbors of the reconstructed data point, only with
k being relatively large.

The experiment is conducted as follows. We still use the PIE
face dataset, and first reduce its dimensions in the way described
at the end of Section 2. We then construct the L1-graph on this
dataset with the original L1-graph construction method. As
pointed out in Section 2, the computational costs of this process
are extremely high. Since our goal is to show that it is reasonable
to employ the k-NN method in the graph construction process, we
still run only the first 500 sparse representation steps, and get 500
vectors, which represents the neighbors selected by the L1-graph
and the corresponding edge weights in the graph. Given the value
of parameter k, we want to know how many neighbors selected by
the original L1-graph are also among the k-nearest neighbors of
the reconstructed data point, and more importantly, how many
neighbors with large edge weights, which play the most important
role in the subsequent machine learning tasks, are among the
k-nearest neighbors. To know this, we define the k-NN ratio with-
out threshold, which is the number of the selected (by the original
L1-graph) neighbors that are among the k-nearest neighbors of
reconstructed data point divided by the number of all the selected
(by the original L1-graph) neighbors. We also define the k-NN ratio
with threshold t, which is the number of the selected (by the
original L1-graph) neighbors that are among the k-nearest neigh-
bors of reconstructed data point and have edge weights larger
Table 1
Average k-NN ratio (the average of the k-NN ratios computed from the first 500
sparse representation steps) on the PIE face dataset with different value of
parameter k and different threshold setting. The variable t denotes the threshold.

No threshold (%) t¼0.01 (%) t¼0.001 (%)

k¼50 20.10 39.58 36.55
k¼100 27.17 46.75 43.87
k¼200 35.73 54.58 52.35
k¼500 50.36 66.01 63.95
than t divided by the number of all the selected (by the original
L1-graph) neighbors whose edge weights are larger than t in order
to see how many of the most important selected neighbors fall in
the k-nearest neighbors. The k-NN ratios for different k and
different thresholds are reported in Table 1.

We can see from Table 1 that when k¼50, the average k-NN
ratio is already quite high, especially for t¼0.01. When k becomes
larger, the average k-NN ratio also increases greatly. When k¼500,
more than half of the neighbors selected by the L1-graph is among
the k-nearest neighbors, and nearly 70% of the most important
neighbors selected (those with edge weights larger than 0.01) is
among the k-nearest neighbors. This means that quite a lot of the
important neighbors selected by the L1-graph are also among the
k-nearest neighbors of the reconstructed data point. Note that as k
increases, the corresponding k-NN ratio will also increase. In fact,
when k¼ n−1 (which means we are using all the data points), the
k-NN ratio will be exactly 1. As a result, we cannot predict the
performance of the graph construction method based on its k-NN
ratio values for different k when the non-k-NN data points are
dropped, since we can always increase k to get a higher k-NN ratio,
but increasing the value of k will not necessarily result in a better
performance, as shown, for example, in our parameter sensitivity
analysis in Section 6.5. We also observe that although the k-NN
ratio increases as k increases, it is less than 1 when k is not so
large. This shows that the sparse representation method excludes
some neighbors (possibly irrelevant data points) selected by the k-
NN method. This demonstrates the difference between the two
ways of measuring similarity (i.e. sparse representation and the
traditional ones, as we have mentioned at the beginning of the
introduction), and suggests that we may also exclude the irrele-
vant points selected by sparse representation by restricting our
attention on the k-nearest neighbors in the sparse representation
step, which means combining the k-NN method with sparse
representation may potentially improve the performance of the
L1-graph. This observation, along with the relatively high k-NN
ratio, indicates to us that it is completely reasonable to employ the
k-NN method to handle large scale datasets.

As a result, it will be much more computationally efficient if we
regress each data point only on its k nearest neighbors and set the
reconstruction coefficient of all the other data points that are not
in the k-nearest neighbors to be zero. Similarly, we can use the k-
NN method in the Lasso part of our new regularization term. Since
we have already used the k-NN method in the KFL part, we need to
introduce two parameters k1 (for the Lasso part) and k2 (for the
KFL part). We also set the reconstruction coefficient of all the data
points that are not in the k1-nearest neighbors to be zero, so the
data points involved in the KFL part should also be in the Lasso
part, which makes k2 ≤k1.

