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Abstract

Resampling methods are popular tools for exploring the statistical structure of neural spike
trains. In many applications it is desirable to have resamples that preserve certain non-Poisson
properties, like refractory periods and bursting, and that are also robust to trial-to-trial variabil-
ity. “Pattern jitter” is a resampling technique that accomplishes this by preserving the recent
spiking history of all spikes and constraining resampled spikes to remain close to their original
positions. The resampled spike times are maximally random up to these constraints. Dynamic
programming is used to create an efficient resampling algorithm.

1 Introduction
Neural spike trains (conceptualized as point processes) have complicated dynamics, most notably
time-varying firing rates (including trial-to-trial variability) and spike-history effects (such as re-
fractory periods and bursting). Here we develop an algorithm, pattern jitter, for generating artificial
spike trains that are maximally random while preserving the smoothed firing rates and the recent
spike histories in a recorded spike train. Monte Carlo samples generated by the algorithm can be
used to quantify how these dynamics constrain the sampling variability of spike trains, and thereby
help reveal the source, and in some cases the statistical significance, of additional characteristics,
such as synchronous spikes or other forms of repeated spike-time patterns in the recorded data
(cf. Date et al., 1998; Oram et al., 1999; Nádasdy et al., 1999; Baker & Lemon, 2000; Gerstein,
2004; Ikegaya et al., 2004; Amarasingham, 2004; Harrison, 2005; Shmiel et al., 2005; Shmiel et
al., 2006; Pazienti et al., 2008; Fujisawa et al., 2008; Geman et al., 2008). Quantifying variability
is of course the essence of any statistical procedure.

Let x̃ := (x̃1, . . . , x̃n) denote the observed spike train, a non-decreasing sequence of spike
times. This can be from a single experimental trial or from a concatenation of multiple trials.
Our primary purpose is to formulate a probability distribution for resampled spike trains based
on a fixed x̃. Section 4 discusses connections between the resampling distribution and statistical
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models for the variability in x̃. For convenience, we assume that spike times have been discretized
into equal-length time bins and are then represented as integers, in units of bins. A continuous
version of the resampling algorithm is presented in the Appendix.

The random vectorX := (X1, . . . , Xn) denotes the resampled spike train and p(x1, . . . , xn) :=
p(x) := Pr(X = x) is its probability distribution. Again, all of this is with respect to a fixed and
known x̃, which we suppress from the notation. In Section 2 we describe the distribution p and in
Section 3 we use dynamic programming to create an efficient and exact sampling algorithm for p.
Some generalizations are discussed in Section 5.

2 The resampling distribution
In order to preserve smoothed firing rates, we require that each resampled spike remain close to its
corresponding original spike. This is the “jitter” principle developed in Date et al. (1998), Ama-
rasingham (2004), Harrison (2005) and Geman et al. (2008). Since spikes stay in approximately
the same place, the resamples preserve all coarse-temporal variation in firing rates, including trial-
to-trial variation. Formally, for each i = 1, . . . , n,

Xi ∈ Ωi where Ωi :=
{
x̃i − dL/2e+ 1, . . . , x̃i − dL/2e+ L

}
, (1)

and where d·e denotes the ceiling function (round up). Hence Xi is constrained to the L bins
centered around x̃i. We call Ωi the ith jitter window. (Motivated by statistical considerations,
we will later modify the definition of Ωi; see Section 4.) The parameter L controls the degree of
smoothing: small L preserves rapid changes in firing rate, but introduces less variability into the
resamples.

