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DIFFUSIONS FOR GLOBAL OPTIMIZATION*

STUART GEMANf AND CHII-RUEY HWANG

Abstract. We seek a global minimum of U:[0, 1]"-. R. The solution to (d/dt)x,=-VU(xt) will find
local minima. The solution to dxt =-V U(xt) dt+dw,, where w is standard (n-dimensional) Brownian
motion and the boundaries are reflecting, will concentrate near the global minima of U, at least when
"temperature" T is small: the equilibrium distribution for xt is Gibbs with density ’r(x)a exp {-U(x)/T}.
This suggests setting T T(t) 0 to find the global minima of U. We give conditions on U(x) and T(t)
such that the solution to dxt =-V U(xt)dt+x/ dw converges weakly to a distribution concentrated on
the global minima of U.
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1. Introduction. We can find a local minimum of a function U on R" by starting
at an arbitrary Xo e R" and solving the equation

dx___,= -V U(x,).
dt

A continuous path, x, seeking a global minimum will in general be forced to "climb
hills" as well as follow down-hill gradients. One way of introducing hill-climbing,
while preserving the tendency to descend along gradients, is to introduce random
fluctuations into the path of x"

(1.1) dxt -V U(x,) dt+dwt
where w is a standard Brownian motion and T, the "temperature," controls the
magnitude of the random fluctuations. Under suitable conditions on U, xt approaches
(weakly) an equilibrium, which is a Gibbs distribution with density

’r(x) =--exp {-U(x)/ r} where Zr exp {-U(x)/ r} dx.
R

As T0, rr concentrates on the global minima of U. Hence, in low temperature
equilibrium we can expect to find xt near a global minimum.

Unfortunately, the time required to approach equilibrium increases exponentially
with 1/T; solutions to (1.1) with small T will be very slow to find the important minima
of U. This suggests that (1.1) be integrated with a gradually decreasing temperature,
T T(t)$ 0. The hope is that the early and large random fluctuations will allow xt to
quickly escape from local minima, whereas the later (large t) behavior will be essentially
a gradient descent into a prominent minimum of U.

The theorem presented here gives sufficient conditions on U and T(t) for the
weak convergence of xt to a measure concentrating on the global minimum of U. We
have simplified the mathematics by confining x to a rectangle in R" (the diffusion is
"reflected at the boundaries"). The rectangle is taken for convenience to be the unit
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cube. For illustration, let us assume that U: [0, 1] --> R has a unique global minimum
at x :. If U is sufficiently smooth, and properly-behaved at the boundaries (see 2),
and if T(t)= c/log (2+ t) for c sufficiently large, then the solution to (1.1), with
T T(t), converges to ::

P(Ix, < 1

for all e > 0 and all starting points.
Our work was inspired by the "simulated annealing" recently proposed by ern9

[2] and Kirkpatrick et al. [10]. Given a function U of n binary variables xl,..., x,
they propose to find global minima of U by running the "Metropolis algorithm" [13]
while gradually lowering the temperature. The Metropolis algorithm produces a Markov
process with state space {0, 1}". As in (1.1), there is a "temperature", T, and at fixed
T the Metropolis algorithm also has the Gibbs distribution as equilibrium. The same
heuristics, then, motivate gradually lowering T T(t). This is called simulated anneal-
ing since it copies the physical procedure, called annealing, of melting and then slowly
cooling a physical substance (such as a crystal) in search of a low energy configuration.
The latter typically corresponds to a high degree of spatial regularity, useful for some
applications. (ern and Kirkpatrick apply their simulated annealing to certain com-
binatorial optimization problems, often with striking success.

Simulated annealing has also played a role in overcoming some of the computa-
tional problems that arise in image processing (Geman and Geman [4], Grenander
[8], Marroquin 12]). In these applications, the procedure is modified to accommodate
arbitrary discrete variables x,. , x, with finite state spaces (rather than binary), and
Geman and Geman have established weak convergence to the global minima of U,
provided again that the temperature is lowered sufficiently slowly. Unfortunately, the
extension of the Metropolis algorithm to continuous variables, x,..., x,, involves
some awkward computational problems. Nevertheless, many of the variables that arise
in image processing are most naturally modelled as continuous, such as pixel grey
levels, line orientations, and the sizes and orientations of objects. This motivated both
Grenander (in [8]) and us to look at a diffusion-process alternative. In future image
processing experiments, we will be comparing the computational performance of the
continuous-valued Metropolis scheme to the diffusion scheme presented here.