The kernel method is used to deal with the high-dimension-
ality of the datasets. Recall that, in the L1-graph, the authors
originally considered the optimization problem

min
xi

∥xi∥1 s:t: Bixi ¼ ai ð7Þ

where Bi ¼ ½a1;…; ai−1; aiþ1;…; an�. Multiply each side of the equa-
tion constraint by the transpose of Bi, and the equation constraint
becomes

½〈aj; ak〉�ðn−1Þ�ðn−1Þx
i ¼ ½〈aj; ai〉�ðn−1Þ�1 ð8Þ

where j; k¼ 1;…; i−1; iþ 1;…;n, 〈aj; ak〉¼ aTj ak. 〈aj; ak〉 can be seen
as the inner product of aj; ak. So if we have some kind of kernel
matrix derived from the datasets, we can use it instead of the
original data point vectors to construct the matrix Bi. If we
combine the kernel method with the k-NN method described
above, we can get a Bi of size k� k, and thus a Ai ¼ ½Bi; I� of size
k� 2k, which is completely independent of the dimensionality of
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the data point vectors. The L1-graph construction process with k-
NN method and kernel method is summarized as follows:
(1)
 Initialization: Choose the value of parameter k. The input now
is a kernel matrix K ¼ ½Kij�n�n derived from the set of data
points a1; a2;…; an∈Rm.
(2)
 Sparse representation: For each data point ai, we determine
its k-nearest neighbors ai1 ; ai2 ;…; aik . Let

Bi ¼ ½Kipiq �k�k; p; q¼ 1;2;…; k ð9Þ
Define Ai ¼ ½Bi; I�∈Rk�2k, where I is an k� k identity matrix.
Define Ki ¼ ½Ki1i;Ki2 i;…;Kiki�T , and we solve the optimization
problem for a 2k-dimensional vector xi

min
xi

∥xi∥1; s:t: Aixi ¼ Ki ð10Þ
(3)
 Graph weight setting: Suppose G¼ ðV ; EÞ is the graph con-
structed, where the vertex set V consists of the data points
a1; a2;…; an and E is the edge set. W is the corresponding
similarity matrix. For the L1-graph, we set Wiij ¼ xij;
j¼ 1;2;…; k. If the similarity measurement is considered for
graph construction, we can setWiij ¼ jxijj. The rest ofW is set to
be zero.
3.3. Regularization term reformulation

In this section, we reformulate the new regularization term
into matrix form to fit it into the graph construction process.
Suppose k2 ≤k1, and ai1 ;…; aik2 ;…; aik1 is the k1-nearest neighbors
of ai. Since the reconstruction coefficients of all the data points
that are not in the k1-nearest neighbors of ai are set to be zero, we
can measure the reconstruction error with

∥½ai1 ; ai2 ;…; aik1 �x
i−ai∥1 ð11Þ

Then the corresponding regularization term will be

∥xi∥1 þ γ ∑
1≤ jo l ≤k2

wjljxij−xilj ð12Þ

where xi is a k1-dimensional vector. Consider the KFL part
(∑1 ≤ jo l ≤k2wjljxij−xilj) of the regularization term. We construct a
sparse matrix

Ci ¼ ðcijÞ∈Rk2ðk2−1Þ=2�k1 ð13Þ

with

cð2k2−jÞðj−1Þ=2þðl−jÞ;j ¼wjl ð14Þ

cð2k2−jÞðj−1Þ=2þðl−jÞ;l ¼−wjl ð15Þ

and the rest of its entries all being zeros. Then we have

∑
1 ≤ jo l ≤k2

wjljxij−xilj ¼ ∥Cixi∥1 ð16Þ

In our paper, for data point ai, we let the weight wjl ¼ Kijil .
In the L1-graph, there may exist noise in the reconstruction

process (i.e. the equation constraint Bixi ¼ ai in the optimization
problem (7) may not strictly hold). The authors added an identity
matrix to Bi to represent the noise term so that the error term
∥Bixi−ai∥1 can also be considered in the graph construction process.