To preserve recent spike-history effects, we require that the resamples and the original record-
ing have identical patterns of spiking and not-spiking in the R bins preceding each spike. The
parameter R controls the amount of history that is preserved. Larger values of R enforce more
regularity in the firing patterns across the resampled spike trains. Additionally, we require that
spike ordering be preserved, which amounts to a coarse history constraint in that the total number
of spikes preceding each spike is preserved. It is not hard to see that these two history constraints
are equivalent to the constraint that, for each i = 2, . . . , n,

Xi −Xi−1 ∈ Γi where Γi :=

{{
x̃i − x̃i−1

}
if x̃i − x̃i−1 ≤ R,{

R + 1, R + 2, . . .
}

if x̃i − x̃i−1 > R.
(2)

In words, Xi −Xi−1 is forced to match x̃i − x̃i−1 whenever the latter is R or less, and Xi −Xi−1

is forced to be strictly larger than R otherwise.
A simple consequence of the history constraint in (2) is that the interspike interval (ISI) his-

togram of each resampled spike train exactly matches the ISI histogram of the observed spike train
for ISIs ofR bins or less. Even higher order ISI histograms (counts of unique tuples of consecutive
ISIs) are preserved for ISIs ofR bins or less. For ISIs of more thanR bins, the jitter principle in (1)
ensures that the ISI histogram of each resampled spike train is coarsely similar to that of the origi-
nal. The commonly used models for neural spike trains, such as inhomogeneous renewal processes
or inhomogeneous Markov interval processes (Kass & Ventura, 2001), are typically specified so
that the distribution of ISIs is more structured for short ISIs and more smooth for long ISIs, as

2



is consistent with (1) and (2), provided that R is not excessively short and L is not excessively
long. Thus, to the extent that an observed spike train conforms to such a model, the resampling
distribution will preserve the essential history-dependent features of the model.

There are many distributions that preserve (1) and (2). Since our goal is to impose no additional
structure, we make no additional constraints: the allowable spike configurations are distributed
uniformly, meaning that

p(x) :=
1

Z
1
{
x1 ∈ Ω1

}︸ ︷︷ ︸
h1(x1)

n∏
i=2

1
{
xi ∈ Ωi

}
1
{
xi − xi−1 ∈ Γi

}︸ ︷︷ ︸
hi(xi−1, xi)

, (3)

where 1{A} is the indicator function of the set A, and where Z is a normalization constant that
depends on the Ωi’s and the Γi’s, and hence on the parameters L and R and the original spike train,
x̃. (We provide further motivation for our choice of the uniform distribution in Section 4.)

In principle, one could sample from p by independently and uniformly choosing all n spike
times and rejecting any configuration of spikes that does not satisfy both (1) and (2). But this is
impractical, and it makes more sense to exploit the evident Markov property of p.

3 Sampling from the resampling distribution
The customary Markov chain representation for p is

p(x) = p1(x1)
n∏

i=2

pi(xi|xi−1), (4)

where p1(x) := Pr(X1 = x1) is the initial distribution and pi(xi|xi−1) := Pr(Xi = xi|Xi−1 =
xi−1) are the transition probabilities. As usual (cf. Frey, 1998), there is a dynamic-programming
algorithm for computing this representation using the hi’s in (3). In this regard, it is important to
note that the hi’s are trivial, both to compute and to represent, once x̃, L and R are specified.

In the following calculations, although we often suppress explicit mention of Ωi, functions of
xi are implicitly restricted to Ωi and sums over xi are implicitly over xi ∈ Ωi. For 1 < i < n define

βi(xi−1, xi) :=
∑
xi+1

· · ·
∑
xn

n∏
j=i

hj(xj−1, xj) = hi(xi−1, xi)
∑
xi+1

βi+1(xi, xi+1),

where we take βn(xn−1, xn) := hn(xn−1, xn). Similarly, define

β1(x1) :=
∑
x2

· · ·
∑
xn

h1(x1)
n∏

j=2

hj(xj−1, xj) = h1(x1)
∑
x2

β2(x1, x2).

As indicated by the formulae, the βi’s can be computed recursively (in reverse) from the hi’s. The
entire computation requires O(m2n) operations and a similar amount of storage, where

m := max
i=1,...,n

|Ωi|
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is the size of the largest jitter window. (For now, m = L, but we are anticipating generalizations in
Section 5.)

The Markov representation is in terms of the βi’s:

p1(x1) =
β1(x1)∑
x′1
β1(x′1)

and pi(xi|xi−1) =
βi(xi−1, xi)∑
x′i
βi(xi−1, x′i)

.