Some encouraging simulation results have been recently obtained by Alufti-Pentini,
Parisi, and Zirilli 1 ]. They study the performance of a modified version of (1.1), which
includes repeated runs, and an interactive "annealing schedule" T T(t). The experi-
ments involve 22 different test functions U. These are defined on R", with n ranging
from one to fourteen, and have multiple local minima. Properly tuned, the algorithm
finds a global minimum for each test function.

2. Statement of result. Given a real-valued function U on the unit cube

u: [0,1]"

and an "annealing schedule" T(t),[O, we define a dittusion x:

dx,=-VU(x,) dt+/2T(t) dw,

B. Gidas [6] and H. Kushner 11 have recently improved on our result. Gidas gets a tight characteriz-
ation of the minimum allowed c in the schedule T(t) c/log (2 + t), and removes the reflecting boundaries.
Kushner generalizes to a richer class of diffusions, allowing state-dependent diffusion coefficients and a
random drift. The latter makes the connection to "stochastic approximation" in which U, or its functionals,
cannot be directly observed.
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where wt R is standard Brownian motion, x is confined to [0, 1] "by reflection,"
which will be made precise shortly. The theorem gives conditions on T(t) and U which
insure the convergence of x, to the set of global minima of U, in a suitable (weak)
sense. Conditions on T(t) will be given later. As for U, the conditions include:

(A) There exists an extension of U to an open set S_[0, 1] n, which is twice
continuously differentiable, and whose gradient has zero normal component
at all noncorner boundary elements of [0, 1]".2

There are many equivalent ways to make precise the notion of a reflected diffusion.
We will proceed in a manner that best fits with the methods to be used later in the
proof of the theorem. First, we extend U "periodically" to U, defined on all of R ".
Let Z denote the integers, and for every (il,.’’, in) Z" define

Sil,...,in -I ik, ik + 1 ]
k=l

and define Gi,,...,i," [0, 1]n Si,,...,i, by

ik + X, ik even,,...,i.(X))k [ ik + 1- X, ik odd.

Finally, define U: R _.> R by

x s,, ...,,. 0(s) u(G-’,,,...,,(x)).

If x is "on a boundary" (i.e. Xk some Z, 1 k =< n), then x is an element of two
or more cubes: for example x Si,,...,i, and x Sj,....,j. where (i,. ., in) (jl," ,j,).
But then

G-1,,,...,,.(x) ;,...,o(x),
and hence U is well-defined.

The definition ofthe reflected process, x, is in terms of a "free" (ordinary diffusion)
process x:

d, =-V (,) dt+/2’(’t) dw,.

Fix => s => 0 and x [0, 1 in. The conditional distribution on x, given xs x is the same
as if we had set s x and then defined x, G-1,,...,i.(,) whenever , S,,...,.. In other
words, we reflect , at the boundaries of the unit cube. More precisely, let/(s, x, t, y)
be transition probability densities for the process (density on x, evaluated at y, given
that x x). Then x is the Markov process with the following transition probability
densities:

p(s, x, t, y)= E (s, x, t, G,t.....,.(y))
il," ",i

Vx, y [0, 1]", > s -> 0. To check that these actually satisfy the Markov property,
first observe that for any (i,..., in), (j,’" ,jn)Zn, x,y[O, 1] n, and t> s>=0,

(s, Gj,,...,j,(x), t, Gq....,,.(y))= (s, x, t, Gk,,...,.(y))

We believe, but are not certain, that the theorem still holds when the normal component of V U does

not vanish on the boundaries of [0, 1]".
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where

ip-jp if jp is even,
kp=

jp-ip ifjpisodd,

for each l<-p<-n. Thus, for any x,y[O, 1]", t> s>=0, and toe(S, t),

p(s, x, t, y)= (s, x, t, G,,,...,,,(y))
I1," ",In

f (s, x, to, z)(to, z, t, aq,...,,.(y)) dz
i1’" "lrl R

,,Y 2 f (s,x, to, G,,...,j,(z))(to, G,,...,j,(z), t, G,,,...,,.(y)) dz
,"’,n Jl,’",Jn [0,1]