Inspired by this strategy, for a given data point ai, we first
follow the method proposed in Eqs. (13)–(16) and reformulate the
KFL part of the regularization term as ∑1 ≤ jo l ≤k2wjljxij−xilj ¼ ∥Cixi∥1.
Furthermore, we define the matrix

Mi ¼ Bi I 0
Ci 0 I

" #
ð17Þ

Here, matrix Bi is given by Eq. (9)(with k¼ k1) with the help of
kernel method. Hence, with parameters k1 and k2 fixed, the matrix
Mi is of size ðk1 þ k2ðk2−1Þ=2Þ � ð2k1 þ k2ðk2−1Þ=2Þ. Finally, let
Ki ¼ ½Ki1i;Ki2 i;…;Kik1 i

�T , and we get a generalized version of the
sparse representation step by solving the optimization problem

min
xi ;ϵi ;ηi

∥xi∥1 þ ∥ϵi∥1 þ ∥ηi∥1 s:t: Mi

xi

ϵi

ηi

2
64

3
75¼ Ki

0

� �
ð18Þ

where xi∈Rk1 ; ϵi∈Rk1 , and ηi∈Rk2ðk2−1Þ=2. This problem is solved by
the classical primal-dual interior point method [15]. The weight
matrix W of the obtained k-NN fused Lasso graph can be set in the
same way as the original L1-graph.
4. k-NN fused Lasso graph construction

Finally, we summarize the graph construction process for our k-
NN fused Lasso graph as follows:
(1)
 Initialization: Choose the value of parameter k1; k2, s.t. k2 ≤k1.
The input now is a kernel matrix K ¼ ½Kij�n�n derived from the
set of data points a1; a2;…; an∈Rm.
(2)
 Sparse representation: For each data point ai, we determine its
k1 nearest neighbors ai1 ;…; aik2 ;…; aik1 . We construct the new
regularization term with Eq. (12) and get the matrix Ci with
Eqs. (13)–(16). Let Bi ¼ ½Kipiq �k1�k1 , where p; q¼ 1;2;…; k1.
Define the following matrix:

Mi ¼ Bi I 0
Ci 0 I

" #
ð19Þ

where I is identity matrix. Define Ki ¼ ½Ki1 i;Ki2 i;…;Kik1 i
�T , and

we solve the optimization problem

min
xi ;ϵi ;ηi

∥xi∥1 þ ∥ϵi∥1 þ ∥ηi∥1 s:t: Mi

xi

ϵi

ηi

2
64

3
75¼ Ki

0

� �
ð20Þ

where xi∈Rk1 ; ϵi∈Rk1 , and ηi∈Rk2ðk2−1Þ=2.

(3)
 Graph weight setting: Suppose G¼ ðV ; EÞ is the graph con-

structed, where the vertex set V contains a1; a2;…; an and E
is the edge set. W is the corresponding similarity matrix. For
the k-NN fused Lasso graph, we set Wiij ¼ xij; j¼ 1;2;…; k1. If
the similarity measurement is considered for graph construc-
tion, we can set Wiij ¼

���xij���. The rest of W is set to be zero.
It should be noted that the greatest advantage of our k-NN
fused Lasso graph over the traditional k-NN graph is its better
performance, which will be presented in the experimental results
section. Moreover, as shown in the next section on computational
complexity analysis, for dataset of moderate size, our k-NN fused
Lasso graph may be more computationally intensive, but when
dealing with really large dataset, it is possible that our k-NN fused
Lasso graph will lead to less computational cost than the tradi-
tional k-NN graph.
5. Computational complexity analysis

In this section, we give a theoretical analysis of the computa-
tional complexity of the graph construction methods involved in
this paper. Four different graph construction methods are used in
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this paper, namely the k-NN graph, the original L1-graph (which is
described in Section 2), the L1-graph with k-NN method and
kernel method (which is described in Section 3.2 and used in
the experiments in Section 6 as L1-graph. We will refer to this as
the new L1-graph for convenience), and our new k-NN fused Lasso
graph (which is described in Section 4). We assume that the size of
the dataset we are interested in is n, and the dimension of each
data point in this dataset is m. No parameter is needed for the
original L1-graph. For the new L1-graph, we assume the value of
the parameter is k. For the k-NN fused Lasso graph, we assume the
values of the two parameters are k1 and k2.