To verify this, notice that

Pr(X1 = x1, . . . , Xi = xi) =
∑
xi+1

· · ·
∑
xn

p(x) = βi(xi−1, xi)
1

Z
h1(x1)

i−1∏
j=2

hj(xj−1, xj),

so

Pr(Xi = xi|X1 = x1, . . . , Xi−1 = xi−1) =
βi(xi−1, xi)

1
Z
h1(x1)

∏i−1
j=2 hj(xj−1, xj)∑

x′i
βi(xi−1, x′i)

1
Z
h1(x1)

∏i−1
j=2 hj(xj−1, xj)

=
βi(xi−1, xi)∑
x′i
βi(xi−1, x′i)

.

The dependence on x1, . . . , xi−2 disappears, so this expression must be pi(xi|xi−1). (This is in fact
a proof of the earlier claim that p is Markov.) The formula for p1 is verified in a similar manner.1

Sampling from (4) is trivial. First sample X1 from p1(·) and then recursively sample Xi from
pi(·|Xi−1). An entire sample requires O(mn) operations and a similar amount of storage.

4 Statistical considerations
In statistical applications, we typically want to make statements about the (hypothetical) distribu-
tion of the observed data x̃. Is there a connection between our resampling distribution and some
model for x̃? Certainly there is a heuristic connection: The constraints (1) and (2) describe a
collection of spike trains that are similar to the recorded train, x̃, and the distribution p weights
them all equally. Assuming that the model for x̃ also assigns an approximately uniform measure
to members of this collection, then samples from p approximate samples from the model, and can
be used to build approximate confidence intervals, hypothesis tests, and so on. The statistical intu-
ition is therefore very similar to the intuition underlying the bootstrap (Davison & Hinkley, 1997;
Ventura, 2004).

As it stands, however, it would be hard to go beyond such heuristic interpretations of p. But a
minor change in the formulation endows p with a precise statistical interpretation, while preserv-
ing the essential properties of the resampling scheme. The idea is to modify p so that it can be
expressed as

p(x) =
1

Z
1
{
S(x) = S(x̃)

}
(5)

1Note that the βi’s can be scaled by arbitrary constants without affecting the resulting pi’s and that this scaling
can happen during the recursive computation of the βi’s. This is important in an actual implementation to prevent
underflow or overflow. A good choice is to normalize each βi to sum to one (a double sum over both arguments)
before it is used in the next step of the recursion.
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for some (vector-valued) summary statistic S that is specified independently of x̃. If (5) holds, then
we can formally interpret p as a model for the conditional distribution of x̃, given the observed
value of the summary statistic S(x̃), and as a consequence the resampled and the original spike
trains will be, as a collection, exchangeable (under the model). Notice that such a representation
cannot hold under the original formulation (3), since each x̃i lies at the center of its jitter window,
Ωi, requiring that any such representation employs an S that depends on x̃.

In the context of jittering without history constraints, this problem was addressed in Date et al.
(1998), Amarasingham (2004), Harrison (2005) and Geman et al. (2008) by simply modifying the
jitter windows so that they are determined a priori from a fixed partitioning of time. Jitter windows
contain the associated spikes, but are not necessarily centered on the associated spikes. Formally,
the modified jitter windows are Ωi =

{
bx̃i/LcL, . . . , bx̃i/LcL + L − 1

}
, where b·c denotes the

floor function (round down), so that Ωi (possibly identical for many indices, i) is the interval in the
a priori partition that contains x̃i. This same modification works here, but interacts with the history
constraint in a way that can substantially reduce the variability of the resamples, correspondingly
reducing the power of the associated tests. A better solution borrows the fixed-partition idea, but
only applies it to certain spikes. To describe the idea, we introduce the notion of a pattern.