E j (s, x, to, G,,...,,(z)) E (to, G,,...,,(z), t, Gq,...,,,(y)) dz
J1,’",Jn [0,1] il," "’,in

--j,,...,Ejn f[0,1] (S, x, to, Gj,,...,,(z)) k,,...,k,E /3(t0, Z, t, Gk,,...,k,(Y)) dz

,,,’",E, fro,l]" fi(s, x, to, Gy,,...,y,(z))p(to, z, t, y) dz

f p(s, x, to)p(to, z, t, y) dz.
0,1]

If the temperature were constant, then x would have a unique equilibrium distribu-
tion (as will be dear from the proof of the theorem)"

(2.1) T(B) la[O,l]" 1
exp {- U(x)/T} dx

where

Zr [ exp {-U(x)/T} dx.
[o,]"

As T 0, 7r7- concentrates on the global minima of U. In fact, for well-behaved functions
U, {rT}7->o has a unique weak limit, call it ro, and this satisfies

ro({X" U(x)= inf U(y)})= 1
y

(see Hwang [9]). If, for example, the global minimum of U is attained at a finite
number of points, then rT - ro, where ro concentrates on the global minima and has
a simple characterization in terms of the Hessian of U. On the other hand, if the global
minima of U form a set of positive Lebesgue measure, then again 7rr- ro, but the
latter is uniform on the set of global minima. In any case, we will assume the existence
of a unique weak limit 7to:

(B) There exists ro such that 7r7- 7to as T 0.

Most commonly, U will possess only one global minimum, in which case (B) is trivial.
Of course, ro necessarily concentrates on the global minima.

The following theorem gives conditions for the weak convergence of x, to 7ro.
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THEOREM. Assume (A) and (B) and that T(t) c/log (2 + t). For all c sufficiently
large,

P(xt IXo x) - ro(" Vx [0, 1]".

Remarks. (1) Actually, the result holds if T(t) _-> c/log (2 + t), c sufficiently large,
and if (1) T(t)0; (2) T(t) is continuously ditterentiable; and (3)

dT(t)/dt
T(t)3

e2a/T(t) __> 0

where A supx,ytO,11" (U(x)- U(y)). The proof is the same.
(2) Almost sure convergence to the set minimizing U is, in general, impossible,

as can be demonstrated already with n 1 and a very simple function U. The reason
can be put loosely as follows. If T(t) 0 sufficiently slowly to guarantee escape from
local minima, then repeated escapes from global minima are also guaranteed (albeit
with increasing rareness).

(3) For most problems, the constant c necessary to guarantee convergence to
global minima will most likely be too large to be practical. But if the discrete case is
any guide, then our image processing experiments suggest that significant improvement
is obtained over greedy algorithms (such as zero-temperature gradient descent) with
a constant far too small to invoke the theorem. (See Geman and Geman [4] for further
discussion. Hajek (personal communication) and Gidas [5] have actually identified
the needed constant for the discrete case.)

3. Proof of the theorem. For any x [0, 1 ]", > s -> O, fs C[O, 1 ]", and/x a proba-
bility measure on [0, 1]", we give the following definitions:

(i) 7rs= 7"I’T(s), ’ff’T as in (2.1).

Notice that 7r has a density for all 0 -< s < c. We will use the same symbol, rs, to
denote this density:

exp{-U(x)/T(s)}
(ii) 7r(x)=tO,ll, exp{-U(x)/T(s)} dx’

l’(iii) (f)= f(x) (dx),
[0,1]

(iv) p(, , t,f) f(y)p(s, x, t, y) dy,
[o,]"

(v) p(s, tx, t,f)=jI f(y)p(s,x,t,y)tz(dx)dy.
I0,1]" 0,1]

The proof of the theorem is based upon the following two lemmas.
LEMMA 1. f C[0, 1]", s >- 0,

lim sup Ip(s, v, t,f)-p(s, w, t,f)l=O.
t3 we[0,1]