To discuss and compare their computational complexity, first
we need to look at an optimization problem that is central to the
last three methods. In the sparse representation step of these
methods, we try to solve an optimization problem of the form

min
x

x∥1; s:t: Ax¼ a ð21Þ

where x∈Rp; a∈Rq, and A is a q�p matrix.
This is a classical L1-minimization problem, and lots of methods

have been proposed to solve it (see [19] for a review). In this paper,
we employed the basic primal-dual interior point method, whose
complexity is bounded by Oð ffiffiffi

p
p

p3Þ ¼Oðp7
2Þ as pointed out in [19].

For more general case, we can assume that the computational
complexity of the solver we employed is Oðhðp; qÞÞ, where hðp; qÞ
is a function depending on the method we use to solve the
L1-minimization problem (21).

In the last three methods, the computational complexity is
dominated by the sparse representation step. As a result, with the
above assumption, it is easy to see that the computational
complexities of the original L1-graph, the new L1-graph, and the
k-NN fused Lasso graph are approximately Oðnhðnþm−1;mÞÞ,
Oðnhðk;2kÞÞ and Oðnhð2k1 þ k2ðk2−1Þ=2; k1 þ k2ðk2−1Þ=2ÞÞ respec-
tively. For the k-NN graph, since we take a kernel matrix as input,
we only need to pick the k largest elements of the n rows of the
matrix. This can be done by sorting each row of the matrix, and
has a worst case complexity of Oðn � n2Þ ¼Oðn3Þ. If we use, for
example, the quicksort algorithm, we can get an average complex-
ity of Oðn � n logðnÞÞ ¼Oðn2 logðnÞÞ.

Most of the time, the L1-minimization problem (21) has to be
solved iteratively. In each iteration, the worst case complexity may
be up to Oðn3Þ, and it may take quite a few iterations before the
algorithm can finally converge (e.g. the primal-dual interior point
method employed in our experiments takes Oð ffiffiffi

n
p Þ iterations to

converge [19]). Although many new algorithms [19] have been
proposed, in terms of computational complexity on large complex
datasets, the function hðp; qÞ is usually much worse than the n2 we
have in the k-NN graph case. This is the reason for which the
computational costs of the original L1-graph are unbearable when
it comes to large complex datasets, as shown in the experiments in
Section 2, and this is also the reason for which we employ the
k-NN method and kernel method. Note that in the case of the new
L1-graph and the k-NN fused Lasso graph, as a result of the k-NN
method and kernel method, the arguments of the function hðp; qÞ
depend only on the values of the parameters in the model, which
are significantly smaller than the size of the dataset n and have
nothing to do with the potentially high dimension of each data
point. Consequently, our new graph construction method is cap-
able of dealing with very large and complex datasets. If we choose
k1 ¼ k, the new k-NN fused Lasso graph is slightly more compu-
tationally intensive because of the incorporated structured spar-
sity information (which is reflected by the parameter k2), but
experiments show that a small k2 (usually ≤20) suffices to get
better performance than the new L1-graph. Also, the structured
sparsity information enables us to learn more with fewer neigh-
bors, i.e. the optimal k1 in k-NN fused Lasso graph is often smaller
than the optimal k in the new L1-graph, which makes the better
performing k-NN fused Lasso graph more computationally effi-
cient than the new L1-graph in some cases, and certainly more
efficient than the original L1-graph. If n becomes really large, even
constructing the k-NN graph is time-consuming, but if we choose
k1 and k2 to be reasonably small, constructing the k-NN fused
Lasso graph may still be feasible and efficient.
6. Experimental results

In this section, we conduct a variety of experiments to demon-
strate the effectiveness of our k-NN fused Lasso graph and also its
advantage over the traditional L1-graph. In this paper, we focus on
testing our k-NN fused Lasso graph in the task of spectral clustering,
regardless of many other graph-based machine learning tasks.