4.1 Modifying the jitter windows
The history constraints in (2) uniquely partition the original spike train and any valid resampled
spike train into patterns. A pattern is a maximal sequence of consecutive spikes such that every
neighboring pair of spikes has interspike interval no greater thanR bins. Notice that (2) guarantees
that a resampled spike train has, exactly, the same ensemble of patterns, in the same order, as the
recorded spike train x̃, albeit with shifted positions. If we think of the position of a pattern as the
position of its first spike, then the resampling distribution p developed in Section 2 can be viewed as
a pattern jitter, wherein the position of each pattern is jittered within the L-length window centered
at its first spike, but with the constraint that two consecutive patterns remain separated by at least
R bins. If, on the other hand, we choose an a priori partitioning and apply this partitioning to the
positions of patterns, then for a suitable summary statistic S the resulting resampling distribution
p has the representation given in (5), and the desirable interpretation as a model for the conditional
distribution of x̃ given S(x̃).

Here are the details. Let k1, . . . , kd denote the (increasing) indices of spikes in x̃ that start a
pattern, that is, x̃kj

− x̃kj−1 > R, where for notational convenience we define x̃0 := −∞ so that
k1 = 1, and kd+1 := n+ 1. For each i = 1, . . . , n, redefine

Ωi :=
{
bx̃kj

/LcL+ x̃i − x̃kj
, . . . , bx̃kj

/LcL+ x̃i − x̃kj
+ L− 1

}
for kj ≤ i < kj+1. (6)

The new Ωi is the L-length jitter window for the ith spike that results from constraining the spike’s
pattern to be jittered in an a priori window containing the pattern’s first spike, as it was located in
the original spike train. Thus the new Ωi still contains x̃i, but it is not necessarily centered on x̃i.
Using these new Ωi’s in the definition of p, as given in (3), provides a resampling distribution with
nearly identical properties, but with the additional benefit of obeying (5). One way to formulate
the corresponding summary statistic is

S(x) :=
(
S11(x), . . . , Sn1(x), S12(x), . . . , Sn2(x)

)
,
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where,

Si1(x) :=

{
bxi/LcL if xi − xi−1 > R,
xi − xi−1 otherwise,

and Si2(x) :=

{
1 if xi − xi−1 > R,
0 otherwise.

(7)

Si1 records either the beginning of the jitter window for spike i or it records the interspike interval
preceding spike i, depending on whether or not spike i starts a pattern. Si2 indicates how to
interpret Si1.

It is straightforward to verify that
{
x : S(x) = S(x̃)

}
is the set of all spike trains with the same

ensemble of patterns, in the same order, as the recorded spike train, and with the initial spike of
each pattern occurring in the same jitter window as the corresponding spike in the recorded spike
train. The modified resampling distribution, p, given in (5) is simply the uniform distribution over
this set of spike trains.

The dynamic programming algorithm to convert the modified p into its Markov representation
is essentially unchanged. Indeed, we did not make use of the structure of the Ωi’s in the algorithm.
Furthermore, the efficiency of the algorithm only varies with the sizes of the Ωi’s, and these are
unchanged. Certain special cases do not require dynamic programming. For example, ifR = 0 and
if the discretization is sufficiently fine so that no (discretized) recorded spike times are identical,
then pattern jitter reduces to the original jitter method first used in Date et al. (1998), which can be
sampled by independently permuting the sequences of ones and zeros (spike or no spike) in each
jitter window. Or if R is at least as large as the largest interspike interval in the recorded spike
train, say R = ∞, so that the entire spike train is a single pattern, then pattern jitter is closely
related to the resampling method in Pipa et al. (2007) which can be sampled by uniformly jittering
each spike by the same amount.

Figure 1 shows some examples of an original spike train (from primate motor cortex2) and a
collection of resamples from the corresponding p. Each subfigure shows different combinations of
L and R. Applications of pattern jitter to real data can be found in Harrison (2005) and Geman et
al. (2008). A specific application would be to test whether precisely synchronous spike pairs (say
within ±1 ms) between two simultaneously recorded neurons occurred at approximately the same
rate in the recorded data as in the surrogate data, preserving, say, 50-ms histories (R = 50 ms) and
pattern locations within 20 ms (L = 20 ms). Software for pattern jitter is available online.3

4.2 Implications of the modified p

Think of the recorded data, x̃, as a realization of a random process, X̃ . If we make the assumption
that the conditional distribution of X̃ given S(X̃) = s is uniform for all s,4 then the resampling
distribution (p of equation (5)), is the conditional distribution of X̃ given S(X̃) = S(x̃). That is

Pr
(
X̃ = x

∣∣S(X̃) = s
)

= p(x) for all x and for s = S(x̃).