LEMMA 2. Vf C[0, 1]",

lim li--- Ip(s r, t,f)-Trt(f)[=O.
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Assuming the validity of these, we establish the theorem as follows: fixing x [0, 1]
andf C[0, 1] n,

li--" Ip(0, x, t, f)- ro(f)l

<- lim lim Ip(s, p(O, x, s, ), t,f)-p(s, zr, t,f)l

+ lim lim Ip(s, 7rs, t,f)- r’(f)l + lim lim [r’(f)- ro(f)l
$-->00 t-->O0 $-->00 t--O0

(by Lemma 2 and r err(t) -% 7to)

lim lim [p(s, p(O, x, s,. ), t,f)-p(s, r, t,f)[
$-.>00

limlimt z
lim lim [ [p(0, x, s, z) (z)]p(s, z, t,f) dz

dz

lim lim sup Ip(s, v, t,f)-p(s, w, t,f)l 0
t D,W

by Lemma 1.
oofofLemma 1. 0 let

Then

, =infp(t, x, t+ 1, y).

lim sup Ip(s, v, t,f)-p(s, w, t,f)l
t.-. v,w

Ilira sup p(s, v, s+ 1, )p(s+ 1, , t,f) d
V,

I p(s, w, s+ 1, z)p(s+ 1, z, t,f) dz

Ilira sup (p(s, v,s+ l, )-B)p(s+ l, z, t,f) d

-I (p(s, w,s+l,z)-s)p(s+l,z, t,f) dz

=< lim sup I(1-)sup p(s+ 1, z, t,f)-(1-)infp(s + 1, z, t,f)l
D,

=li--(1-$s) suplp(s+l, v, t,f)-p(s+l, w, t,f)l
v,w

N lira 1-I (1 s+
t--> k=O

sup Ip(s+[t-s], v, t,f)-p(s+[t-s], w, t,f)[
v,w

[t--s]--I

--<--211fllol- 1-I (1-+)=211fll 1-[ (1-+)
t-*oo k=0 k =0
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(where [x] is the greatest integer not exceeding x). Hence, for the proof of Lemma 1
it is sufficient to show that

6s+k--O0 VsO.
k=0

Let 6, lnf,,yto,1]./(t, x, + 1, y). Notice that 6t <-- 6t for all >= 0. We will show that

Z 6s+k --=00 VsO.
k=0

Define {f’[ t, + 1] R", f continuous}, and let Px and Qx be the probability
measures on induced by

and

dZ,=-VI](Z,) du+x/2T(u) dwu, Zt=x, u[t, t+l],

dZ. ,/2r( U dw.,

respectively. Then Px << Q, and

Zt=x, u[t,t+l],

(3.1)

dP {I’+l 1

dQ
(Z(ll=exp

2T(u)
----(-v t)(Z(u)),

-l I,’+’ 1 Iv O(Z(u))l= du}2 2r(u)

(see Stroock and Varadhan [14]). We will bound the exponent on the right-hand side.
Apply Ito’s formula, for the zero drift equations (i.e. under Qx)"

1 O=m(Z(u) du
1--L-(-v O(Z(u)) dZ(u))=2T(u) -2T(u-- dU(Z(ul)

t+l 1

, 2r(u)
(-vO(Z(u)), dZ(u))

Under the assumptions on U, SUpzR" I/x,,, (Z)[--<_ C1 < oo for some C1, and consequently

U.,x,(Z(u)) du
i=1

nC
2

Using again the assumptions on U, together with the monotonicity and smoothness
of T(t).

t+l 1

2T(u---- dO(Z(u))l
O(Z(t+ 1)) O(Z(t))
2T(t+ 1) 2T(t)

j" ( )t+l 1O(z(u))a c<--
T(t+ 1)"
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Hence
t+l 1