6.1. Datasets

In our experiments, four image datasets are used for perfor-
mance evaluation. The Scene dataset contains eight scene cate-
gories from MIT [16], including four man-made scenes and four
natural scenes. The total number of images is 2688. The size of
each image in this Scene dataset is 256�256 pixels. The Corel
dataset consists of 2000 images taken from 20 CD-ROMs published
by COREL Corporation. Each COREL CD-ROM contains 100 images
representing a distinct concept. Therefore, the dataset has 20
thematically diverse image categories, each containing 100
images. All the images are of size 384�256 or 256�384. The
Caltech 256 dataset [21] is a challenging set of 257 object
categories containing a total of 30,607 images. In our experiment,
we discard the clutter category and use only the other 256
categories, which results in a dataset of 29,780 images. The PIE
face dataset is a large scale high-dimensional dataset. It consists of
41,368 images of 68 people, where each person is under 13
different poses, 43 different illumination conditions, and with four
different expressions. In our experiment, we choose a subset of
this dataset, which only contains five near frontal poses (C05, C07,
C09, C27, C29) and all the images under different illuminations and
expressions. So, there are about 170 images of size 32�32 for each
individual, which gives us a face dataset of size 11,554.

6.2. Experimental setting

In this paper, we focus on comparing different graph construc-
tion methods in spectral clustering problems. Spectral clustering is
one of the most popular modern clustering algorithms, and there
are several variations of this algorithm. In this paper, we employ
the widely used normalized spectral clustering algorithm [1],
which is outlined as follows:
(1)
 Inputs: Graph similarity matrix W∈Rn�n and number c of
clusters to construct. Symmetrize the matrix by setting W ¼
ðW þWT Þ=2.
(2)
 Compute the graph Laplacian matrix L¼D−1
2WD−1

2, where
D¼ ½dij� is a diagonal matrix with the diagonal element dii ¼
∑n

j ¼ 1wij.

(3)
 Compute c1; c2;…; cc , the eigenvectors of L corresponding to

the c largest eigenvalues, and get a matrix C ¼ ½c1; c2;…; cc�.

(4)
 Regard each row of matrix C as a point in Rc , and cluster them

into c clusters via the k-means method.

(5)
 Assign data point ai to the cluster j if the ith row of the matrix

C is assigned to the cluster j.
In this paper, we are dealing with several large complex image
datasets. As we have pointed out in Section 2, the original L1-graph
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construction method is not applicable to such datasets because of
its unbearable computational costs. As a result, we use the
modified L1-graph construction method described in Section 3.2,
in which the k-NN method and kernel method are used to handle
large complex datasets.

Since we use kernel method in our graph construction process,
we need to derive a kernel matrix from the dataset to serve as
input to our algorithm. We adopt two different approaches to
kernel matrix computation. For the three natural image datasets
(i.e. Scene, Corel and Caltech 256), we compute the spatial Markov
kernel matrix [17] based on 400 visual words (i.e. 400 features),
just the same as [2]. For the PIE face dataset, we use the Gaussian
Kernel and set Kij ¼ expð−∥ai−aj∥22=βÞ, where β is a parameter and is
set to be the same for different graphs.

The normalized mutual information (NMI) [18] is used to
evaluate the performance of spectral clustering on different
graphs. Suppose X is the clustering result and Y is the known
sample label vector. Let p(x) and p(y) denote the marginal prob-
ability mass functions of X and Y, and let pðx; yÞ be the joint
probability mass function of X and Y. Suppose HðXÞ;HðYÞ and
HðX;YÞ denote the entropies of pðxÞ; pðyÞ and pðx; yÞ respectively.
Then the normalized mutual information NMI is given by

NMIðX;YÞ ¼ HðXÞ þ HðYÞ−HðX;YÞ
maxðHðXÞ;HðYÞÞ ð22Þ

It is obvious that the normalized mutual information NMI takes
values in ½0;1�. The higher its value is, the better a graph performs.