2Courtesy of N. Hatsopoulos.
3http://jitter.stat.cmu.edu/
4If we have a class of models with the common property that conditional distributions are always uniform after

conditioning on S, then S is a sufficient statistic for this model class. The converse is not true. Lauritzen (1988)
explores the mathematical foundations of building models by first specifying the sufficient statistics and also suggests
the uniform distribution as an intuitive conditional model in the absence of further information.
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L = 75 ms L = 25 ms

R = 0 ms

R = 10 ms

R = 100 ms

700 ms 700 ms

Figure 1: The top horizontal line of dots for each subfigure shows an identical sequence of observed spike
times (dots) during a 700 ms interval (finely discretized to a 1/30th ms grid). Each of the remaining 15 lines
of dots shows an independent sample from the corresponding p. The subfigures on the left have L = 2250
bins (75 ms) and those on the right have L = 750 bins (25 ms). The vertical dotted lines show the boundaries
of the jitter windows. Notice that coarse-temporal modulations in firing rate are preserved by the resamples,
with L controlling the notion of “coarse.” The top, middle and bottom rows of subfigures have R = 0, 300
and 3000 bins (i.e., 0, 10 and 100 ms), respectively. The only patterns in the top and middle rows are single
spikes, however, since the middle row has a larger R, the resamples are more regular: spikes cannot be
jittered too close to one another or new patterns will be created. The bottom row has four patterns. Notice
that the patterns are preserved across resamples and that only the first spike of each pattern is constrained to
remain in its original jitter window.
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Monte Carlo samples from p can then be used for conditional inference, in the usual way. For
example, we can compute the (conditional) variance of some estimator under the assumption of
uniformity. Or, we can test the assumption of (conditional) uniformity by treating samples from p
as samples under a null hypothesis, and comparing them to the original data.

Consider a search for evidence for unusual structure in a single or multiple spike trains, such as
repeating sequences of interspike intervals (as in Abeles & Gerstein, 1988; Abeles et al., 1993), or
precisely timed synchronies (as in Alonso et al., 1996; Dan et al., 1998). How much of the unusual
structure is to be expected by chance alone? For spike trains, a proper notion of chance would
necessarily account for time-varying firing rates, possibly correlated across neurons but changing
from trial to trial (cf. Brody, 1998), and known spike-history effects (especially refractory periods
and bursting–cf. Oram et al., 1999). The proposed resampling distribution accounts for these
effects via conditioning, while introducing, by virtue of the conditional uniform distribution, no
additional structure. In this sense, p quantifies what we mean by chance, and a rejection of the
null hypothesis (that Pr

(
X̃ = x

∣∣S(X̃) = s
)

is indeed uniform) is evidence for the presence of
structure in the recorded data above and beyond what can be explained by time-varying firing rates
(at least at time scales slower than L) and spike-history effects (of duration R or smaller).5 For
alternative approaches to similar problems, see Ventura et al. (2005a) and Ventura et al. (2005b)
for model-based techniques using bootstrap resampling; see Oram et al. (1999), Nádasdy et al.
(1999), Pauluis et al. (2001), Baker and Lemon (2000) and Gerstein (2004) for techniques relying
on heuristic resampling schemes; and see Amarasingham (2004), Harrison (2005) and Geman et
al. (2008) for formal hypothesis tests based on the jitter principle that avoid explicit resampling.