2T(u)<-vO(Z(u)), aZ(u)) tiC1 C2<=--+ T(t +1-’---""
As for the other term in the exponent of (3.1), we easily get a bound C3/T(t+ 1).
Therefore, for some constant C4,

dPx (Z(.)) >- exp {-C4/T(t + 1)}.
dQx

Consequently, for any e > 0, x, y R",

P(lz(t+ 1)-yl < e)-> e-C4/r(’+l)Qx(lZ(t+ 1)-yl <

Under Q,, {zi(t + 1)}in_-i are independent normal with

Z(t+ 1)--- N x,, 2T(u) du

Taking x, y

p(lZ(t+ l)_y[<e)> e_C4/r(t+l) I 1
t+

2 T( u) du)"/2

exp -I-xl 4 T(u) du d

g C e-C4/T(t+l) exp --(+ e)2 4
z--yl<e

Finally, then,

8= inf (t,x, t+ l, y)
x,ye[O,1]

inf lim--- (Iz(t+l)-yl<e)
x,y[O,1]" eO 8

e-C7/T(t+l)

for a sufficiently large constant C7. It now follows that the condition

E g,+=oo Vs_>-o
k=O

is satisfied for T(t)>= c/log (2 + t), provided c is sufficiently large.
Proof of Lemma 2. For > s -> 0 define

N(s,t)=I .a.,(x)(P(S,’n’2, t,X)
qTt(X)

We will show that

(3.2) lim lim N s, t) 0.
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From this, Lemma 2 is obtained as follows" For anyf [0, 1]"

lim lim ]p(s, rs, t, f) r (f)[

s-lim limt_ I (p(s, r, t, x)-rt(x))f(x) dx

<- fll -,lim limt_,oo I [p s, r, t, x) rt(x)[ dx

fll lim lim I 7r’(x)
p (s’ 7r, t, x)

-.(R),-. r’(x) - dx

<_llflllim lim /I r’(x)(P(s’ r’ t’x) )s-, t-,oo 7rt(x)
-1 dx

The proof of (3.2) rests upon the following lemma.
LEMMA 3. Let A supx,yto,lln (U(x) U(y)). For all > s >= 0

0- - Ti (1 + N(s, t))-2T(t) e-2a/r(ON(s, t).

Accept, for now, Lemma 3. We have with T(t) c/log (2 + t),

(3.3) A(+t) { 2c (+t):a/ A

\ ]
1 }N(s, t)<-- --(- N(s, t).Ot c log (2+ t)

From this, and the observation that lim, N(s, t)=0, (3.2) is easily established, pro-
vided that c is sufficiently large. We will forgo these details; they only involve integrating
(3.3), with the inequality replaced by equality.

All that remains is the proof of Lemma 3.
Proof of Lemma 3. First, observe that

N(s, t)= -f p(s, 7r, t, x)2

dx- 1
(x)d

Hence

where

and

N(s, t)=
dt zrt(x)

p(s, "tr, t, x)2 dx

+ 2 pt(s, 7r, t, x)p(s, 7r, t, x) t(x
dx

=A(s,t)+B(s,t)

A(s, t)=
dt 7rtix) p(s, 7rs, t, x)2 dx

I (1)B(s, t)= 2 pt(s, r, t, x)p(s, r, t, x) dx.
(x)
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Let g(t) 1/T(t). Then

A(s, t)=- rt(x)] \-tt (x) p(s, 7r’, t, x)z dx

.rrt(x (-gt(t)U(x).n’t(x)+gt(t).n-t(x).a’t(U))p(s, r, t,x)2 dx

(3.4) gt( t) f 1
q.l.t(X’ U(x)- ,7"i’t( U))p(s, -/’, t, x)2 dx

p(s, rs, t, x)2

Ag,( t)
7I’t(x)

=Agt(t)(l+N(s,t)).

The treatment of B(s, t) is more involved. The first step will be to show that

B(s, t)=-2T(t) f IV[p(s, r, t, x)/crt(x)]12cr’(x) dx.

From this, we will then derive the bound

B(s, t)<=-2T(t) e-Za/r(’)N(s, t),

which, together with (3.4), completes the proof.
We rewrite B(s, t) with the help of the forward equation for the original (^)

process: for > s _>- 0,

p,(s,y, t,x)= {T(t)px(s,y, t,x)+ Ux(X)p(s,y, t,x)+ U,x(x)p(s,y, t, x)}.
k=l

Integration over y, with respect to r, gives

t,(s, , t, x) E { r(t)t (s, , t, x)
k=l

(3.5)
+ Ox(X)p(s, r, t, x)+ Ox(x)(s, r, t, x)}.