Our experiments are conducted as follows. For each dataset, we
first derive the kernel matrix K from the data points a1; a2;…; an,
and construct three different graphs for the normalized spectral
clustering algorithm [1]: k-NN graph, L1-graph, and k-NN fused
Lasso graph. The k-NN graph is constructed with the derived
kernel matrix K, and the graph construction process for the
L1-graph and the k-NN fused Lasso graph is given in Sections
3.2 and 4, respectively. We follow the spectral clustering algorithm
outlined at the beginning of this section, and compute the
corresponding normalized mutual information NMI by Eq. (22)
with the clustering result and the known sample label vector. The
parameter k in k-NN graph construction is carefully tuned for the
best performance, and the parameter k in L1-graph construction
and the parameters k1; k2 in k-NN fused Lasso graph construction
are only roughly tuned.

6.3. Results on the image datasets

We conduct the experiments on the four image datasets, and the
results are listed in Table 2. The immediate observation is that our
k-NN fused Lasso graph can always achieve the best performance. This
may be due to the fact that our method has successfully incorporated
the structured sparsity into L1-graph construction. We give more
Table 2
Clustering accuracies (Normalized Mutual Information/NMI) for spectral clustering
based on k-NN graph, L1-graph and k-NN fused Lasso graph on four image datasets
as well as the Doubled Scene dataset. Averagen is the average NMI computed
without the results on the Doubled Scene dataset.

Datasets Graph-based spectral clustering

k-NN graph L1-graph k-NN fused Lasso graph

Scene 0.612 0.619 0.632
Doubled scene 0.612 0.005 0.638
Corel 0.555 0.570 0.608
Caltech 256 0.288 0.306 0.321
PIE face 0.376 0.383 0.412
Average 0.489 0.377 0.522
Averagen 0.458 0.470 0.493
detailed explanation as follows. On the one hand, although the
regularization term used to induce the structured sparsity is
defined based on the k-NN method, our k-NN fused Lasso graph
is shown to outperform the k-NN graph, since the main part of our
graph construction process is still the sparse representation step.
Here, it should be noted that the effectiveness of sparse representa-
tion for L1-graph construction has been verified by the significant
gain over k-NN graph achieved by the L1-graph. In fact, the improved
performance of our k-NN fused Lasso graph over the k-NN graph
provides further verification of the effectiveness of sparse represen-
tation for L1-graph construction. On the other hand, our k-NN fused
Lasso graph is shown to indeed benefit from the structured sparsity
induced by the new regularization term, given that it achieves 2:3%
average gain (not relative) over the L1-graph.

Note that for such datasets, especially the PIE face dataset with
11,554 instances and the Caltech 256 dataset with 29,780
instances, the computational costs for the original L1-graph are
unbearable. However, with k-NN method and kernel method, the
L1-graph can be applied to even larger datasets, and according to
our experimental results reported in Table 2, it can still achieve
great advantage over the k-NN graph.

6.4. Further comparison between L1-graph and k-NN
fused Lasso graph

As we have mentioned in the introduction, the L1-graph has
several potential drawbacks. According to the discussion in [10], in
extreme cases where each sample is simply duplicated to generate
a new dataset of double size, the L1-graph tends to only connect
these duplicated pairs and thus may fail to capture the valuable
information from the original set of data points. We have given a
direct illustration of this phenomenon in Fig. 1 in the Introduction.
In this section, we conduct a group of experiments on the Scene
dataset to further illustrate this drawback of the L1-graph and
demonstrate the advantage of k-NN fused Lasso graph over the
L1-graph in this aspect.