We have appealed to intuitive arguments to justify the choice of a conditionally uniform re-
sampling distribution. We will briefly mention two other approaches that lead to the same choice.
One is through the “Maximum Entropy Principle” (Jaynes, 1982), a common heuristic for prob-
ability models. Keeping in mind that the range of X̃ is finite and discrete, the maximum entropy
distribution on the spike train X̃ , given any distribution on S(X̃), places the uniform distribution
on the conditional probabilities Pr

(
X̃ = x

∣∣S(X̃) = s
)
, for every s. In that entropy is a measure of

lack of structure, the conditionally uniform distribution can be interpreted as the one that imposes
the least additional structure, beyond any probabilistic factors already governing rate changes and
spike-history effects.

A second approach, also through conditioning on S(X̃) = s, is to model the conditional distri-
bution of X̃ as the conditional distribution of an appropriately discretized homogeneous Poisson
process. The homogeneous Poisson process is the canonical structureless point process, and be-
ing conditionally Poisson is a reasonable notion of being conditionally structureless. It is easy to
show that conditioning a homogeneous Poisson process on S(X̃) = s again leads to the uniform
resampling distribution.

5As with any hypothesis test, we are cautioned to look at both a p-value and a measure of the magnitude of the
departure from the null. This protects against rejecting the specifics of the null, when, in fact, we really only want to
reject the spirit of the null, e.g., rejecting precise uniformity (which is not particularly interesting) instead of rejecting
approximate uniformity (which still captures the notion of “structureless”).
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5 Generalizations

With reference to equation (3), any non-negative and finite functions can substitute for the indicator
functions currently defining {hi}ni=1, without changing the basic plan of re-factorization through
dynamic programming and ease of sampling through the Markov-chain representation. The mod-
ification introduced in Section 4 was of this type. In general, of course, such modifications will
invalidate the particular interpretations offered in Section 4. Some simple modifications that might
be desirable include holding certain spike times constant, changing the windows in which patterns
are jittered (the Ωi’s), using a nonuniform jitter distribution, or introducing specific modeling as-
sumptions like absolute and relative refractory periods regardless of whether they appear in the
data. Only the first of these (holding certain a priori spike times constant) is likely to retain the
same interpretations as our final version of pattern jitter.6 Various generalizations along these lines
are explored in Harrison (2005).

Heuristic modifications like these can be used to more adaptively control the smoothing of
firing rates as dictated by the jitter window length L. For example, the length of the jitter window
could be reduced in time intervals with (potentially) rapid firing rate changes, such as intervals
around stimulus onset or (for data sets with repeated trials) intervals with large changes in the
trial-averaged peri-stimulus time histogram (PSTH). However, jitter-induced smoothing is often
desirable. The slower (smoothed) dynamics in the jitter surrogates can serve to test for faster
dynamics in the recorded spike train. Thus, for example, the number of observed millisecond
synchronies can be compared to the ensemble of synchrony counts produced by jitter, to give
evidence for dynamics operating on a time scale faster than the jitter interval.

A more complicated endeavor is to craft an alternative function S that preserves different as-
pects of the recorded data, and then repeat the development of pattern jitter. Even assuming that
the uniform conditional distribution still makes good modeling sense, it may be difficult to sam-
ple from. Pattern jitter avoids this problem because S is structured so that 1{S(x) = s} factors
into a product of simple functions of spike times, each depending only on a single pair of two
neighboring spikes. Such products define first-order Markov chains, and are therefore amenable
to dynamic programming. It is well known that the dynamic programming principle applies much
more generally, and remains computationally feasible, provided that the graph defined by the fac-
torization (wherein two spikes are neighbors if they appear together in one or more factors) admits
to a site-visitation schedule with small maximum boundary (cf. Geman & Kochanek, 2001) or,
equivalently, small tree width (cf. Lucena, 2002). Of course in situations where no such factoriza-
tion exists, it may still be possible to sample (perhaps approximately) using Monte Carlo methods
(cf. Chen et al., 2005 and the references therein for resampling contingency tables with marginal
constraints).

Finally, one can attempt to formally relax the assumption of uniformity by developing a family
of resampling distributions that are approximately uniform and investigating various properties of
this family (usually worst-case bounds for a specific test statistic, analogous to the classical method
of defining p-values for a composite null hypothesis). See Amarasingham (2004), Harrison (2005)
and Geman et al. (2008) for further details.