We wish to convert (3.5) into a similar equation for p. This conversion is based upon
the following identities, which are justified by the assumed smoothness of U, and the
resulting smoothness of/ (see, for example, [3]). For each integer define

1 if is even,
P(i)=

-1 ifiisodd.

Recalling that

x, ye[O, 1]"P(s,y,t,x) Z (s,y,t,G,,....,,.(x)),
il,’" ",in

we have, for each 1 =< k <= n and each x, y [0, 1 ]""

Ox(Gi,,...,i.(x))= P(ik)U,(X),
)x(o,,,....,o(x)) Vxx(x),

p(s, rs, t, x)= E /(s, r, t, Gq,...,i.(x)),
il,’" ",in
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p,(s, r, t, x)= E ,(s, r, t, G,,,...,,o(x)),
il," .,i

p,,k(s, zr s, t, x)= E p(ik),,k(S, 7r, t, G,,.....i.(x)),
il,’" ",i

px(s, r, t, x)= E xx(S, r, t, G,,,...,,o(x)).
il," .,i

Now take x, y e [0, 1]" and replace x by Gi,.....in(s) in (3.5)"

/3,(s, 7rs, t, Gi,.....,.(x)) E {T(t)P"xxk(s, 7rS, t, G,,,...,,.(x))
k=l

+ ux(x)P(i)p\(s, , t,

+ Uxx(X)p(s, , t, o,,,....,o(x))}.

Summation over il,’’ ", i,, yields:

p,(s, r, t,x)= {T(t)pxx(S, 7r, t,x)+ Uxk(X)pxk(s, 7r, t,x)+ Uk(x)p(s, r, t,x)}
k=l

(3.6) r(t)
o {, [p(s, , t,x)/, (x)]}.(x)

o
k= 10Xk OXk

The associated boundary conditions are

p(s, 7r, t, x) 0 whenever Xk 0 or 1.

To see how these arise, take, for example, Xk --’0: letting x=(xl, x2, Xk_l, 0,
xk+l,""", x,), and letting ek be the unit vector along the kth coordinate,

p(s, r, t,x)

lim P(ik)p,,(s, 7r, t, G,1,....,.(Xl,. ., Xk-1, e, Xk+l," ", X,,))
e,[,O il,...,t

lim Ee,O ij:jk

{p,,(s, r, t, G,,...,,.(Xl,’", Xk-, O, Xk+,’’’, X,) + (2p + e)ek)

--,, (s, r, t, G,,.....i.(x, ", Xk-1, O, Xk+, ", X,) + (2p- e)ek)}

Now combine the boundary conditions on p with our boundary assumptions on
V U (set out in (A))"

-kxk [ P 7r, t, x / Tr’ x O

for all x such that Xk =0 or 1. Multiplying the equation in (3.6) by p(s, 7r, t, x)/rt(x)
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and integrating x over [0, 1]n gives:

1
B(s, t)= pt(s, 7r, t, x)p(s, 7r, t,x)

"(x)
dx

2

k=l i:jk

dx’" dx_ dx+"" dx
(integrating over x by pas)

k=l

T(t) f IV[P(S, , t, x)/’(x)]12’(x) dx.

It remains to show that

(3.7) IV[p(s, , t, x)/ ’(x)]12’(x) dx e-2a/r’N(s, t).

This final step is a consequence of the following proposition.
PROeOSIrO. If O" [0, 1]" R is continuously differentiable, and if

O(x) dx o,

then

Ox dx<-_ f Iv0l dx.

For a more general version of this, see Gilbarg and Trudinger [7, p. 157].
Finally, fix s and t, and let

6(x)
p(s, 7r, t, x)

1
’(x)

and c 6(x) dx. Since b(x)r’(x) dx =0,

(, t)= I (x’(x) ax I ((x)-’(x) ax.

Notice that e-a/rt t(x) ea/rt, and therefore

N(s, t) e/’ (6(x)-) dx

ea/r’ [VO(x)l2 dx (by the proposition)

e=/’ I(x)l=’(x) dx,

which is the same as (3.7).
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