We first make exact duplicate of each data point in the original
Scene dataset and generate a new dataset (called doubled Scene)
of double size. We then construct both L1-graph and k-NN fused
Lasso graph on this doubled dataset. The similarity matrices for
the two graph construction methods on the doubled Scene dataset
are illustrated in Fig. 2. Comparing this figure with Fig. 1, we can
find that, on the complex Scene dataset, the L1-graph performs
exactly the same as it does on the small soybean dataset, and
connects only the duplicated data point pairs (with all these edge
weights being 1 approximatively). When it comes to the k-NN
fused Lasso graph, we can still see that not only the duplicated
data point pairs but also the unduplicated pairs are connected.
Although the block structure is not as obvious as that on the small
and easy soybean dataset, it is clear that the structured sparsity is
induced, and from the experimental results reported in Table 2, we
can see the effectiveness of our new graph construction method.

We further make attempt to demonstrate that the edges
between unduplicated pairs in the k-NN fused Lasso graph con-
structed by our new graph construction method do help to
improve the performance of spectral clustering. We again perform
spectral clustering on the doubled Scene dataset. From the
comparison results listed in Table 2, we can see that the Normal-
ized Mutual Information NMI for L1-graph on the doubled Scene
dataset is significantly smaller than that on the original Scene
dataset. In fact, it is quite close to zero, which clearly demonstrates
the drawbacks of L1-graph. In contrast, the performance of k-NN
graph and k-NN fused Lasso graph remains unchanged or even
slightly increased when the dataset is doubled. Here, it should be
noted that the NMI for our k-NN fused Lasso graph is still 2.6% (not
relative) higher than that of the k-NN graph.



Fig. 2. Comparison between the similarity (i.e. weight) matrices of the L1-graph and our k-NN fused Lasso graph on the doubled Scene dataset. For illustration purpose, the
first and second half of the new dataset are identical copies of the original dataset, and each copy of the original dataset is rearranged such that data points within a class
appear consecutively. More notably, the darker is a pixel, the larger is the similarity. (a) L1-graph and (b) our graph.

Fig. 3. Parameter sensitivity test for our k-NN fused Lasso graph with respect to k1 on the Scene dataset (with fixed k2 ¼ 5).

Fig. 4. Parameter sensitivity test for our k-NN fused Lasso graph with respect to k2 on the Scene dataset (with fixed k1 ¼ 100).
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6.5. Parameter sensitivity test for k-NN fused lasso graph

In the above experiments, we have successfully demonstrated
the effectiveness of our new k-NN fused Lasso graph. However, our
graph construction method has two k-NN parameters (k1 and k2)
to be determined. In this section, we conduct a group of experi-
ments on the four image datasets to test the parameter sensitivity
of our graph construction method. The experimental results are
reported in Figs. 3–10. Note that with rough tuning of parameters,
we achieve the highest NMI value with k1 ¼ 100 and k2 ¼ 5 on



Fig. 5. Parameter sensitivity test for our k-NN fused Lasso graph with respect to k1 on the Corel dataset (with fixed k2 ¼ 20).

Fig. 6. Parameter sensitivity test for our k-NN fused Lasso graph with respect to k2 on the Corel dataset (with fixed k1 ¼ 55).

Fig. 7. Parameter sensitivity test for our k-NN fused Lasso graph with respect to k1 on the Caltech 256 dataset (with fixed k2 ¼ 20).
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Scene, with k1 ¼ 55 and k2 ¼ 20 on Corel, with k1 ¼ 210 and k2 ¼ 20
on Caltech 256, and with k1 ¼ 10 and k2 ¼ 3 on the PIE face dataset.
So in this experiment, we fix k1 (k2) at its optimal value and let the
value of the other parameter vary. We can find that on both Scene
and Caltech 256, our graph construction method is quite robust with
respect to the two k-NN parameters k1 and k2, and the performance
of our graph is consistently better than that of the k-NN graph and
the L1-graph, no matter which values the two parameters take. Our
method is not so robust on the other two datasets, but we can see
that for most values of k1, our method achieves higher performance
than the other two existing methods. When it comes to k2, the
fluctuation is greater. However, it is worth noting that in our new



Fig. 8. Parameter sensitivity test for our k-NN fused Lasso graph with respect to k2 on the Caltech 256 dataset (with fixed k1 ¼ 210).