6In practice, we actually prefer to hold the first and last spike times constant because this ensures that the resampled
spike trains are valid, in terms of spike-history, even in the context of (perhaps unobserved) spikes occurring before or
after the experimental interval.
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6 Summary
It is unlikely that any time soon the neurophysiologist will be able to fully control the myriad
of inputs that influence a recorded cortical cell’s activities in awake and behaving animals. Thus
the notion of repeated trials, invaluable for the experimental exploration of neuronal dynamics,
must be approached with some care in the ensuing statistical analysis. We have proposed some
methodologies for addressing this challenge (cf. Amarasingham et al., 2006; Geman et al., 2008),
including the pattern-jitter algorithm developed here.

Pattern jitter is a spike-train resampling algorithm that preserves spiking patterns and coarsely
measured (i.e., smoothed) firing rates, while avoiding an explicit estimate of firing rate or any
assumption of stationary dynamics. It is controlled by a parameter L, determining the degree of
smoothing, and a parameter R, defining the length of preserved history and thereby the notion of a
pattern. Both parameters are easy to interpret and the method can be concisely stated as resampling
from the uniform distribution conditioned on the sequence of patterns and the coarsely measured
pattern starting times. An efficient dynamic-programming preprocessing step transforms the orig-
inal data into a Markov-chain representation that permits fast resampling. Both the preprocessing
and the resampling are linear in the number of spikes. Implementation is straightforward. In that
the resampled spike train preserves coarsely measured firing rates as well as spike-history effects,
an ensemble of resampled spike trains can be used to gauge the significance of additional structures
residing in the recorded data.

Appendix
The discretized pattern jitter preprocessing algorithm scales with the square of the number of bins
in a jitter interval. For very finely discretized spike times this can sometimes be improved by
passing to the limit and using a continuous version of pattern jitter. We briefly sketch the algorithm
here. Complete details and software are available online.7 Here the parameters L and R are no
longer in units of bins, but are actual temporal units.

To specify the limiting distribution, we need only specify the (limiting) joint distribution of
the pattern starting times. The remaining spikes are then uniquely determined by the sequence
of patterns encoded in S. We could have taken a similar approach for discrete pattern jitter, but
then the generalizations are less transparent. Fixing the observation x̃, let k1 < k2 < . . . < kd

denote {k : Sk2 = 1}, i.e., those spike indices that start patterns. Let W := (W1, . . . ,Wd) :=
(Xk1 , . . . , Xkd

) denote the sequence of pattern start times for a generic resampled spike train. The
limiting joint distribution of W is given by the density

f(w) :=
1

Z
1{a1 ≤ w1 < b1}︸ ︷︷ ︸

h1(w1)

n∏
j=2

1{aj ≤ wj < bj}1{wj − wj−1 > rj}︸ ︷︷ ︸
hj(wj−1,wj)

,

where aj and bj are chosen so that bwj/Lc = bx̃kj
/Lc and where rj := R + x̃kj−1 − x̃kj−1

is the
minimum separation between Wj−1 and Wj that keeps the (j − 1)st pattern distinct from the jth
pattern. Z = Z(x̃, L,R) is a normalizing constant.

7http://jitter.stat.cmu.edu/
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The product form of the density shows that W is a continuous state-space Markov chain. For-
mally, the same recursion that is used to compute the transition probabilities in the discrete case can
be used to compute the transition densities in the continuous case. Simply repeat the development
in Section 3 replacing sums with integrals throughout.

The specific form of the hj’s for pattern jitter, namely, indicator functions, ensures that the
βj’s and the resulting transition densities will be piecewise polynomial. So they can be easily
represented as lists of polynomial coefficients for each piece, and the integrals can be computed
analytically. Sampling from piecewise polynomial densities is also relatively straightforward. The
main burdens in an actual implementation are careful bookkeeping of all the coefficients and a few
tricks to prevent numerical instabilities.
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