Fig. 9. Parameter sensitivity test for our k-NN fused Lasso graph with respect to k1 on the PIE face dataset (with fixed k2 ¼ 3).

Fig. 10. Parameter sensitivity test for our k-NN fused Lasso graph with respect to k2 on the PIE face dataset (with fixed k1 ¼ 10).
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regularization term, the Lasso part has k1 terms (jxijj; j¼ i1;…; ik1 )
while the KFL part has Θðk22Þ (k2ðk2−1Þ=2 to be more specific) terms
(wjljxij−xilj; 1≤ jo l≤k2Þ. On both Corel and PIE, the optimal value of
k1 is relatively small. As a result, when k2 changes, the magnitude of
the KFL part will change greatly compared with the Lasso part
(because the KFL part has Θðk22Þ terms), which makes our method
relatively sensitive to the value of k2 on these two datasets. But we
should see that in this case, where the optimal value of k1 is relatively
small, since k2 ≤k1, the search space of k2 is also quite small.
Therefore, it still requires only a small number of trials before we
can reach the optimal value of k2, regardless of the fact that our
method is not very robust with respect to k2.
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Now, based on the above observations and our experiences
with the new graph construction method, we want to give some
rules of thumb on how to choose the values of k1 and k2. The first
step should be to choose the search range for k1. Intuitively, k1
indicates how large a neighborhood we want to consider, and
should be closely related with dataset characteristics. For example,
from our experimental results, we can see that the optimal value
of k1 on the fairly large PIE dataset is indeed the smallest. This
demonstrates to us that local structure is very important in the PIE
dataset, and a small k1 will probably yield good results. To get an
idea of how large a neighborhood we need, we can first take a look
at the performance of the k-NN graph with different k, and the
optimal value kopt of k for the k-NN graph should be a good
starting point for the search of the optimal value of k1. However,
we should note that although we will exclude some additional
data points in the sparse representation step, k1 is not necessarily
larger than kopt, since with the induced structured sparsity, it is
possible to learn more with fewer data points. Generally, it is a
good idea to search around kopt, and since our method can achieve
better performance for most values of k1, rough tuning (say choose
the step size to be 5, as we did on Scene, Corel and PIE, or even 10,
as we did on Caltech 256) of this parameter is sufficient to get a
good performance. After we set the search range and step size for
k1, we need to experiment with different values of k2 for each k1
within this range. Our method requires that k2 ≤k1, and to keep
our method computationally efficient, k2 should not be too large
(this is because the KFL part of the new regularization term has
Θðk22Þ terms, and a large k2 will results in some huge matrices in
the sparse representation step, and will greatly slow down our
process). From our experimental results, search k2 ≤30 with a step
size of 5 is sufficient to get a good performance in most cases. Note
that a special case is the PIE face dataset, on which the optimal
value of k1 is 10. This k1 is very small, which makes our method
quite sensitive to the value of k2. As a result, in this case, we choose
the step size to be 1, and the optimal value of k2 is 3. But in this
case, because of the requirement k2 ≤k1, the search space for k2 is
very small, and since k1 and k2 are both small, the sparse
representation step is very fast, which means the search for
optimal parameter values is still quite efficient.
7. Conclusion

In this paper, we have proposed a new graph construction
method based on the L1-graph and the recent development in
sparse representation. Our main motivation is to overcome the
traditional L1-graph's potential tendency to ignore the intrinsic
structure of the data and help it convey more valuable information
in order to improve its performance. We have incorporated the
structured sparsity into our L1-graph construction, and more
notably, the successful employment of k-NN method and kernel
method enables us to deal with large scale high-dimensional
datasets. The experimental results on several large complex image
datasets have demonstrated that the obtained new k-NN fused
Lasso graph consistently outperforms both the traditional k-NN
graph and the original L1-graph in the task of spectral clustering.
For future work, we will apply our new k-NN fused Lasso graph to
other graph-based machine learning tasks. Moreover, we will
also make attempt to utilize other types of structured sparsity
for L1-graph construction.
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